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Abstract—In this paper an innovative method of using Acous-
tic Feedback Cancellation (PEM based PBFD-AFC) in large
acoustic spaces is presented. The system under analysis could vary
from Single Source Single Receiver (SISR) to a Multiple Sources
Multiple Receivers (MSMR). An environment is representative
of (e.g.) churches installations or Public Address (PA) systems,
thus involving the presence of one or more microphones and
corresponding feedback paths. The Partitioned Block approach
consists of slicing the feedback path (e.g the impulse response
of the system) to improve the algorithm performance. It can be
applied either in the time domain or in the frequency domain,
where the latter, called Partitioned Block Frequency Domain,
shows faster convergence, lower computational cost and higher
estimation accuracy. The results of the proposed framework is
compared with the state of the art using real acoustic data
showing superior performance with up to 20dB Maximum Stable
Gain (MSG) and 30 seconds less convergence time.

I. INTRODUCTION

Acoustic feedback is a relevant audio topic ever since the
introduction of the first sound reinforcement and public address
(PA) systems [1][2]. Also referred to as the Larsen Effect,
the microphone, amplifier and loudspeaker are arranged in a
closed loop, i.e. whenever a microphone captures information
created in the environment, and then sends it to be played-
back by a speaker placed in close proximity. Typically, as
soon as the loop gain rises above a threshold, several undesired
signals (howling, ringing, self-oscillations etc.) start affecting
the system performance and degrades both sound intelligibility
and sound quality.
In the past 50 years several solutions have been proposed,
modelled and implemented using both software and hardware
[3]. For example a common method comprises placing notch
filters into the signal path [3], [4]. Although correctly decreas-
ing in the loop gain at those critical frequencies at which the
problem arises, this approach has a main drawback: in that
system can only react after howling or self-oscillations have
occurred and cannot prevent the audience from experiencing
these. On the contrary, there is a proactive approach, which is
called Adaptive Feedback Cancellation (AFC). It is aimed at
predicting the feedback signal component and then subtracting
this prediction from the microphone signal [4]. In [5], [6], [7],
[8] different proactive approaches wee presented for hearing
aid applications. In the context of hearing aids the feedback
path impulse response is less than 5ms.
In this paper we focus a large acoustic rooms (with a rever-
beration time R60 as long as 1-5 seconds [9]) and hence an
alternative approach will be needed if an unbiased solution and

a fast convergence rate is required.
The aim of this paper is to show a new technique for an
unbiased estimation of long acoustic feedback paths, im-
proving the sound intelligibility in scenarios such as public
address systems. After introduced the problem statement in
the Section II, the standard technique for the IR estimation
will be discussed in the Section III, addressing this using
both the source signal model and regularization method. Then
the proposed new algorithm will be introduced in Section IV.
Finally, section V will present and discuss the performance
in terms of Misalignment (MSL) and Maximum Stable Gain
(MSG) using real acoustic data, demonstrating the goodness of
the Partiotioned Block Frequency Domain (PBFD) approach.

II. PROBLEM STATEMENT

Consider for simplicity the single-loudspeaker single-
microphone (SISO) system depicted in Figure 1.

Figure 1: Acoustic Feedback in a single input single output
(SISO) scenario.

Let y(n) be the microphone signal defined as:

y (n) = x (n) + v (n) , (1)

where the feedback signal x(n) = f(n) ∗ u(n) is the con-
volution of the finite impulse response (FIR) filter f(n) (the
acoustic feedback path) of length nF with the loudspeaker sig-
nal u(n) and the v(n) is the source signal, with n the discrete
time index. Considering F (q, n) the polynomial version of the
time variant discrete time filter equal to:

F (q, n) = f0 (n)+. . .+fnF−1 (n) q
−(nF−1) = fT (n)q, (2)

the feedback signal can be expressed also as:

x (n) = F (q, n)u(n), (3)

11th International Conference on Mathematics in Signal Processing 

12 – 14 December 2016, Austin Court, Birmingham, UK



with q =
[
1, q−1, . . . , q−(nF−1)

]T
the delay operator, and

f(n) the FIR filter coefficients vector at the instant n. In a
closed loop system, the far-end and near-end signals, u (n) and
v (n) respectively, are related by closed loop transfer function
[10]:

u (n) =
G (q, n)

1−G (q, n)F (q, n)
v (n) . (4)

According to the Nyquist’s criterion, the closed loop system
becomes unstable if there exists a radial frequency ω for which:

{

|G
(
eiω, n

)
F
(
ejω, n

)
| ≥ 1

∠G
(
eiω, n

)
F
(
ejω, n

)
= 2kπ, k ∈ Z

, (5)

with F
(
ejω, n

)
and G

(
eiω, n

)
the Short Time Fourier Trans-

form (STFT) of the acoustic feedback path and electroacoustic
forward path respectively, with the latter one equal to:

G (q, n) = g1 (n) q
−1 + . . .+ gnG

(n) q−nG . (6)

In (6) G (q, n) is assumed to contain at least one unit delay
(g0 (n) ≡ 0). When the AFC method is applied, the scheme
depicted in figure 2 can be considered [4].

Figure 2: Acoustic Feedback Cancellation (AFC) basic
scheme.

A FIR filter F̂ (q, n) is placed in parallel with the acoustic
feedback path; its input is the loudspeaker signal u(n), and
its desired output is the feedback signal. Accordingly, the
feedback signal x(n) can be predicted by the adaptive filter

output signal ŷ (n) = F̂ (q, n)u(n) which is subtracted from
the microphone signal obtaining the error signal e (n) as:

e (n) = y (n)− F̂ (q, n)u (n) . (7)

In this case the Nyquist’s criterion can be rewritten as follow:






|G
(
eiω, n

) [

F
(
ejω, n

)
− F̂

(
ejω, n

)]

| ≥ 1

∠G
(
eiω, n

) [

F
(
ejω, n

)
− F̂

(
ejω, n

)]

= 2kπ, k ∈ Z

,

(8)

with F̂ (q, n) being the estimated Room Impulse Response

(RIR) of F (q, n). When F̂ (q, n) converges more to F (q, n),
the feedback compensated signal e (n) will get closer the near-
end signal v (n), thus leading to better audio quality.

III. AFC FRAMEWORK

Most of linear adaptive filtering algorithms are related
to the Least Squares (LS) estimate of the Room Impulse
Response (RIR), given by [3]:

f̂LS(n) =
(
UTU

)−1
UTy. (9)

A common problem in room acoustic application is that the
matrix UTU is ill-conditioned. A standard technique to turn
an ill-posed problem into a well-posed problem is to apply the
regularization. In [4] and [7] the problem has been addressed
with a weighted LS criterion, given by:

min
f̂

{[

y −Uf̂
]T

W
[

y −Uf̂
]

+

[

f̂ − ξ
]T

Φ
[

f̂ − ξ
]}

.

(10)

with ξ a reference value, W and Φ the weighting matrices.
The property of criterion in equation (10) will depend on the
choice of the weighting matrices W and Φ. A straightforward
choice is to minimize the Mean Square Error (MSE) criterion

min
f̂(n)

{[

f̂(n)− f(n)
]T [

f̂(n)− f(n)
]}

, (11)

between the estimated and true RIR. The MSE optimal choice
for the weighting matrices and for the reference value is
ξ = f0, W = Rv

−1 and Φ = Rf
−1, leading the optimally

weighted and regularized LS estimate:

f̂(n) = f0 +
(
UTRv

−1U+Rf
−1

)−1
UTRv

−1 (y −Uf0) ,
(12)

with f0 a reference value, Rv and Rf the autocorrelation
matrices of the source signal and impulse response, respec-
tively. Often the estimate of equation in (12) cannot be
calculate because the autocorrelation matrices Rv and Rf

are generally unknown. In [7], [11], [12], the source signal
autocorrelation matrix Rv has been modelled with different
Prediction Error Methods (PEM). In [13] both short-time
prediction filter and long-time prediction filter are taken in
account. In this paper only the short-time prediction filter is
considered. Let v (n) be the source signal, it can be considered
as v (n) = H (q, n)w (n) where w (n) is a white noise
excitation signal and

H (q, n) =
1

A (q, n)
=

1

1 + a1 (n) q−1 . . .+ anA
(n) q−nA

,

(13)
is the source signal autoregressive model (AR) that is a nA

order time varying linear filter. In this case, the autocorrelation
matrix Rv can be factorized in the form [14]:

Rv
−1 = ATΣA, (14)

with Σ a diagonal matrix and A the AR coefficients matrix.
Accordingly, the criterion in (10), with ξ = f0, W = Rv

−1

and Φ = Rf
−1, can be rewritten by shifting the pre-filtering

matrix A into the data term
[

y −Uf̂(n)
]

obtaining:

min
f̂

{[

ỹ − Ũf̂
]T

Σ−1
[

ỹ − Ũf̂
]

+

[

f̂ − f0

]T

Rf
−1

[

f̂ − f0

]}

,

(15)

with the pre-filtered loudspeaker and microphone signals de-
fined as:

Ũ = AU, ỹ = Ay. (16)

The AR coefficients ai(n) have been efficiently computed
using the Levinson-Durbin algorithm [12][15]. It is a well-
known procedure in linear algebra to calculate recursively the
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solution to an equation involving a Toepliz matrix, saving
computational cost. If the final order is l, the algorithm runs
in O(l2) time, despite Gauss-Jordan elimination which runs
in O(l3) time. The source signal model A (q, n) has been
estimated using a block-based scheme, where the block length
roughly approximates stationary intervals of the source signal
(approximately 20ms [5], [11]).
Taking in account also the true RIR covariance matrix

Rf = E
{
f(n)fT (n)

}
, (17)

the 3−parameter RIR model proposed in [16] has been con-
sidered. In [17], the cited model is based on the observations
of the RIR measured, which may be characterized by three
parameters:

• initial delay d, which is the time it takes to the loud-
speaker output to reach the microphone through the direct
path;

• direct path attenuation A, which determines the peak
response in the RIR;

• the exponential decay time constant τ , which models the
envelope of the reverberant tail of the RIR.

These three parameters may be estimated from acoustical
setup using Sabine’s reverberation formulas [16] and they can
be considered as prior knowledge. If these three parameters
are taken into account a diagonal estimate of the true RIR
covariance matrix may be constructed as:

R̂f ,3 = A · diag






β . . . β
︸ ︷︷ ︸

d

, 1, e−
2

τ , · · · , e−2
nF −d

τ






, (18)

with β a small number (e.g β = 10−6). The advantage of this
model is that τ is related to the environment, so it’s invariant to
the RIR changes due to microphone or loudspeaker movements
and so do the parameters d and A, as long as the distance
between loudspeaker and microphone remain constant. For this
reason this RIR model is considered to be more robust to the
RIR changes than the other RIR models. Finally, two particular
choice of f0 are of special interest: f0 = 0 leads to Tikhonov

type of regularization (TR), whereas choosing f0 = f̂ (n− 1)
yields a Levenberg-Marquardt type of regularization (LMR).
By choosing the latter approach, the Normalized Least Mean
Square (NLMS) algorithm can be straightforward derived from
the criteria in (15), leading to the PEM based LMR-NLMS
estimation of the RIR:

f̂ (n) = f̂ (n− 1) + µ
R̂f ,3ũ (n) ǫ̃ (n)

ũT (n) R̂f ,3ũ (n) + σ2
r

, (19)

with µ the step size of NLMS algorithm and ǫ̃ (n) = ỹ −
Ũf̂ (n− 1) the pre-filtered version of the error signal.

IV. PROPOSED METHOD - PBTD AND PBFD

Despite the hearing aids environment, PA systems face
much longer impulse responses. In particular it can be much
longer than the maximum 20ms experienced in hearing aids.
For example in a A × B meters space the RIR can last up
to 5 seconds. Estimating a longer RIR means that higher
computational costs needs to be accounted and a more efficient
solution needs to be evaluated. In such scenarios, in order

to achieve both fast convergence and low misalignment, a
Partitioned Block Time Domain (PBTD) of the PEM based
LMR-NLMS algorithm could be used [18].

Let f̂ (n) be the estimated RIR of order n̂F = nF , the n̂F taps

feedback canceller f̂ (n) is partitioned into n̂F /P
1 segments

f̂p (n) of length P each:

f̂p (n) =
[

f̂pP (n) , f̂pP+1 [n] , . . . , f̂(p+1)P−1 [n]
]

, (20)

with p = 0, . . . , n̂F

P − 1. In this case, the equation in (19) will
become:

f̂p (n) = f̂p (n− 1) + µp

Rf pũ (n) ǫ̃ (n)

ũT (n)Rf pũ (n) + σ2
r

, (21)

where Rf p is the covariance matrix of the p-ith IR block.
Usually, while moving on to the IR tail, the loop gain
|G (q, n)F (q, n) | will show a lower energy, thus producing a
degraded estimation. To compensate this, a slower adaptation
speed is preferable, leading to a choice of a Variable Step Size
(VSS) µp, instead of a fixed one [6].
In order to get a faster convergence and a reduced complexity,
a Partitioned Block Frequency Domain (PBFD) version of the
algorithm has been designed [6], [18], [19]. The estimated IR
in the frequency domain is obtained as:

F̂p = F

[

f̂p (n)
0

]

with p = 0, . . . ,
n̂F

P
− 1 (22)

where F equals the M×M Discrete Fourier Transform matrix
(DFT). Define the L-dimensional block signal um as

um = [u [mL+ 1] , . . . , u [(m+ 1)L]]
T
, (23)

with m the block time index. For each block um of input
samples

Ũp [m] = diag {F [Aum]} , (24)

the algorithm produces L output samples z̃m = [z [mL+ 1] ,
. . . , z [(m+ 1)L]]

T
:

z̃m = [0 IL]F
−1

n̂F /P−1
∑

p=0

Ũp [m] F̂p [m] , (25)

L is the block length. The corresponding input output delay
of the PBFD implementation equals 2L− 1. To ensure proper
operation, it is required that the DFT length M ≥ P +L− 1.
The adaptive filter coefficients are updated using an ”overlap-
and-save” method, producing (in the frequency domain) the
error signal:

Ẽ [m] = F

[
0
ǫ̃m

]

, (26)

with ǫ̃m = ỹm − z̃m and ỹm = [ỹ [mL+ 1] , . . . ,
ỹ [(m+ 1)L]]

T
. Using the PEM based NLMS algorithm, the

IR coefficients (in the frequency domain) are obtained as
follow:

F̂p [m] =F̂p [m− 1] +∆ [m− 1]
[

FgF−1ŨH
p [m] Ẽ [m]

]

+

−∆ [m− 1]
[

η

(

F̂p [m]− Fp,ref

)]

,

(27)

1With n̂F /P ∈ N, otherwise zero padding procedure is required.
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where η is a diagonal matrix containing the trade off parameter
ηk, with k = 0, . . . , n̂F /P , g is an adaptation matrix build as

g =

[
IP 0
0 0M−P

]

, (28)

Fp,ref represents the DFT of reference measure of the IR.
In frequency domain approach we express the regularization
function as:

∆ [m] = diag{µ0 [m] , . . . , µM−1 [m]}, (29)

which is the diagonal matrix containing the VSS µk [m]:

µk [m] =
µk

|Ẽk [m] |2 + |Ũk [m] |2 + δ
. (30)

The normalization is used to reduce the excess error in pres-
ence of signals with large power fluctuation. The denominator
is the sum of the input power with the error power plus a small
positive number δ to avoid division by zero. Furthermore, the
a-priori knowledge into the PBFD approach has been taken in
account through Fp,ref , reducing the computational costs.
Involving both the PEM and the a-priori knowledge into
the PBFD with VSS, the bias into the estimation of the IR
of large acoustic space has been drastically reduced. In the
Section V the performance of the enunciated algorithms will
be compared.

V. SIMULATION RESULTS

To assess the performance of the proposed algorithm,
the Misalignment factor (MSL) and Maximum Stable Gain
(MSG) have been considered. The former is used to track the
discrepancy between the true and the estimated feedback path,
and it is defined as:

MSL (n) =
‖f̂ (n)− f (n) ‖

‖f (n) ‖
. (31)

The latter is defined as the maximum allowable gain, assuming
a flat frequency response of G (q, n) as follow:

MSG[dB] =

− 20 log10

(

max
ω∈P

|J
(
ejω, n

) [

F
(
ejω, n

)
− F̂

(
ejω, n

)]

|

)

.

(32)

where P denotes the set of frequencies at which the phase
condition in (5) is fulfilled. From (32) it immediately follow
that a better estimation of the IR allows to get a larger
MSG. The input signal of the simulations was a 10 seconds
female voice speech sampled at fs = 16kHz; in all cases we
considered a PEM with filter order nA = 30. An overlap-and-
save method has been used to implement the PBFD; the IR
block size has been set with P = 160, together with a M×M
DFT matrix with M = 2P . Since speech is considered to be
stationary during 20ms frames, the block length of the source
signal per each frame has been setted with V = 320 samples.
The impulse responses have been measured into an anechoic
chamber using sine sweep method [20] with a microphone
placed 3 meters far away from the loudspeaker, varying both
microphone and loudspeaker positions. The IRs length were
approximately 1.34s long each, equal to nF = 21447 samples.
In the first simulation the basic NLMS algorithm performance
has been compared with LMR-NLMS algorithm. Using the
same step size value µ = 0.2 as control parameter of the

Figure 3: AFC performance with a female speech signal of 10s
long with fs = 16kHz, nF = 21447, and nA = 30. a) Mis-
alignment factor (MSL): comparison among the NLMS and
LMR-NLMS algorithms with fixed µ = 0.2, and PBTD, PFDF
and PEM-PBFD algorithms with VVS µ = [0.2 0.08 0.02]; b)
Maximum Stable Gain (MSG)comparison among the NLMS
and LMR-NLMS algorithm.

algorithms, the results are reported into the Figure 3. The
NLMS algorithm shows a high bias against the estimated
IR. Taking in account the a-priori knowledge through the
covariance matrix Rf given by Sabine model, such a bias is
reduced. In order to improve the performance, the partitioned
block version of the LMR-NLMS algorithm in the time domain
has been considered and compared with the previous one. In
this case, using the VSS as control parameter, the performance
does not show an improvement of estimated RIR since it
shows a slower convergence rate. In Figure 3, PBFD (with
and without PEM) is also compared. Clearly PBFD version of
LMR-NLMS with VSS outperforms all other algorithms. It is
important to stress that despite the PEM not being very relevant
for the estimation of the first IR slices, it then become essential
on the estimation of the IR tail, where the energy is lower. Its
absence would otherwise lead to a highly biased estimation. In
order to show the tracking capability of the PEM based PBFD
LMR-NLMS algorithm with VSS, a non-stationary feedback
path scenario is simulated with the results reported in Figure
4. In this case the impulse response has been changed after
5 seconds of input source signal. The good reaction time of
the proposed algorithms can been seen from the results. In
particular, after 2 seconds the measured misalignment is equal
to 0.21. Finally the elaboration time of the AFC algorithms has
been evaluated and reported in the Table I. How it can be noted
from the Figure 3 and from the Table I, the PBTD shows a
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Figure 4: AFC performance with a female speech signal of 10s
long with fs = 16kHz, nF = 21447, nA = 30 and variable
step size VSS µ = [0.2 0.08 0.02] : PEM besed PBFD LMR
NLMS with VSS in a non stationary feedback path scenario. a)
Misalignment factor (MSL); b) Maximum Stable Gain (MSG).

Table I: Elaboration time of the AFC algorithms with a female
speech signal of 10s long with fs = 16kHz, nF = 21447,
nA = 30.

Algorithm Elaboration Time [s]

PEM based NLMS 230

PEM based LMR-NLMS 249.4

PEM based PBTD with VSS 16417

PBFD with VSS 153

PEM based PBFD with VSS 205

slower convergence rate and a high computational cost. On the
contrary, the frequency domain method avoids both problems.
PBFD substantially decreases the computational burden, and
shows a convergence rate faster than the all other algorithms,
thus becoming a suitable choice for real time implementations.

VI. CONCLUSION

In this paper, a new framework to tackle the acoustic
feedback problem in large acoustic spaces has been presented.
It is based on the Frequency Domain Adaptive Filtering
(FDAF) implementation of the Normalized Least Mean Square
(NLMS) algorithm. Since the traditional LS-based adaptive
filtering algorithm converge to a biased solution of the acoustic
feedback path due to a considerable correlation between loud-
speaker and microphone signals, a signal decorrelation method
has been used. Inspired by hearing aids device, the Prediction
Error Method (PEM) has been introduced. In order to further
decrease the bias into the estimated feedback path, the a-

priori knowledge has been introduced through the Levenberg-
Marquardt Regularization. The results show that this technique
outperform previous approaches, achieving a lower estimation
error and a faster convergence rate.
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