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Abstract

Recent research shows that maritime industry has adopted innovative and so-

phisticated inspection and maintenance practices. A flexible framework, appli-

cable on complex machinery, is introduced towards ship maintenance. A holistic

inspection and maintenance notion is implemented, introducing different strate-

gies, methodologies, and tools, suitably selected, for each required ship system.

The proposed framework enables predictive reliability assessment of ship ma-

chinery, while scheduling maintenance actions by enhancing safety and systems’

availability. This paper presents the Probabilistic Machinery Reliability As-

sessment (PMRA) strategy, which achieves predictive reliability assessment and

evaluation of different complex ship systems. The assessment takes place on

system, subsystem and component level, while allowing data fusion of different

data types from various input sources. In this respect, the combination of data

mining method (k-means), manufacturers’ alarm levels, dynamic state mod-

elling (Markov Chains), probabilistic predictive reliability assessment (Dynamic

Bayesian Belief Networks) and qualitative decision making (Failure Modes and

Effects Analysis) is suggested. PMRA has been clearly demonstrated in a case

study on selected ship machinery. The results identify the most unreliability

systems, subsystems and components, while advising practical maintenance ac-

tivities. The proposed PMRA strategy is also tested in a flexible sensitivity
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analysis scheme.

Keywords: Maintenance; Maritime Industry; Reliability; Dynamic State

Modelling; Data Mining; Bayesian Belief Network (BBN)

1. Introduction

Machinery failures in the day-to-day ship operations may lead to major

accidents, endangering crew and passengers onboard, posing a threat to the

environment, damaging the ship itself and having a great impact in terms of

business losses. As stated by Hunt and Butman (1995), making decisions under5

conditions of risk and uncertainty has always been the shipowners’ challenge

Soares and Teixeira (2001). Expanding this statement, the authors’ belief is

that risk and uncertainty control as well as safety awareness is responsibility

of all involved maritime stakeholders contributing actively towards safety en-

hancement. As a matter of fact, the development and establishment of safety10

regulatory frameworks in the maritime industry is led by lessons learnt from

hazardous incidents and accidents. Several marine and offshore casualties took

place in the last decades such as Titanic (1912), Derbyshire (1980), Herald of

Free Enterprise (1987), Piper Alpha (1988), Exxon Valdez (1989), Scandina-

vian Star (1991), Estonia (1994), Petrobras P-36 (2001), Star Princess (2006),15

Deepwater Horizon (2010), Costa Concordia (2012), among others.

The most recent casualty statistics for the period 2000-2014, published IUMI

Facts and Figures Committee (2015), present that the causes leading towards

total (entire vessel) or serious losses (particular systems or structural mem-

bers) are listed as weather, grounding, fire/explosion, collision/contact, hull20

damage and machinery failure. The dominant causes triggering serious losses

are recorded among machinery damage, grounding and collision/contact. Es-

pecially, machinery failure reports over 35% of all losses for the period. Hence,

more than one third of the losses caused due to machinery failure. Further-

more, recent research shows that competition in maritime market develops more25

compound and pretentious structure affected by parameters as time, econom-
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ical restraints, technology and innovation, quality, reliability and information

management. In relation to successful business competence, strategic planning

should be enhanced considering assets availability, involving maintenance and

reliability operational aspects. The latest technology controlling these param-30

eters is focused on holistically monitoring the condition of main and auxiliary

machinery.

Before exploring the latest literature review, it is crucial to identify the

functionality of maintenance. In this respect, several definitions are provided

by various authors, summarising that maintenance is a set of technical, admin-35

istrative and managerial actions targeting to retain or restore the state of a

system to function as required Dikis et al. (2014). Moreover, parameters such

as reliability, availability, risk of failure, uncertainty and machinery downtime

also affect operational expenses. Hence, nowadays maintenance is encountered

as an operational method, which can be employed both as a profit generating40

process and a cost reduction budget centre through an enhanced Operation and

Maintenance (O&M) strategy. Inspection and maintenance activities have been

reformed from reactive to proactive. Therefore, the notions of failure prevention

and risk control are introduced. Specifically in shipping industry, where vessel’s

availability and accessibility are vital. This maintenance reformation is achieved45

through transition of maintenance strategies from corrective to preventive and

the most recent predictive strategy.

This paper presents the development of PMRA strategy for ship machinery

and equipment, which integrates various processes for data mining, dynamic

state modelling, reliability assessment and fundamental aspects of decision mak-50

ing. Overall, the main aim of this research work is to tackle the issue of op-

timal ship machinery maintenance strategy by establishing a novel dynamic,

predictive, probabilistic reliability assessment strategy. More analytically, this

research achieved to integrate the data mining method of k-means for informa-

tion extraction, manufacturer alarm levels, dynamic state modelling utilising55

Markov Chains (MC), probabilistic predictive assessment of risk employing Dy-

namic Bayesian Belief Networks (DBBNs) and qualitative decision-making of
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Failure Modes and Effects Analysis (FMEA).

PMRA strategy encompasses the benefits of qualitative and quantitative as-

sessment. The core innovative feature of PMRA strategy is oriented towards the60

utilisation of raw data collected in actual sailing conditions, components’ failure

interaction and state interdependencies, which provide holistic view of systems’

reliability performance. Lastly, a detailed sensitivity assessment scheme exam-

ines the accuracy and modelling flexibility of the suggested PMRA strategy.

2. Literature review65

In this section, the literature review is demonstrated incorporating recent re-

search background considerations and tendencies. The research topic is oriented

towards the latest inspection and maintenance methodologies such as Condition

Based Maintenance (CBM), Computerised Maintenance Management System

(CMMS) and Asset Management (AM). Furthermore, different condition mon-70

itoring technologies will be presented and the latest on-condition assessment

functionalities. This critical literature review refers to efforts demonstrating

the evolution and reformation of maintenance from corrective to preventive and

then to latest predictive strategy. The latest strategy is the predictive, which

has been introduced into market between 1960s and 1970s Shreve (2003) Arun-75

raj and Maiti (2007). The maintenance strategy notion is characterised by the

non-destructive reactive mode of testing a system, determining the condition of

equipment and subsequently considering the maintenance plan.

2.1. Condition Based Maintenance (CBM)

The most recent methodology offering control of risk and uncertainty is80

known as Condition Based Maintenance (CBM) Goossens and Basten (2015).

The fundamental idea of this framework is the on-condition assessment of sys-

tems and machinery by considering specified record measurements that will po-

tentially lead to risk or reliability state identification. This state identification is

separated into two major areas of on-condition assessment the diagnostics and85
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prognostics. In the first place, diagnostics allow the identification of occurred

failure modes, whereas, in the second case prognostics aim to forecast the future

risk performance.

The scope of CBM and fault diagnosis as defined by Mechefske (2005) is

to detect the upcoming failure before even incipient failures take place, aiming90

to enhance machinerys availability, reliability, efficiency and safety, by reducing

maintenance costs through controlled spare part inventories. A survey Prajapati

et al. (2012) on CBM applications highlights the key aspects as data collection,

artificial intelligence, and statistics allow intelligent maintenance and prediction

of consequences using past and current data.95

In the industrial domain, SKF, a leading global product, services and tech-

nology provider, supports that CBM aims to identify risks and predetermina-

tion of strategic actions SKF (2012). Hence, implementation of CBM should

lead to reliability enhancement and cost reduction by integrating information

and management of critical components for time reduction of expensive and100

challenging maintenance phases such as dry-docking. In order to layout CBM

and the processes that consists of; Tsang et al. (2006) suggest a data struc-

ture leading to decision analysis according to machinery’s condition, proposing

a method for data-driven CBM achieving data preparation, model assessment,

decision-making and sensitivity analysis. Similar condition monitoring mod-105

elling structure has been introduced in the suggested PMRA strategy and will

be presented in the methodology section next.

2.2. Computerised Maintenance Management System (CMMS)

As equipment onboard the ships becomes more complex and the market gets

more competitive, the need for implementation of automated maintenance man-110

agement systems is presented. Computerised Maintenance Management Sys-

tems (CMMS) is the latest framework which allows machinery and equipment

functionality, reliability and availability enhancement and uncertainty control

by employing computerised, flexible tools for managing critical assets.

According to Shreve (2003), CMMS suggests maintenance planning as it115
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assists using critical data for equipment, workforce and recorded conditions.

Fernandez et al. (2003) present the functionality of CMMS in order to gain

information from raw data and enhance decision-making by automating exist-

ing iterative assessment processes. On the other hand, Monostori et al. (2006)

state by summarising mobile solutions for maintenance applications that CMMS120

employs continuous connectivity including active data management, web-based

interaction, access to knowledge and information and enhancement of commu-

nication systems.

In contrast, Chryssolouris et al. (2004) explore the difficulties arising from

the integration of partners’ heterogeneous/incompatible IT systems on ship re-125

pair industry by presenting a solution for connectivity of various modern IT

systems. As stated by Sherwin (2000), maintenance has to be considered as key

factor within the business as changes in its processes affect various interrelated

functions. Lastly originated from this view, Kans and Ingwald (2008) present

the benefits of an integrated database and the significant role of maintenance130

performance in economic improvement.

2.3. Asset Management (AM)

An innovative and widely applicable methodology spread over in the mainte-

nance evolution is Asset Management (AM). This practice targets the business

oriented implementation by concentrating on the overall asset performance. AM135

is extensively assessed and introduced into multiple industries and nowadays

successfully in maritime by leading machinery and equipment manufacturers.

AM integrates notions, tools and features from risk based assessment methods,

CBM and CMMS as already presented.

Through a critical review focusing on the cost benefits of maintenance strate-140

gies and methodologies, Eti et al. (2006) summarises that maintenance and AM

can achieve growth of operational profile by decreasing running costs and in-

creasing capability and availability. ABB is a global leader in power and au-

tomation technologies ABB (2010) proposing the basis of an ultimate AM tool

integrating CMMS with real-time CM, which collects data from various sources145
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and alerts on failure detection. Furthermore, Asset Health Centre (AHC) is

presented by ABB as well ABB (2012). AHC performs as an entire business

asset supervision system utilising reliability, performance, prioritising mainte-

nance actions, and minimising Operations and Maintenance (O&M) expendi-

tures. AHC’s innovation is the integration of Operation Technology (OT) and150

Information Technology (IT) by enhancing decision-making on asset’s existing

condition.

2.4. Condition monitoring technologies

As already defined, CBM is the latest maintenance methodology, which as-

sesses systems’ and machinery risk of failure performance, while functioning. In155

this case, CM introduces technologies and tools that are employed for the on-

condition assessment. CM technology is applied through various tools, record-

ing and evaluating measurable parameters that will be reviewed in this section.

These measured parameters comprise the signal gathering, from which several

data processing methods can be considered with respect to machinery recorded160

input data. Precisely, K. (2012) defines health assessment as method measuring

wear and system performance.

CM is identified by Delvecchio (2012) in steps such as data acquisition,

signal processing and feature extraction, signal analysis and fault detection,

leading to decision-making and failure prognostics. Moreover, Jiang and Yan165

(2008) present the most popular CM tools as lubrication oil testing, vibration

and Acoustic Emissions (AE) among others. Additional CM technologies and

methods list thermography, ultrasonic monitoring and the traditional visual

inspection.

More specifically, vibration monitoring is the most known and well-applied170

technique. Vibration-Based Maintenance (VBM) methodology offers early in-

dication of machinery malfunctions involving parameters as rotational speed,

loading frequency, and material state AlNajjar (1996). These parameters can

be measured and evaluated by employing different data gathering equipment

(sensors) such as displacement, velocity and acceleration sensors.175
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On the other hand, thermography is a technique, applicable to both electri-

cal and mechanical equipment, and is deployed to identify hot and cold spots

providing early signs of equipment failure. As claimed by Bagavathiappan et al.

(2013), Infrared Thermography (IRT) is one of the most accepted CM tools.

Due to the non-contact function is suitable for detecting structural, machinery,180

electrical and material malfunctions. The key advantage of IRT compared to

other CM tools is the real-time representation of pseudo colour coded image.

Oil analysis is achieved through laboratory concentration investigation in

lubricant, known as debris analysis, which deals with shape, size, composition

of wear particles and lubricant degradation analysis for physical and chemical185

characteristics Jiang and Yan (2008). Lubricants’ monitoring seems to be the

most efficient diagnostic tool as from a small amount of fluids the condition of

the entire lubricant in each machinery can be determined.

The applicability and efficiency of ultrasonic condition monitoring is con-

firmed by International Association of Classification Societies (IACS) as this190

technique is authorised from Classification Societies for surveys and certifica-

tions. Specifically, acoustic and ultrasonic monitoring is utilised in the well-

known Ultrasonic Thickness Measurements (UTM) IACS (2004), IACS (2006).

In practice, Kim and Lee (2009) propose a real-time diagnostic system for high

speed Acoustic Emission (AE) signal analysis assessing wear condition of cylin-195

der liners in marine large two-stroke diesel engines.

2.5. Condition monitoring functionalities

On-condition assessment targets to evaluate the state of degraded ship sys-

tems and machinery. In this section, two functionalities of CM will be evaluated

the diagnostics and prognostics.200

As already defined, CM is the technology of assessing the state of machinery

without interrupting the operation. In line with Delvecchio (2012), fault diag-

nosis is severe requiring the determination of type, size, location and time of

detected faults. Supporting the importance of accurate and early fault diagnosis,

Refocus (2005) states that a specific maintenance issue can be the replacement205
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of a $5,000 bearing turning into a $220,000 project concerning cranes, service

crew and power loss.

An innovative and newly introduced maintenance concept on CM technol-

ogy expansion of diagnostics is the prognostics. This notion scopes to predict,

whether a failure will occur by considering the Remaining Useful Life (RUL) of210

systems. As defined by Lee et al. (2014), Prognostics and Health Management

(PHM) combines health condition and RUL prediction for an overall system

and its associated components. On-condition assessment of systems typically

use fault detection and diagnostic technologies, which extend from single thresh-

old to rule-based algorithms Byington et al. (2002). Additional prognostic ap-215

proaches involve experienced-based modelling and physics-based also known as

first principle analysis prognostics. It is crucial to highlight that prognostics

offer limited literature, as they are recently established.

A methodology predicting the RUL of natural gas export compressor is pro-

posed by Nystad and Rasmussen (2010) integrating Technical Condition In-220

dex (TCI) parameters, historical data with PHM and the general maximum-

possibility theory. The requirement for an improved prognostic CMmaintenance

concept develops the multi-component modelling. This notion incorporates the

risk assessment of different components of a system by allowing an overall per-

formance monitoring compared to independent evaluation. Therefore, Liu et al.225

(2012) expand the prediction concept by proposing an innovative data-fusion

prognostic framework. This concept improves the accuracy of long-term condi-

tion forecasting by combining the advantages of data-driven prognostic method

and the model-based particle filtering approach in system state prediction. The

data-fusion concept has been incorporated and contributing segnificantly in the230

PMRA strategy development, which will be presented next.

3. Methodology

According to the latest critical literature review, the present research contri-

bution is focused towards the establishment of an efficient maintenance strategy
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for systems and machinery. This strategy fulfils requirements such as:235

• Scalable and adaptable structure of maintenance strategy facilitating mul-

tiple ship systems

• Integration of CM aspects incorporating performance assessment, predic-

tive reliability analysis, and degradation drop

• Essential CM prognostic features involving raw data analytics and feature240

extraction utilising novel data mining methods

• Risk and reliability assessment targeting root cause analysis of failures

• Consideration of system, subsystem and component operational depen-

dence as degradation or failure of one can lead to failure of multiple others

(i.e. failure interaction)245

3.1. PMRA strategy framework

It is essential to highlight that the proposed PMRA strategy has been formed

as framework. Therefore, PMRA strategy enables predictive reliability assess-

ment utilising processed (by external data providers such as databases)or raw

data. The overall PMRA strategy framework consists of four stages such as the250

data collection, data processing, predictive reliability assessment and decision

making as shown in Figure. 1. This paper’s methodology and involved case

study will implement only raw data, because this data type demonstrates ana-

lytically the innovation of the suggested strategy and incorporates all involved

data processing methods and tools.255

STAGE 1: Data collection. This stage refers to data gathering from input

sources such as sensors, which provide raw data (i.e. performance measurements

of temperature and pressure) or databases and particular shipping stakeholders

(i.e. service providers, ship owners and operators, Classification Societies etc.)

for providing processed data. The proposed PMRA can be adapted to utilise260

processed input or raw data as it is described in the following stage. Overall,
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1. Selection

2. Collection

Raw data

Sensor data 

collected in actual 

sailing conditions

External sources 

of processed data Processed data

Data mining

Consideration of 

safety thresholds

Alarm and 

warning levels

Dynamic state modelling (time-dependent) utilising 

Markov Chains (MC)

Utilisation of data 

clustering method

Data preparation

Input data

Dynamic predictive reliability assessment through 

Bayesian Belief Networks (BBNs)

Processed input 

decision making

Raw input 

decision making

1. FMEA

2. Experts

1. Experts

2. FMEA

START

FINISH

STAGE 1

Data collection

STAGE 2

Data processing

STAGE 3
Predictive 

reliability 

assessment

STAGE 4

Decision making

Figure 1: PMRA strategy flowdiagram

PMRA strategy merges historical data, expert judgement, and raw/real-time

sensor data. The historical input includes information such as inspection and

maintenance actions and intervals as well as manufacturers manuals for prac-

tical information extraction, which is relevant for the decision-making. Expert265

judgement involves failures and related measures including consequences, tech-

nical and economic impact sources by Classification Societies reports, inspection

findings by crew-members, ship operators and superintendents. Historical data

and expert judgement information are supplementary in CM methods providing

technical input on decision-making activities as described in Stage 4. On the270

other hand, the third and critical data group is the raw/real-time monitoring

data type corresponding to on-board measurements and records gathered, while

the vessel operates. Parameters that can be recorded on-board the vessel vary
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including operational parameters per trip, ship sailing condition parameters, en-

vironmental parameters, and ship machinery performance measurements. This275

paper is focused towards these parameters consisting of temperature and pres-

sure in various locations on the critical machinery of the ship.

STAGE 2: Data processing. The second stage of PMRA strategy framework

takes into account data processing techniques. These differ between the pro-

cessed and the sensor/raw data. The first data type has been already processed280

by external stakeholders, which provide data such as failure rates. Therefore,

these failure rates, in percentage, form the input of the following Stage 3 ”Pre-

dictive reliability assessment”.

On the other hand, sensor data is considered as raw. Therefore, PMRA

strategy incorporates innovative selected data mining methods extracting hid-285

den information from the recorded datasets and transform it into useful and

understandable structure for further elaboration. In other words, data mining

is the practice of investigating patterns such as similarities and differences in

collected data. Literature presents a wide range of data mining methods such as

classification, regression, clustering, summarisation, dependency modelling and290

change and deviation detection Dikis et al. (2017).

Two well-known algorithms are the k-means and EM algorithm. They share

common aspects such as the iterative clustering procedure of guessing parame-

ters targeting convergence according to predefined criteria. However, the main

differences among k-means and EM algorithm are related to the clustering prac-295

tice and the calculation of the distances. Firstly, k-means employs hard cluster-

ing, whereas, EM soft. Furthermore, k-means method implements the Euclidean

distance while calculating the distance between items, whereas, EM utilises sta-

tistical methods Dikis et al. (2017). On the other hand, EM algorithm assigns

the points in the clusters, when convergence is reached, whereas, k-means real-300

locates them at each point until convergence Hand et al. (2001). A comparative

research study between k-means and EM algorithm performed by Jung et al.

(2014) shows that k-means provides more accurate data clustering, especially
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when the number of clusters is small Williams and Simoff (2006), whereas, EM

algorithm is faster in processing. Therefore, PMRA strategy will involve two305

clusters in order to benefit this efficiency. One cluster groups the observations,

which have value smaller than the mean value of the recorded dataset and the

second groups the higher. This clustering approach enables to identify the ten-

dency of inclination from the mean value of the recorded dataset by allocating

observations in two clusters.310

Due to accuracy, efficiency, simplicity and flexibility, k-means method will be

utilised by the PMRA strategy in order to partition the recorded observations

provided by the on-board sensors. Summarising, k-means algorithm offers the

advantages that will benefit the raw sensor data processing of PMRA strategy

MacQueen et al. (1967), Jain et al. (1999). First of all k-means is unsuper-315

vised data mining method, that does not require supplementary input data for

training and classification, hence it is suitable for limited available input data.

Furthermore, it is partitional method employed in engineering practices, where

single partitions are required. K-mean is determined as hard data clustering

method (not overlapping) simplifying calculation processes as each observation320

belongs to one cluster or not. Additionally, k-means method is suitable for ex-

cessive data quantity (if available) as it is easily programmed and computational

efficient, when number of clusters is small.

The method of k-means partitioning belongs to square error, partitional data

clustering. This method separates data into clusters creating strong association325

among members of the same cluster and weak between different clusters Gerardo

et al. (2005). The data clustering method of k-means has a structured iterative

process, which requires the following Gerardo et al. (2005), Williams and Simoff

(2006):

• Identify number of k clusters330

• Initiate the calculation of means from µ1 until µk of k clusters

• Generate random selection of objects
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• Assign each pattern to the closest cluster centre. If the data point is

closest to its own cluster centroid, proceed to the following data point. If

not, move it into the closest cluster335

• Calculate minimum Euclidean distance determining the membership for

the respective clusters

• Determine the membership and assign each point to corresponding cluster

• Iterate until the criterion function converges. During iteration process

recalculation of µ1-µk is taken place until there is no change in the value340

of mean

K-means method identifies the recorded dataset pattern (i.e. increase or de-

crease) and specifies the distance of the calculated centroids from the specified

alarm levels. This distance is expressed in percentage and defines the healthi-

ness of the recorded data. Therefore, the data transformation stage utilised the345

results of k-means data clustering method and employs predefined alarm limits.

These limits classify the recorded input data among acceptable and abnormal

functioning levels. In maritime industry, alarm limits can be assigned by various

stakeholders and experts such as ship machinery and equipment manufacturers,

ship owners, operators and service providers as well as Classification Societies.350

The alarm limits are utilised as reference points comparing the recorded, pre-

dicted and warn levels.

Technical input for identifying alarm levels requires expert judgement and

subjective decision-making. Hence, establishment of safety thresholds from

these stakeholders may lead to technical assumptions. Therefore, in the case355

of PMRA, the alarm levels are identified through the machinery manufacturers

manual and the optimal operating condition by the sea trials reports. These

records fulfil the manufacturers requirements, whereas the sea trials provide

the ideal available reference points for the required comparison, because the
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machinery on the vessel is tested in brand new condition.360

Pds(wt) =

∑k

j=1

∑mj

i=1c
j
i < l

mj

× 100 (1)

Pds(ft) =

∑k

j=1

∑mj

i=1c
j
i ≥ l

mj

× 100 (2)

Equation 1 presents the probability of working state (occurrence of accept-

able indices/measurements) for data set ds at t time-frame Pds(wt) in case of

upper threshold limit selection such as temperature measurements. On the

other hand, equation 2 demonstrates the probability of failing state (occurrence

of measurements exceeding the limits). In these mathematical expressions, cji365

denotes the clustered input data point, result of k-means, l represents the pre-

defined limits (i.e. safety thresholds) and mj the entire number of clustered

indices.

Pds(wt) =

∑k

j=1

∑mj

i=1c
j
i > l

mj

× 100 (3)

Pds(ft) =

∑k

j=1

∑mj

i=1c
j
i ≤ l

mj

× 100 (4)

In a similar manner, equations 3 and 4 present the probability of working

and failing states respectively, in the case of lower threshold selection such as370

pressure measurements, considering the relations with the selected limits l.

STAGE 3: Predictive reliability assessment. This stage of PMRA framework is

the predictive reliability assessment, which consists of two main models. The

first one deals with the dynamic state modelling, hence the time-dependencies,

whereas the second with the reliability assessment. Both models are integrated375

establishing the dynamic predictive reliability assessment tool of PMRA frame-

work. Having in mind as fundamental notion that systems functioning degrade,

PMRA examines different states of reliability drop within the assessed time-line.

A well-known process, established by Andrey Markov, is the Markov Chain

(MC) or Discrete-Time Markov chain (DTMC) Norris (1998), which examines380
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the state variation into a discretised time-line. According to Ghahramani (2001),

MC model is tool for representing probability distributions over sequences of

recorded data points denoting the observation at time t and the variable Yt.

PMRA strategy employs the mathematical tool of first-order Markov Chains

(MC) Yan et al. (2011), Fort et al. (2015). First-order MC is mathematical385

system that undergoes transitions from one state to another within the state

space Dikis et al. (2015).. Furthermore, MC is selected, as it is flexible to set

up by allowing different levels of state sequence complexity.

First-order MC process connects the results acquired by k-means data clus-

tering method and the implementation of alarm levels with the following dy-390

namic reliability assessment tool. Therefore, k-means clustering and alarm levels

specify the normality of the recorded dataset, by transforming it into percent-

age, demonstrating the distance from the defined alarm levels. These values

are fed into the MC process generating the state transitions within the time-

line. Hence, MC outcomes provide the relevant sequence of connecting the past395

values with the present and the present with the predicted.

P (Xn+1 = x|Xn = y) = P (Xn = x|Xn−1 = y) (5)

In MC sequential arrangement of random variables X = (X1, X2, ..., Xn)

a joint distribution is specified by the conditionals P (Xi|Xi−1, Xi−2, ..., X1)

Fosler-Lussier (1998). As Markov property states in the simplest form of MC,

the dependency of current variable is associated explicitly only to previous vari-400

able. This is the first-order MC model arrangement as shown in equations 6

and 7.

P (Xi|Xi−1, Xi−2, ..., X1) = P (Xi|Xi−1) (6)

P (X0 = x0, ..., Xn = xn) = P (X0 = x0)

n∏

t=1

P (Xt = xt|Xt−1 = xt−1, ..., X0 = x0) (7)
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Therefore, a generalised form of MC of order m (m stands for memory), is

process satisfying:

P (Xn = xn|Xn−1 = xn− 1, Xn−2 = xn−2, ..., X1 = x1) =

P (Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, ...Xn−m = xn−m) (8)

for n > m405

On the other hand, the reliability assessment stage employs the results of

MC in order to identify all probable failure case scenarios. This particular stage

employs the dynamic state modelling aspects (time-dependencies) and reliabil-

ity assessment through the appropriate network arrangement. The predictive

reliability assessment stage is common in structure, and functionality for both410

processed and raw data (Stage 1: Data Collection). The scope of this process-

ing stage is to obtain the predicted reliability states on system, subsystem and

component.

The reliability assessment involves the quantitative risk tool of Bayesian

Belief Networks (BBNs). BBN is represented as a Direct Acyclic Graph (DAG),415

which consists of nodes (variables) showing the different system’s, subsystem’s

and component’s states and a given set of arrows (edges), which represent the

probabilistic dependence among the variables and interconnect the nodes. The

main advantage of BBNs is the flexible network arrangement allowing to adapt

on the system’s requirements on size, shape and connections (edges).420

This key feature of DBBNs is significant and innovative, compared to the

remaining quantitative risk and reliability methods (i.e. fault tree analysis and

event tree analysis), as it allows the simulation of functions and operations on

actual modelling environment. The DBBN is defined as probabilistic graphical

model involving conditional dependencies arranged into Directed Acyclic Graphs425

(DAG) and it is expressed as presented in Dikis et al. (2015).

P (A|B) =
P (B|A)× P (A)

P (B)
(9)
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Where P(A) and P(B) are the probabilities of events A and B, while A given

B and B given A are conditional probabilities (as shown in equation 9).

Each system, subsystem and component, hence each node such as parent or

child (not root nodes), is linked with a certain number of events or failure modes430

that varies per node. Therefore, multiple probabilistic failure case scenarios are

formed among the associated nodes. Assuming that a child node has k parent

nodes receiving input from, the generated number of probabilistic failure case

scenarios is expressed as m = 2k.

From fundamental probability theory, the joint probability per node, in-435

volving random variables such as W, X, Y, and Z, is known as the product of

conditional probabilities shown in 10.

P (W,X, Y, Z) = P (W )P (X|W )P (Y |W,X)P (Z|W,X, Y ) (10)

STAGE 4: Decision making. This is the last stage of the PMRA strategy frame-

work. Decision-making requires input from Stages 1 and 3 ”Data collection”

and ”Predictive reliability assessment” respectively. As part of the last stage440

of PMRA strategy, decision-making offers practical inspection and maintenance

action suggestions, sourced by the first stage of this framework. On the other

hand, decision-making takes into account the past, current and predicted re-

liability performance as acquired by the previous processing stage. This stage

examines the root cause of failures or abnormal functioning and provides practi-445

cal solutions. Overall, decision-making offers practical suggestions, hence, it has

been developed into a qualitative manner. This last stage incorporates expert

judgement of ship owners, service providers, Classification Societies, chief crew

members and chartered engineers gathered as part of this research. Addition-

ally, Original Equipment Manufacturers’ (OEMs) manuals and reports provide450

valuable contribution.

A qualitative risk assessment tool known as Failure Modes and Effects Analy-

sis (FMEA) has been introduced in guiding the user for identification of failure

modes, effects, damaged equipment and components and appropriate failure
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causes. The FMEA takes into account the under investigation ship subsystem,455

the gathered measurement, parameter, potential failure mode, effect of failure,

damaged equipment and component and the malfunction/failure cause.

PMRA strategy is tested, while introducing various input data scenarios.

The sensitivity analysis method utilised is known as Deterministic Sensitivity

Analysis (DSA). DSA is recommended by Parmigiani (2002) particularly in the460

case of DBBNs. This method proves that PMRA strategy performs efficiently

and accurately under different operating conditions. In this context, a detailed

sensitivity analysis is performed presenting the level of change in the predicted

reliability performance, when there is deviation in the provided input data. The

results of this study examine the flexibility in input data deviation, ensuring465

accuracy in prediction, therefore, safety in operation. The application of PMRA

strategy is presented next.

4. Case study

This case study examines the implementation of the PMRA strategy. The

present study utilises raw input data such as temperature and pressure gathered470

from actual ship operational conditions. The demonstrated PMRA raw input

case study takes into account systems such as the air supply and cylinders. It is

essential to clarify that the entire PMRA strategy development has been taken

place in Java programming language as it benefits on cross-platform features,

enabling compatibility between different operating systems (i.e. Windows, Mac-475

intosh and Linux).

The data has been gathered by the automatically created report of DanaosONE

data collection platform. DanaosONE is a Business-to-Business (B2B) gateway

to e-servicing for the maritime and oil and gas industries. Similarly, in regis-

tering a company into a Business Association, DanaosONE allows access to a480

maritime-dedicated web and mobile environment of trusted companies Danaos

(2015). It is important to highlight that PMRA strategy is developed in acquir-

ing data directly from the automatic DanaosONE platform generated report.
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PMRA strategy has been tested through this case study, while collecting input

data from a Panamax container ship. The vessel has been equipment with an485

8-cylinder 2-stroke slow speed marine diesel engine (MAN B&W 8K90MC-C).

4.1. Air supply system

Major function of the internal combustion engines involves the supply of

fresh air and the removal of exhaust gases. This cyclic process is known as

gas exchange. The reliability assessment of the involved maintainable units and490

components involved in both of these functions are considered in the PMRA

strategy case study. The separation of the air supply and removal of exhaust

gases functions is challenging task because of this cyclic process. Therefore, this

reliability assessment introduces two systems, the air supply and the cylinders

for examining the systems involved in the fresh air supply function and the495

removal of the exhaust gases, respectively.
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Figure 2: Air supply and cylinders network

However, due to this cyclic process, interdependencies of the input measure-

ments and maintainable units’ reliability are required between the air supply

and the cylinder systems. This network arrangement allows in a flexible man-

ner the implementation of connecting nodes of different systems as shown in500
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Figure 2. This technique of interconnections and integration of nodes of vari-

ous systems produces an overlapping of information among the air supply and

the cylinder systems, hence each section supplements the other. The removal

of exhaust gases by blowing fresh air is known as scavenging. Modern engines

have installed exhaust gas driven Turbochargers (T/C) for scavenging and su-505

percharging processes (i.e. removal of exhaust gases and supply of fresh air for

compression respectively).

Improper scavenging can cause collection of fuel oil in the scavenging space of

the engine. Hence, unburned fuel may be blown into the scavenge space due to

damaged piston rings, faulty timing or damaged injectors. This faulty incidence510

can lead to scavenge fire. Therefore, engine power will be reduced diagnosed

from higher exhaust gas temperature at the affected cylinders. Further infor-

mation related to defects, diagnostics and engine inspection and maintenance

suggestions due to improper scavenging and increased exhaust gas temperature

are discussed at the decision-making stage. These functioning interdependencies515

are considered through the implementation of the network arrangement.

Table 1: Air supply and cylinder system input requirements

System Component Required input

Air Supply Piston rings Scavenging air receiver temperature/cyl.

Cylinder exhaust gas outlet temperature/cyl.

Manifold

relief valves
Scavenging air manifold pressure

Injectors Scavenging air receiver temperature/cyl.

Cylinder exhaust gas outlet temperature/cyl.

Air piping M/E control air inlet pressure

Cylinders Exhaust valves Cylinder exhaust gas outlet temperature/cyl.

Cylinder 1-8 Injector 1-8

Piston ring 1-8

Exhaust valve 1-8
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Overall, the air supply system consists of subsystems, components and spe-

cific input data measurements, which are denoted in Figure 2 as nodes. More

specifically, piston rings, manifold relief valves, injectors and the air piping are

considered. The reliability assessment of the piston rings is examined in groups520

of rings per cylinder on the piston. Therefore, eight nodes are demonstrated in

Figure 2 due to the eight cylinder engine installed on the vessel. Similar node

arrangement has been been considered for the eight injectors and manifold relief

valves. Table 1 presents the input data requirements of the air supply system

and the cylinders and the incorporated components.525

4.2. Cylinders

The second system involved in the PMRA strategy case study is the cylinder.

This network part collaborates with the air supply system, where both manage

the required fresh air supply and the scavenging. Analytical description of

this cyclic process is provided in the air supply system section above. The530

utilised engine is the MAN B&W 8K90MC-C, hence eight cylinders are arranged

in this study and reliability network arrangement as shown in Figure 2. The

network of the cylinders has examined on the level of each cylinder as unit and

shown as separate node. Each cylinder has direct connection with the respective

injector, piston ring group and exhaust valve, accordingly, indirect connection535

with the measurements of scavenging air receiver temperature per cylinder, and

the cylinder exhaust gas outlet temperature per cylinder. On the other hand,

the exhaust valves have direct connection with the cylinder exhaust gas outlet

temperature. The injectors, piston rings and exhaust valves demonstrate an

operating interconnection of units of different subsystems. This is a valuable540

flexibility of DBBNs that the rest of the risk assessment tools are not suitable.

5. Case study results

In this section, the predicted reliability performance results of the raw input

data case study are demonstrated and examined. This application is devel-

oped as part of the PMRA strategy implementation by utilising raw input data545
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gathered on-board a container ship, while sailing in actual/real operational con-

ditions. It is essential to clarify in advance that the involved input data is raw

recorded within a continuous time-line of almost a month. Therefore, reliability

performance predictions are demonstrated by taking into account specific time

intervals. The time recorded interval is set as one measurement per operational550

hour.

More specifically, the acquired results are plotted in half-monthly intervals.

The first two points within the arranged time-line of the x-axis denote the

reliability performance in regards to the recorded period of time. The first point

(at 0.5 position) signifies the recorded reliability performance of cluster 1 as555

acquired by the data mining method, whereas the second point at 1.0 the second

cluster. Overall, both points represent the reliability performance (tendency of

deviation) of the first month (recording time). On the other hand, the following

points in the time-line (i.e. 1.5 to 3.5 months) signify the acquired predicted

reliability performance of the upcoming period of time. Moreover, points 1.5 and560

2.0 represent the reliability performance prediction of the following month, 2.5

and 3.0 of the second predicted month and point 3.5 the reliability performance

of the first cluster of the third predicted month.

As part of the conditional probability features, each of the considered datasets

involves two states such as the working and failing. The working state expresses565

the reliability value, whereas the failing, the unreliability as shown in Equations

1-4. Additionally, each node presenting system, component or measurement in

Figure 2 has equal marginal probability with respect to the others. This deci-

sion allows the minimisation of subjective and controversial characteristics on

the predictions and the simplicity on sensitivity analysis.570

5.1. Results of air supply system

This section demonstrates the results of the PMRA strategy and practical

inspection and maintenance suggestions as part of the decision-making stage.

Firstly, air supply system consists of piston rings, injectors and manifold relief

valves per cylinder and the air piping. Different sources of raw input data are575
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involved in the air supply system such as the scavenging air receiver temperature

per cylinder, scavenging air manifold pressure and main engine control air inlet

pressure as shown in Figure. 3.
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Figure 3: Reliability performance results of air supply system

Another node interconnection is required for the reliability performance as-

sessment of piston rings and injectors by taking into account the cylinder ex-580

haust gas outlet temperature per cylinder in parallel with the scavenging air

receiver temperature per cylinder (considering equal marginal probability as de-

scribed above). More specifically, Figure. 3 presents the reliability performance

of piston rings, injectors, air piping and manifold relief valves, while data has

been recorded as well as the predicted values of the following two and a half585

months. Injectors and piston rings obtain the weakest reliability performance,

which is initiated at 99.8% and dropped to 96.2%. Uniformity in the current

and predicted reliability performance results of these two components has been

identified. These results demonstrate similarities in the gathered data sets’ sta-

tistical characteristics, hence the predicted values as well. These maintainable590

components are associated with the scavenging air receiver temperature and

cylinder exhaust gas outlet temperature. Manifold relief valves present reliable

operation from 99.84% to 96.91% while they are linked with the scavenging

air manifold pressure. Lastly, air piping is the most reliable maintainable unit
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reaching figures from 99.99% to 99.67%.595

Figure 4 presents the developed Failure Modes and Effects Analysis (FMEA)

tool, allowing decision-making, while fulfilling manufacturer’s requirements. The

FMEA presents practical solutions per system correlated to the appropriate

measurement and recorded parameter. Additionally, the FMEA table provides

extensive information with respect to potential failure modes, effects of failure,600

equipment and component affected as well as potential causes.

System Measurement Parameter Failure mode Effect of failure Equipment affected Component affected Potential cause

Scavenging air 
receiver Temperature Improver scavenging

Loss of power and high 
exhaust temperature at 
affected cylinders

Turbocharger Piston rings,
Injectors

Faulty timing,
Unburned fuel and carbon

Air inlet pressure lower 
than expected

Derating engine /Engine 
damage / Turbo damaged Manifold Air flap,

Relief valve

Leak
Flow back /
Leak
Flow interruption

Overpressure Engine damage /
Turboblower damage Manifold Relief valve No flow

M/E control 
spring air Pressure Air Leakage Derating Engine N/A Piping 

Joints Leak

Cylinders Exhaust gas 
outlet Temperature Increased Exhaust Gas 

Temperature

Fuel Injectors
Cylinder
Air coolers
Turbocharger
Fuel oil

Piston rings
Exhaust valves

Leaking fuel
Worn fuel pumps
Blow-by, piston rings
Leaking exhaust valves
Fouled air side
Fouled water side
Fouling of turbine side
Fouling of compressor side
Quality of fuel oil

PressureScavenging air 
manifold

Air Supply

Figure 4: Air supply and cylinders network

It is necessary to clarify that all collected raw input data sets fulfil the

safety requirements demonstrating reliable functioning without reaching or ex-

ceeding the manufacturer’s maximum or alarm levels HYUNDAI-MAN (2010a)

and HYUNDAI-MAN (2010b). These levels are presented in Table 2 below.605

However, the datasets of the collected temperature indices increase the second

half of the first (recorded) month, whereas the pressure measurements negligi-

bly dropped. The recorded input data for the entire data gathering time-line

as well as the predicted indicate reliable operation without the requirement of

introducing inspection or maintenance actions. However, it is essential to con-610

tinue monitoring the piston rings and injectors by ensuring that the presented

reliability drop lies within the acceptable limits.

5.2. Results of cylinders

The final arrangement of maintainable units and components can be assumed

as system and it is known as cylinders. PMRA strategy application involves615
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an eight cylinder, 2-stroke marine diesel engine. Therefore, raw input data

measurements are collected per involved cylinder. More specifically, cylinders

system consists of units such as cylinder 1 to 8. Each of these units integrates

input from the particular cylinder exhaust valve, injector and piston rings.

Table 2: Minimum, maximum and alarm levels

Measurement limits Value

Cylinder exhaust gas outlet temperature (Alarm) 520.0

Cylinder exhaust gas outlet temperature (Minimum) 380.0

Cylinder exhaust gas outlet temperature (Maximum) 500.0

M/E control air inlet pressure (Alarm) 5.5

M/E control air inlet pressure (Minimum) 6.5

M/E control air inlet pressure (Maximum) 7.5

Scavenging air manifold pressure (Minimum) 0.1

Scavenging air receiver temperature (Alarm) 65.0

Scavenging air receiver temperature (Minimum) 25.0

Scavenging air receiver temperature (Maximum) 51.0

Functional and crucial interconnection among different nodes is utilised in620

the case of cylinders by incorporating input from maintainable units (i.e. piston

rings and injectors) of air supply subsystem. This option of flexibly arranging

the network and combining input among every required node is gained by the

implementation of the DBBNs. In particular, injector and piston rings nodes

are associated with scavenging air receiver temperature and cylinder exhaust625

gas outlet temperature. On the other hand, exhaust valves are connected with

the involved cylinder exhaust gas outlet temperature.

As shown in Figure. 5, the reliability performance of cylinder 1 is demon-

strated for the involved marine diesel main engine. It is essential to highlight

that the acquired results present almost the same reliability performance in the630

entire timeline, while gathering the raw data as well as in the predicted time
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Figure 5: Reliability performance results of cylinder 1 - system level

segment for all involved cylinders. The acquired results show initial reliability

performance at 99.92%, which is dropped at 99.86% during the data gathering

period of time. In the following predicted timeline, the reliability varies from

99.77% to 98.4%.635

The uniformity of the cylinders’ results has to be explored further, in or-

der to identify common aspects of the collected data sets. In Figure 6, the

exhaust gas outlet temperature per cylinder is provided. More specifically, the

average, maximum and deviation figures of temperature data sets per cylinder

are presented. The plotted curves declare uniformity in pattern of the data set640

characteristics. Therefore, each data set per cylinder seems to perform similarly

to the remaining as the maximum, average and deviation values denote.

It is worth mentioning that according to the main engine manufacturer

manual the maximum acceptable cylinder exhaust gas outlet temperature is

at 500 ◦C, whereas the alarm is set at 520 ◦C. According to Figure 6, the max-645

imum reached temperature is found on cylinder 8 at 361 ◦C, which is much

lower than the maximum acceptable and the predefined alarm. Therefore, the

collected data as well as the acquired predictions lead to slow steaming opera-

tion in order to reduce fuel consumption and the sailing speed (approximately

service speed is at 18 knots).650
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Figure 6: Cylinder exhaust gas outlet temperature raw data records

On the other hand, Figure 7 demonstrates the recorded and predicted re-

liability performance of cylinder 1 on component level. More specifically, in

Figure 6, piston ring 1, injector 1 and exhaust valve 1 are plotted respectively.

The uniformity of results regarding the piston ring 1 and injector 1 has been

examined and explained above as it has direct relation to the recorded input655

data.
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6. Sensitivity Analysis (SA)

Overall, PMRA strategy has been tested on different ship systems. These

ship machinery and equipment take into account a complex structure incorpo-

rating various nodes which denote many subsystems, maintainable units and660

components and associations among them. This complex structure makes SA a

challenging task. Therefore, the implemented SA has to be performed on a par-

ticular component or maintainable unit, which will allow efficient and effective

testing enabling the input data adjustments as required and will be demon-

strated next.665

An essential component for achieving the ship sailing functioning is the

thrust bearing, which permits rotation between parts, while they are designed

to support predominately axial load. The thrust bearing (also thrust block) is

placed right after the ship Main Engine (M/E) and transfers the thrust from the

propeller to the hull of the ship. Therefore, it has to be solidly manufactured,670

assembled and mounted on a solid frame to perform its task by withstanding

normal and shock loads. According to HYUNDAI-MAN (2010b), due to the

friction in the thrust bearing, the shaft power is approximately 1% less than the

effective engine power. Thrust bearings are difficult to dismantle for inspection

and maintenance activities, while their improper functioning will lead to wasted675

power due to friction. Hence, the friction will result in overheating the moving

thrust bearing elements.

In this section, an analytical deterministic sensitivity analysis scheme is

demonstrated taking into account different operational scenarios. The entire

approach considers the raw data as baseline of further assessment. Moreover,680

the developed scenario analysis is applied by adjusting the raw data set simu-

lating actual operational conditions that may lead to failure or malfunctioning

of the thrust bearing.

6.1. Assessment of gradual temperature increase

In order to examine various operational scenarios while controlling uncer-685

tainty and adjusting appropriately the raw data set, a specific data modifica-
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tion plan has to be introduced. This SA scheme employs the actual raw data

set of the thrust bearing, which is named real-data (i.e. refers to initial ship

measurements). The real-data is incremented by 10% in each iteration until

the forecasted results illustrate a fully unreliable state (reaching almost 0% pre-690

dicted reliability performance).

First of all, it is essential to highlight that various testing and verification

iterations have been carried out of increasing increments at 1% and 5%. Hence,

it has been noticed that in these cases, the reliability performance predictions

have not been affected, therefore no failures or malfunctions have been identi-695

fied. More specifically, in cases of increment 1% and 5%, there is no deviation

in the acquired predicted results. This stable predicted state confirms reliable

operating condition of the thrust bearing, because real-data are a lot lower than

the defined alarm/warning point. According to the testing cases undertaken, the

following decided plan involves scenarios of real-data increase by +10%. This at-700

tempt intends to examine the input data deviation associated with the acquired

predictions. The implemented Deterministic Sensitivity Analysis (DSA) cases

are listed in Table. 3 below and performed for reasons that will be explained

analytically in this section.

As shown in Table. 3, seventeen DSA cases have been introduced for testing705

the predictive reliability performance of PMRA strategy and the methodology

itself. Initially, it is important to clarify that the timeline has been divided into

three state sections (segments). The first one involves the first month of data

gathering, the second segment the first predicted month and the third section

the second predicted month. These segments of time will be used to define the710

remarks of Table. 3.

Stable performance. This description refers to the performance (current and

predicted), which has been obtained identically the same for all involved DSA

cases. Minor reliability drop is assumed as stable performance (i.e. from 100%

to 99.88%). It has been identified only in fully reliable state cases (reliable states715

in current and predicted timeline).
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Table 3: Cases of implemented Deterministic Sensitivity Analysis (DSA)

No DSA Case Result Description/Remarks

1 real data (reference point) collected onboard, reliable state

2 real +10% stable performance, reliable state

3 real +20% stable performance, reliable state

4 real +30% stable performance, reliable state

5 real +40% stable performance, reliable state

6 real +50% minor deviation, reliable state

8 real +52% partially unreliable state

9 real +53% partially unreliable state

10 real +54% excessive unreliable state

11 real +55% excessive unreliable state

12 real +56% fully unreliable state

13 real +57% fully unreliable state

14 real +58% fully unreliable state

15 real +59% fully unreliable state

16 real +60% fully unreliable state

17 real +61% fully unreliable state

Reliable state. It denotes the reliability performance, which has been accept-

able (below threshold) for the entire timeline. In other words, no failures or

malfunctions are obtained or predicted.

Minor deviation. A negligible reliability drop has been identified, compared to720

previous cases (below threshold, small deviation).

Partially unreliable state. This state denotes to both existing and forecasted

states. Partially unreliable means that degradation and unreliable figures have

been acquired in the predicted timeline only. The higher the temperature in-

crease the faster the reliability drop.725
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Excessive unreliable state. The entire predicted timeline has been within the

unreliable range, below the alarm/warning threshold.

Fully unreliable state. This state describes entirely unreliable performance for

both existing and forecasted timeline sections. In other words, failure measure-

ments have been recorded in the data collection period of time. More specifically730

in Figure 8, the reliability performance of the thrust bearing is demonstrated in

increasing intervals of 10% up to 61%.

The real-data refers to the initial data set as collected onboard, while the

ship was sailing. This data set consists of indices i, which in total are 696 (mea-

surement/data points). This process involves the escalation by the particular735

percentage of each recorded data point (i: index) within the overall data set

(origin of real-data).
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Figure 8: Incremental scenario analysis of thrust bearing

As shown in Figure 8, the thrust bearing presents identical reliability per-

formance utilising the real-data as well as in the cases of 10% up to 40%. This

similarity in the acquired results occurs due to low operational thrust bearing740

lube oil outlet temperature, which leads to reliable predictions. On the other

hand, negligible deviation of the obtained results is presented in the case of

50%, where 10% reliability drop is forecasted at the end of the second predicted
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month of functioning. At this state, it is essential to highlight that 10% reli-

ability drop in actual operational conditions is not minor decrease. The DSA745

plan involves 10% increment of the real-data, it has been noticed 87% reliability

drop from real-data +50% to real-data +60%.

On the other hand, deviation of the obtained results is presented in the case

of 50% as shown in Figure 8, where 10% reliability drop is forecasted at the end

of the second predicted month of functioning. The following level of sensitivity750

investigation involves increase at 60% of the existing real data. In this case,

the reliability drop is immediate, which starts at 80.9% and decreases down to

2.19%. Due to this excessive reliability drop, further SA investigation has been

carried out in intervals of 1%, between the cases of 50% and 60%. This detailed

assessment explores the reliability drop and PMRA strategy performance in755

gradual sensitive (as it is narrowed at 1%) real-data increase.

The examined DSA cases of real +51% to +53% demonstrate a gradual

reliability drop, where unreliable input data have not been utilised yet. However,

experimentally it has been confirmed that reliability performance below 80%

incorporates unreliable data. This statement of the reliability threshold will be760

clarified in case the analytical discussion of real +56% next. Therefore, case real

+51% is the first scenario, which associates unreliable prediction in the third

month (73.26%). Gradually, this reliability drop to unhealthy states has been

transferred to earlier predicted points in the timeline. More specifically, real

+52% presents the second forecasted month to be unreliable as in real +53%765

case as well.

In cases such as real +54% and real +55%, excessive unreliable state has

been identified. As defined above, the entire predicted period of time has been

in unreliable state. However, the data collection time (months 0.5 and 1) consists

of reliable measurement below the warning threshold.770

In Figure 8, the cases of real-data +56% up to 61% have been shown as well.

It is essential to clarify that real +56% is the first examined scenario, which

involves in the recorded input data unreliable measurements. More specifically,

22 out of 696 (total size of data set) unreliable measurements have been incor-
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porated by increasing the real-data. The first two reliability processed points775

at plotted positions 0.5 and 1 reach 90.9% and 81.86% respectively. These two

points denote the reliability performance of real-data, while it is increased by

56% for the first month of the data gathering period. As long as real-data +56%

is the first data set, which includes unhealthy points, performance at 90.9% and

81.86% (which is not predicted yet) defines the percentage threshold at almost780

80%. In other words, reliability performance lower than 80% ensures recorded

data points at 90 ◦C or higher.

More analytically, the major reliability drop, in cases where the current data

are unreliable as well, has been identified in cases real-data +56% to +61%. The

number of data points (in the data collection time) above the warning level at785

90 ◦C have been presented for the cases real-data +56% to +61%.

7. Concluding remarks

The present research has elaborated on the subject of predictive reliabil-

ity assessment of inspection and maintenance in the maritime transportation

mode. The proposed Probabilistic Machinery Reliability Assessment (PMRA)790

strategy is established by introducing the employed data analysis algorithm and

reliability assessment tool. At first, the data mining method of k-means takes

place allowing to extract information from a data set and transform it into an

understandable structure for further use. The development of PMRA strategy

takes place on different levels initiated by introducing the principle aspects of795

the suggested strategy. The model development continues by selecting the ap-

propriate methods and tools leading to the overall establishment and proposal

of PMRA strategy.

PMRA strategy achieves reliability performance assessment of ship machin-

ery and equipment beyond diagnostics by establishing prognostic reliability state800

modelling. The suggested strategy recommends an individual methodology for

inspection and maintenance of ship machinery and equipment. PMRA strat-

egy integrates the assessment of the reliability performance of various onboard

34



installed machinery and equipment provided by different manufacturers and

suppliers. Therefore, this is a novel solution to combine and process informa-805

tion from various systems targeting a holistic view of the reliability and safety

on board the ship.

Summarising, the key finding of this predictive reliability assessment study

and the implemented sensitivity analysis scenario scheme confirm that PMRA

strategy is capable of processing reliability performance predictions by consid-810

ering raw data. Furthermore, DSA proves the capability of PMRA strategy to

process successfully various data sets incorporating healthy and unhealthy data

points. The suggested DSA approach verifies the PMRA strategy in processing

data sets, while confirming degradation of the reliability performance in increas-

ing intervals of 1% and 10% of the involved temperature measurements. On the815

other hand, according to existing real-data and the DSA scheme performed,

temperature increase up to +50% indicates reliable and non-sensitive operation

for the entire predicted period of time.
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