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Graeme M. Burt, Member, IEEE, and Grigoris K. Papagiannis, Senior Member, IEEE

Abstract—Aggregated equivalent models for the dynamic anal-
ysis of active distribution networks (ADNs) can be efficiently
developed using dynamic responses recorded through field mea-
surements. However, equivalent model parameters are highly
affected from the time-varying composition of power system
loads and the stochastic behavior of distributed generators. Thus,
equivalent models, developed through in-situ measurements, are
valid only for the operating conditions from which they have
been derived. To overcome this issue, in this paper, a new
method is proposed for the derivation of generic aggregated
dynamic equivalent models, i.e., for equivalent models which can
be used for the dynamic analysis of a wide range of network
conditions. The method incorporates clustering and artificial
neural network techniques to derive robust sets of parameters for
a variable-order dynamic equivalent model. The effectiveness of
the proposed method is evaluated using measurements recorded
on a laboratory-scale ADN, while its performance is compared
with a conventional technique. The corresponding results reveal
the applicability of the proposed approach for the analysis and
simulation of a wide range of distinct network conditions.

Index Terms—Artificial Neural Networks, black-box modeling,
clustering, dynamic modeling, measurement-based approach.

I. INTRODUCTION

THE advent of microgrids (MGs) and the increased pen-

etration of distributed generators (DGs) into the existing

distribution grids have changed drastically the dynamic prop-

erties of power systems [1]–[3]. Under these new operating

conditions, academia and power system operators have initi-

ated serious efforts to develop accurate and adaptive dynamic

simulation models to enhance the analysis of modern active

distribution networks (ADNs) [3] as well as to investigate more

efficient modes of operation for the DGs.
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In the literature, there are several publications using detailed

models to investigate the dynamic properties of ADNs and

MGs [4]–[6]. However, the development of detailed dynamic

models requires very accurate information concerning the

structure of the examined grid and the control parameters of

the installed DGs. Therefore, this approach requires accurate

data, which cannot be determined in distribution networks

due to their extended size. Additionally, it is worth noticing

that this approach requires significant computational resources,

leading also to large simulation times [1].

To reduce the computational burden of dynamic simulations,

reduced order dynamic equivalent models have been proposed.

The work on this field can be classified into three main ap-

proaches [7]. The first one contains coherency-based methods,

where group of coherent generators are identified and replaced

by equivalent generators. In the second methodology approxi-

mate linear models of the examined system are derived using

modal analysis techniques. However, in both approaches, the

identification of model parameters requires detailed network

information, thus the drawbacks and restrictions of detailed

modeling apply to these methods as well [8].

A promising option to overcome the lack of detailed in-

formation is to derive gray- or black-box dynamic equivalent

models using the third methodology, i.e., the measurement-

based approach [1]. In this case, model parameters are iden-

tified from field measurements, by applying system identifi-

cation techniques [7]. However, parameters of measurement-

based equivalents are highly affected from the weather-

dependent and stochastic behavior of DGs as well as from

the time-varying composition of power system loads [9]–[11].

Thus, model parameters are valid only for the operating con-

dition from which they have been derived and cannot be used

to simulate accurately different cases [9], [12], i.e., different

disturbances, network configurations, loading conditions, etc.

To determine robust model parameters for measurement-

based dynamic equivalent models, several approaches have

been proposed. In [1], [2] and [10], statistical analysis is

applied and the required model parameters are identified by

calculating the corresponding median or mean values. Multi-

signal analysis techniques are developed in [9], [13] and [14],

while in [8] and [15], linear approximation functions are

proposed. However, in all the above-mentioned approaches,

human interaction is always required to divide the available

data sets into groups, presenting similar characteristics (e.g.

data groups obtained under similar network conditions [9],

[10]). Additionally, it is worth noticing that using the above
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techniques, model parameters that are valid only for a narrow

range of network conditions can be estimated [1], [9].

To develop generic equivalent models, able to account for

a wide range of network conditions, the use of artificial-

intelligence techniques have been proposed in the literature. In

[16] and [17], dynamic equivalent models based on recurrent

artificial neural networks (ANNs) and radial basis functions

ANNs are proposed. However, the parameters of these models

have no physical meaning [18], thereby offering limited insight

to power system engineers concerning dynamic properties of

the grid. To address this issue, in [12], [19], [20] artificial

intelligence techniques are proposed to derive generic param-

eters for conventional equivalent models. More specifically, in

[19] support vector clustering is proposed to derive generic pa-

rameters for a transfer function-based equivalent model, while

in [12] and [20] the use of ANNs is proposed to generalize

the parameters of power system load models. However, these

methods present certain shortcomings and limitations. For

instance, the method proposed in [19] requires measurements

from all ADN feeders to provide consistent results, while the

approaches of [12] and [20] are focused on conventional load

models [21], which cannot describe effectively the dynamic

behavior of modern ADNs [1], [22], [23]. Moreover, the

performance of the above approaches has only been tested

using simulation results. Thus, their applicability for real field

applications still remains an open issue.

Considering the above issues, the primary scope of the

paper is to develop a new method for the derivation of

generic measurement-based equivalent models, suitable for the

dynamic analysis of modern ADNs and for the simulation

of a wide range of distinct network conditions. The second

objective is to evaluate the performance of the proposed

method using laboratory measurements.

The proposed method receives as inputs the operating condi-

tions (i.e. voltage level, real and reactive power consumption or

production), the load and the generation mix of the examined

ADN. Using these inputs, an aggregated ADN model is

automatically developed, describing efficiently the dynamic

behavior of the examined ADN. To fulfill this objective,

clustering and ANN techniques are used to derive robust

sets of parameters for the variable-order aggregated equivalent

model of [22]. This model structure is selected as it allows the

simulation of bi-directional power flow phenomena which may

occur in modern ADNs during voltage events [22] as well as

the simulation of complex power system dynamics, occurring

after small or large system disturbances [14]. Additionally, the

parameters of this model have a strong physical meaning [14].

The effectiveness of the proposed method is evaluated under

various network configurations, load and generation mixes,

operating conditions and voltage disturbances, using measure-

ments acquired from a laboratory-scale ADN. Additionally,

its performance is compared with a conventional approach, in

which robust sets of parameters are determined based on mean

characteristics, by applying statistical analysis.

II. DYNAMIC EQUIVALENT MODEL

The dynamic response of a distribution network subjected

to a step-down voltage disturbance (Fig. 1a) is presented in

Fig. 1b. As shown, immediately after the disturbance, the

power demand decreases instantaneously to y+ value. After

this transient undershoot a recovery phase occurs and the

power gradually recovers to the new steady-state value, i.e.

yss. This dynamic behavior can be accurately simulated using

the aggregated equivalent model of [22]. The block diagram

representation of this model is depicted in Fig. 2, while its

mathematical formulation is given in the following equations:

yd(t) = yt(t) + yr(t) (1)

where

yr(t) = L−1[g2(s)G(s)] (2)

yt(t) = y0

[

λ1

(

VL(t)

V0

)

+ λ2

]

,
2

∑

i=1

λi = 1 (3)

ys(t) = y0

[

κ1

(

VL(t)

V0

)

+ κ2

]

,

2
∑

i=1

κi = 1 (4)

g1(t) ≡ yt(t), g2(t) ≡ ys(t)− yt(t) (5)

G(s) =

n
∑

i=1

ci
s− pi

(6)

Here, yd(t) can represent both real and reactive power

responses. Functions yt(t) and ys(t) are two polynomial

functions, used to simulate the transient and the steady-

state response of the examined ADN [22], [23], respectively.

Moreover, λ1, λ2 and κ1, κ2 are the polynomial coefficients

of yt and ys, respectively [22], [23]. The recovery response

of the power, i.e. yr(t), is approximated using functions g2(s)
and G(s) [14], [22]. g2(s) denotes the Laplace transform of

g2(t), while G(s) is a variable-order linear transfer function

[14], [22]. p and c stand for the poles and residues of G(s),
respectively, while n denotes the optimal order of G(s). The

optimal order n can be determined automatically by applying

the iterative procedure proposed in [22]. Finally, VL(t) is the

ADN voltage, whereas y0 and V0 are the power and voltage

magnitude prior to the examined disturbance.
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Fig. 1. a) Indicative step-down voltage disturbance. b) Representative real or
reactive power response.
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Fig. 2. Block diagram for the integration of the adopted dynamic equivalent
model into simulation software.
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III. PROPOSED GENERIC MODELING APPROACH

The procedure used to develop the proposed modeling

approach is conceptually summarized in Fig. 3. Initially, a

database is developed, containing N data sets. In each data

set, the following variables are stored: three vectors containing

the measured dynamic responses (i.e. RMS values of time-

domain signals) of i) voltage (V i), ii) real (P i) and iii) reactive

power (Qi). These responses reflect the dynamic behavior of

the ADN during the i-th disturbance (i = 1, ..., N ) and can

be recorded at the point of common coupling (PCC) with the

external grid using phasor measurement units (PMUs) [1], [2].

Moreover, two additional variables, namely the iv) load (LMi)

and v) generation mix (GMi) are used. These variables reflect

the load composition and the type of the installed DG units,

respectively. The values of LMi and GMi can be assessed

through forecasts or smart meter recordings [24]–[26].

Once the database has been developed, a pre-processing

phase is applied. During this phase, the pre-disturbance steady-

state values of voltage (V0,i), real (P0,i), and reactive power

(Q0,i) are derived for all the available N data sets. This

information is used to provide an insight of the ADN operating

conditions prior to the examined disturbance. Additionally, all

dynamic responses are normalized, using the corresponding

pre-disturbance steady-state values. Afterwards, the available

N data sets are randomly split into two separate groups,

consisting of ND and NT data sets, respectively. The first

group is used to develop generic equivalent models, suitable

for the analysis of a wide range of network conditions, while

the remaining NT data are used to test the performance of

the derived models. The procedures, to develop and test the

derived models, are depicted in Figs. 4a and 4b, respectively.

As shown in Fig. 4a, the proposed method consists of

three main stages: i) clustering of available data, ii) parameter

estimation, and iii) training of ANNs. The objective of the

clustering is to automatically (i.e. without human interaction)

divide the available data into K groups, presenting similar

pre-disturbance operating conditions. Then, for each cluster, a

multi-signal identification procedure is performed to estimate

the model parameters that optimally simulate the dynamic

behavior of the ADN. Finally, for each cluster, an ANN is

developed. Scope of the ANN is to capture general relation-

ships between the model parameters and the examined network

conditions. Using this information, robust sets of parameters

are derived. A detailed explanation is presented below.

A. Stage 1: k-means++ Clustering Algorithm

At this stage, clustering is applied to automatically divide

the available data into K groups, that present similar charac-

teristics. The clustering algorithm, used in this paper, is the

k-means++, an algorithm of proved efficiency for a wide range

of applications [27], [28].

In the proposed framework, voltage magnitude, real and

reactive power flows at the PCC are monitored by distribution

system operator (DSO), using PMU devices [29]. On the other

hand, load and generation mix (i.e. variables LM and GM )

of the ADN are estimated by the DSO based on forecasts or

smart meter recordings. Therefore, in case of forecasts errors,

ADN

External

Grid

PCC

Field Measurements

P, Q, V

Database 

with N data 

sets

Load &

generation mix

Data pre-

processing

Random data 

seperation

Set of ND data 
Derivation of 

generic models

Set of NT data
Evaluation of 

derived models

Fig. 3. Conceptual description of the proposed method.

errors in the values of these variables may be observed. Thus,

to reduce the impact of forecast errors in the accuracy of the

proposed method, variables LM and GM are neglected from

the clustering procedure. Hence, the clustering is performed

based only on the pre-disturbance operating conditions of the

ADN, i.e. based on V0,j , P0,j , and Q0,j (here j = 1, ..., ND).

To apply the clustering, V0,j , P0,j , and Q0,j are combined,

for each of the available ND data sets, into one single vector

Xj = [V0,j , P0,j , Q0,j ]. Thus, a set X of ND observations

X = {X1,X2, ...,XND} is formed (where each observa-

tion is a d dimensional vector) and forwarded as input to

the k-means++ algorithm. Then, the k-means++ algorithm

clusters the ND available data sets into K (≤ ND) clusters

C = {C1, C2, ..., CK} in order to minimize the within cluster

sum of squares [28], as shown in (7).

argmin
C

K
∑

k=1

∑

Xj∈C

||Xj − µk||
2 (7)

Where µk is the mean value of the points in the k-th cluster.

Each cluster of data is represented by its centroid, which

defines a representative location in the d dimensional space

for all the members of that particular cluster. To derive the

optimal number (i.e. K) of clusters, the knee-point criterion

for the curve of the Within Cluster sum of squares to Between

Cluster sum variation Ratio (WCBCR) is used [30]. According

to this criterion, the optimal number of clusters is defined by

the knee of the curve [30].

B. Stage 2: Parameter Estimation

At this stage, the dynamic responses of voltage, real and

reactive power, i.e. vectors V j , P j and Qj , are used to

estimate the model parameters, i.e. θj = [κ1, κ2, λ1, λ2,p, c].
Assuming a set of m data sets for the k-th cluster, the

following multi-signal analysis is performed:

Step 1: For each one of the m data sets, parameters κ1, κ2,

λ1, and λ2 are identified from operating points (please refer

to Fig. 1) A (yss,Vss) and B (y+,V+), respectively, using the

following equations [22]:

κ1 = [V0(yss − y0)]/[y0(Vss − V0)], κ2 = 1− κ1 (8)

λ1 = [V0(y+ − y0)]/[y0(V+ − V0)], λ2 = 1− λ1 (9)

here, V+ and Vss are voltage magnitude at PCC immediately

after the disturbance and at the new steady-state, respectively.

Step 2: The polynomial functions g1 and g2 are computed

for all the available m data sets, using Eqn. (5).
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Fig. 4. Flowchart of the proposed modeling approach. a) Procedure for the derivation of generic dynamic equivalent models and b) procedure used to test
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Step 3: Here, (1) and (2) are used and m individual

responses are derived for the G(s).
Step 4: The m distinct responses of G(s) are grouped

together and inserted as inputs to the Vector Fitting (VF)

algorithm [14], [31]. Using the VF, the m distinct G(s)
responses are approximated via a common set of poles and

m distinct set of residues. The use of a common set of poles

implies that all responses, belong at the same cluster, are

approximated using a model of the same order, i.e., the value

of parameter n is common for all m responses. Therefore,

following this approach, only the dominant system modes are

included in the developed model [32]. A detailed analysis of

the parameter estimation procedure can be found in [14].

C. Stage 3: Derivation of Robust Parameters using ANNs

Scope of this stage is to generalize the parameters of

the equivalent model in order to extend its applicability for

the analysis of a wide range of network conditions, i.e. for

network conditions different from those it has been originally

developed using the available training data.

In this paper, the two-layer feed-forward ANN of Fig. 5

is used for the generalization of the model parameters. The

proposed ANN consists of a hidden and an output layer. Each

layer contains [33]: an input matrix x, a weight matrix W , a

bias matrix b, a sum operator, a transfer function f , denoted as

TF, and the output matrix y. The weighting matrix weights the

input elements, while the bias vector biases the corresponding

weighted inputs. The sum operator gathers the biases and the

weighted inputs and generates an intermediate variable for the

associated TF. The TF produces the final outcome of the layer

[33]. The input/output relationship in both the output and the

hidden layer can be represented as:

y = f(W Tx+ b) (10)

Hidden Layer

x w

b

f w

b

f y

Output Layer
Input Ouput

Fig. 5. Structure of the proposed ANN.

The inputs (x) of the proposed ANN include: the pre-

disturbance steady-state values of voltage, real and reactive

power at the PCC as well as the load and the generation mix

of the examined ADN. The targets (t) are the corresponding

equivalent model parameters. x and t can be written as:

x =













P0,1 ... P0,mk,TR

Q0,1 ... Q0,mk,TR

V0,1 ... V0,mk,TR

LM1 ... LMmk,TR

GM1 ... GMmk,TR













(11)

t =





κ1,1 ... κ1,mk,TR

λ1,1 ... λ1,mk,TR

c1 ... cmk,TR



 (12)

where mk,TR denotes the number of data sets that belong

to the k-th cluster and are used for the training of the

corresponding ANN. Note that the following set of parameters:

θκ2
= [κ2,1, ..., κ2,mk,TR

], θλ2
= [λ2,1, ..., λ2,mk,TR

], and p

are not included in the target matrix. The latter is omitted,

since all dynamic responses contained in a specific cluster

are approximated using a common set of poles. On the

other hand, θκ2
and θλ2

can be directly computed from (8)

and (9) using the values of θκ1
= [κ1,1, ..., κ1,mk,TR

] and

θλ1
= [λ1,1, ..., λ1,mk,TR

], respectively. Following this ap-

proach, the size of the target matrix is considerably reduced.
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During the training process, the proposed ANN captures

general relationships between the inputs (i.e. conditions of the

examined ADN) and the targets (parameters of the equivalent

model). Once the training is finished, this information can

be used to derive model parameters that simulate adequately

new network conditions, i.e. network conditions different from

those used for the training of the ANN. To derive the general

relationships between network conditions and the model pa-

rameters, the ANN iteratively adjusts its weights and biases

to minimize the following mean squared error (mse):

mse =
1

R

R
∑

r=1

(

t(r)− y(r)
)2

(13)

R is the total number of elements contained in t and y.

An issue that may occur during the training phase is the

so-called overfitting problem [33]. In this case, the ANN

memorizes the training examples but does not learn to gener-

alize to new inputs. Therefore, fails to predict reliably future

observations [33]. To improve the generalization capabilities

of the proposed ANN and to avoid overfitting issues, in this

paper, the early stopping technique is adopted [33]. For this

purpose, as shown in Fig. 4a, the m data sets of the k-th cluster

are randomly divided into two subsets, containing mk,TR and

mk,V data, respectively. The former is the training set and

it is used to update weights and biases of the ANN. The

second one is the validation set. The mse is monitored during

the training process for both the training and the validation

data sets. The corresponding mse is denoted as tmse and

vmse, respectively. During the initial phase of the training,

both the tmse and the vmse decreases. However, when the

ANN begins to overfit the training data, the vmse begins to

rise. If the validation error increases for a specified number

of iterations (six in this paper), the training is terminated and

weights and biases are set to the values which correspond to

the minimum validation error [33].

Concerning the training of the proposed ANN, a number

of critical parameters must be defined [33], [34], i.e. the TF

for the hidden and the output layer, the training algorithm

and the number of neurons per layer. The TF for the output

layer must be the linear (purelin) function to allow outputs to

acquire any finite value [33]. On the other hand, the TF for the

hidden layer can be either the log-sigmoid (logsig) or the tan-

sigmoid (tansig) function [33], [34]. Concerning the training

algorithm, a method compatible with the early stopping tech-

nique, must be used [33]. Regarding the number of neurons,

in the literature there are no specific guidelines for defining

the optimum number [12], [33]. Therefore, to optimally define

all the above parameters, a parametric analysis is conducted.

The corresponding results are presented in Section IV.

D. Testing Procedure

In this phase, the remaining NT data are used to cross-

validate the performance of the derived equivalents. The

testing is performed as depicted in Fig. 4b. Initially, the most

suitable ANN is selected. For this purpose, testing data are

compared with the K centroids using the Euclidean distance

[27]. The selected ANN corresponds to the most similar

centroid (i.e. the centroid with the lowest Euclidean distance).

Afterwards, variables P0, Q0, V0, LM , and GM of the

testing data are forwarded as inputs to the corresponding ANN.

Then, the ANN calculates a new set of model parameters for

the adopted equivalent model, that describes effectively the

corresponding network conditions. This set of parameters is

determined based on the general relationships (i.e. the rela-

tionships between network conditions and model parameters),

which have been derived during the training phase.

Subsequently, the resulting model parameters are used to

regenerate the real and reactive power responses of the ADN.

To accomplish this, the dynamic responses of voltage are

introduced as inputs in the block diagram of Fig. 2. The output

of the block diagram contains the estimated real or reactive

power responses. The estimated responses are then compared

with the actual measurements by means of root mean square

error RMSE, which is defined as:

RMSE =

√

√

√

√

1

T

T
∑

τ=1

(

ymeas(τ)− yest(τ)
)2

(14)

where ymeas(τ) and yest(τ) are the measured and the esti-

mated responses at sample τ , respectively, and T is the total

number of samples.

E. Online Application of the Proposed Method

A significant advantage of the proposed method is that can

be used for online applications, e.g. control room applications.

In this case, the following procedure is applied: Initially, the

DSO develops the required database. Using this database,

the training (i.e. clustering, parameter estimation, training of

ANNs) is performed off-line. Once the training is completed,

the derived ANNs can be used for online applications.

During the online application, the DSO introduces the oper-

ating conditions of the ADN, the load and the generation mix

to the corresponding ANN. Subsequently, the ANN provides

in close to real-time a set of model parameters, that optimally

describe the corresponding network conditions. The DSO can

use these equivalents to conduct large-scale simulations to

evaluate the dynamic behavior of the ADN under several

contingencies and to investigate the interaction of the ADN

with the main transmission grid.

IV. EVALUATION OF THE PROPOSED METHOD USING

LABORATORY MEASUREMENTS

A. System Under Study

To validate the applicability of the proposed method a series

of experiments were conducted, using the three-phase, 400 V,

50 Hz, laboratory-scale ADN of Fig. 6. The test setup is

supplied by a three-phase programmable voltage source (PVS)

and consists of two sub-grids. Sub-grid #1 consists of a 64-

step 10 kW/7.5 kVar static load bank (SLB), used to emulate

the behavior of conventional power system loads [35], a 2 kVA

synchronous generator (SG), used to emulate the behavior of

distributed synchronous generators [8], as well as a 5.5 kVA,

0.87 lagging asynchronous machine (AM1). SG is driven by
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Fig. 6. Laboratory-scale ADN.

a dc motor and follows an active power - frequency (P -

f ), reactive power - voltage (V -Q) droop control scheme.

Sub-grid #2 contains a 10 kVA inverter interfaced distributed

generator (DG1), which operates under a constant power (i.e.

P -Q) mode, injecting fixed amount of real power. This unit

is used in the experimental setup to emulate the behavior

of inverter interfaced DGs [8]. In sub-grid #2 two 7.5 kVA,

0.87 lagging asynchronous machines (AM2 and AM3) are also

installed. The torque of all induction machines is controllable.

Thus, they can operate both as motors or generators. In the

former case, induction machines are used to emulate the

dynamic behavior of conventional rotating power system loads

[35], while in the latter to imitate the behavior of induction

generators [36].

A variety of network configurations is examined by switch-

ing on and off the switches of the test setup (S1 - S8).

Different loading conditions are examined by altering the

power of the installed components. To emulate different oper-

ating conditions, the voltage level at the PCC ranges between

360 V (0.9 p.u.) and 440 V (1.1 p.u.). To investigate system

dynamics, voltage disturbances, ranging between -0.1 p.u. and

0.1 p.u. are introduced using the PVS. Dynamic responses

of real and reactive powers are calculated by means of the

voltage and current at the PCC. The latter responses were

recorded at a rate of 500 samples per second using voltage

and current transformers, respectively. A detailed description

of the measurement infrastructure can be found in [37].

Using this setup, a set of 510 cases, representing different

network configurations, loading conditions, and voltage dis-

turbances were generated. The measured data was randomly

divided into two separate groups. The first group contains 80%

of the data and is used to derive robust model parameters (i.e.

ND=408). The remaining 20%, i.e. NT =102, is used to cross-

validate the performance of the derived models.

B. Training Procedure

The ND dynamic responses along with the corresponding

load and generation mix (represented by variables LM and

GM ) are forwarded as inputs to the proposed method to derive

robust model parameters. LM varies from 0% to 100%. A

value equal to 0% denotes that the only type of loads installed

in the examined ADN is static loads. On the other hand, a

value equal to 100% means that the load of the ADN consists

only of asynchronous motors. Variable GM is a three digit

numeric string. Each digit can be either 0 or 1. The first digit

is used to denote if inverter-interfaced DGs are connected to

the grid (in this case it is equal to 1) or not (the value of the

digit is 0). The second one is used to represent the presence

of asynchronous machines operated as generators, while the

third one to denote the presence of synchronous generators.

The WCBCR, as computed using the training data, is

depicted in Fig. 7. Based on the knee-point criterion, a number

of four clusters, i.e., K=4, is used to describe the operating

conditions of the examined ADN. The performance of the

ANNs is assessed by calculating the corresponding tmse and

vmse. For this purpose, a parametric analysis is conducted

assuming different number of neurons, different training algo-

rithms and different TFs for the hidden layer of the ANNs. The

number of neurons ranges from 5 to 80, assuming a step equal

to 5. Moreover, three training algorithms compatible with the

early stopping technique, namely the Levenberg-Marquardt

(LM), the resilient back propagation (RP), and the conjugate

gradient back propagation (SCG) are examined. Concerning

the TF of the hidden layer, the performance of both the logsig
and the tansig functions is evaluated. For each combination

of neurons, training algorithm and TF, a set of 100 distinct

initial conditions for weight and bias matrices are randomly

generated by applying the Monte Carlo (MC) method. The

mean values of the tmse and the vmse, provided by the MC

simulations, are depicted in Figs. 8 and 9, respectively. The

corresponding mean execution times are presented in Fig. 10.

As shown, in all cases the training of the ANNs using the

LM algorithm requires higher execution times compared to

the cases when the RP and the SCG are used. However, as

illustrated in Figs. 8 and 9, the LM algorithm provides the

best results, i.e. the minimum values, for both the tmse and

the vmse. Additionally, it is clear that the impact of the TF of

the hidden layer on the performance of the ANNs is rather

limited, since in all cases trivial differences are observed.

However, it is interesting to note that the logsig function

seems to be more suitable for this specific application, since

it generally provides lower values for both the tmse and the

vmse compared to the tansig function. Moreover, it is evident

that the tmse is generally reduced as the number of neurons

increases. This remark is valid for all the examined training

algorithms and for both TFs. Concerning the vmse a different

behavior is observed. Initially, as the number of neurons
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Fig. 7. WCBCR index for different number of clusters.
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increases, the vmse decreases. However, after a certain point, a

further increase in the number of neurons leads to an increase

to the vmse values. This actually implies that the ANN is

considerably large and thus overfits the training data [33].

The minimum vmse is observed for a number of 10

neurons, when the logsig function is used for the activation

of the hidden layer and the training is performed via the LM.

Hence, these settings are selected for the training of the ANNs.

In this case, tmse is merely 0.0113 and the training procedure

requires less than 2 s. The generalization capabilities of the

proposed method are further evaluated in the next subsection.

C. Testing Procedure

The accuracy of the proposed method is evaluated here

using the testing data (NT ). Additionally, its performance is

compared with a conventional approach in which statistical

analysis is applied to each cluster and representative parame-

ters are computed by means of the corresponding mean values

[10]. The execution time, required from the proposed method

to derive robust model parameters for the NT data sets, was in

all cases lower that 0.1 s. This low execution time verifies the

applicability of the method for close to real-time applications.

Representative instances of the undertaken tests are pre-

sented in Figs. 11a - 11h. More specifically, in these Figs., the

real and reactive power responses, estimated by the proposed

and the conventional approach, are compared with the corre-

sponding laboratory measurements. The proposed method sim-

ulates more accurately compared to the conventional approach
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Fig. 10. Impact of several parameters on the required execution time.

the dynamic behavior of both real and reactive power. Indeed,

using the proposed method, the new steady-state and the

undershoot/overshoot of real and reactive power are accurately

simulated in all cases. Additionally, oscillatory responses, as

the one presented in Fig. 11c, are efficiently modeled. Finally,

as shown in Fig. 11e, reverse power flow phenomena that may

occur during system disturbances are accurately simulated.

To provide a further insight in the accuracy of the proposed

and the conventional approach, the probability density func-

tions (PDF) and the cumulative distribution functions (CDF)

of the RMSEs for the NT data set are presented in Fig. 12.

Concerning the modeling of the real power, PDFs indicate that

the RMSE is most likely to be about 0.008 for the proposed

method and 0.016 for the conventional approach. Additionally,

CDFs reveal that 90% of the resulting RMSEs are under 0.039

for the proposed approach, while the corresponding percentage

for the conventional approach is equal to 65%. Similar results

are also observed for the modeling of the reactive power. More

specifically, 90% of the resulting RMSEs for the proposed

approach are lower than 0.021. On the other hand, the corre-

sponding percentage for the conventional approach is merely

21%. The maximum RMSE of the proposed approach for the

modeling of the reactive power is equal to 0.041. Using the

conventional approach, 45% of the testing data result in higher

RMSEs compared to this value. Finally, PDFs reveal that the

RMSE is most likely to be about 0.011 for the proposed

method and 0.034 for the conventional approach.

D. Further Investigations

In this Subsection the impact of several parameters on the

accuracy of the proposed method is investigated. Initially, the

impact of load and generation mix (parameters LM and GM ,

respectively) is evaluated. As discussed in Section III, these

parameters can be assessed through forecasts or smart meter

recordings. In case such data is not available or is missing,

it is expected that the DSO will not be able to determine

LM and GM . Therefore, in this Subsection, the training of

the proposed method is evaluated by neglecting these two

variables. To accomplish this, the last two rows of the input

matrix, i.e. x, are erased. The resulting PDFs and CDFs of

the RMSEs for the testing data set are presented in Fig.

12. As shown, neglecting LM and GM leads to noticeable
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Fig. 11. Indicative responses. i) The ADN imports real power. A step-up
voltage disturbance is examined. Modeling of a) real and b) reactive power. ii)
The ADN imports real power. A step-down voltage disturbance is examined.
Modeling of c) real and d) reactive power. iii) The ADN imports real power.
A step-down voltage disturbance is examined. Bi-directional power flow is
observed during the disturbance. Modeling of e) real and f) reactive power.
iv) The ADN exports real power. A step-up voltage disturbance is examined.
Modeling of g) real and h) reactive power.

degradation in the performance of the proposed method.

Nevertheless, even in this case, the equivalent models, derived

using the proposed method, are more accurate compared to

the equivalents developed using the conventional approach.

The impact of the clustering technique on the accuracy of

the proposed method is also evaluated. Towards this objective,

the k-means++ algorithm is compared with the k-medoids

and the fuzzy c-means algorithm. To provide a common

comparative base, in all cases, a number of four clusters is

considered. The resulting CDFs are depicted in Fig. 13. Based

on these results, it is evident that the impact of the clustering

method on the accuracy of the method is rather limited, since

in all cases trivial differences are observed.

V. DISCUSSION AND CONCLUSIONS

Parameters of measurement-based equivalent models can

be updated only when new disturbances are available. Due

to this inherent limitation, the accuracy of these models for

online applications is rather limited. To address this issue,

in this paper, a new method, based on artificial-intelligence
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techniques, is developed. In the proposed framework, a train-

ing data set, containing disturbance events, is used for the

estimation of the required model parameters. Using the derived

parameters, ANNs are trained. The ANNs aim to identify

general relationships between the parameters of the adopted

equivalent model and the pre-disturbance operating conditions,

the load and the generation mix of the examined ADN.

During the online application, operating conditions of the

ADN as well as the load and the generation mix are forwarded

as inputs to the developed ANNs, which provide (without

requiring new disturbance events) in close to real-time sets of

model parameters that optimally describe the examined ADN.

The effectiveness of the proposed method is evaluated using

measurements acquired from a laboratory-scale ADN, while

its performance is compared with a conventional approach.

Comparison results reveal that the proposed method presents

superior performance compared to the conventional one, sim-

ulating more accurately the complex dynamic phenomena that

occur in ADNs (i.e. oscillations, bi-directional power flows).

Furthermore, the impact of several parameters on the accu-

racy of the proposed method is thoroughly investigated. For

this purpose, a parametric analysis is conducted to determine

the TF for the hidden layer of the ANNs, the most suitable

training algorithm, and the optimal number of neurons. The

analysis shows that the logsig function is more suitable

compared to the tansig, since it provides lower errors, while

the Levenberg-Marquardt is the most appropriate algorithm for
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the training of the ANNs. Moreover, the conducted analysis

reveals that a number of 10 neurons can ensure very accurate

results. The above settings can be used as indicative values

for the derivation of generic aggregated equivalent models.

Additionally, the impact of the clustering technique as well

as the impact of load and generation mix on the accuracy

of the proposed method are evaluated. Results indicate that

the accuracy of the proposed method is not affected by the

clustering technique used. Moreover, evaluation results reveal

that input of information concerning load and generation

mix of the examined ADN can enhance the accuracy of the

proposed method. Nevertheless, the proposed method results

in more accurate and robust models as compared to the

conventional approach, even in cases where this information

is not available.

Based on the evaluation results, it can be concluded that the

proposed method constitutes a reliable tool that can be used

from DSOs for the derivation of generic measurement-based

dynamic equivalent models.

Future work will incorporate load and generation mix esti-

mates of the ADN using measurements acquired at PCC with

the external grid. This way, the impact of forecast errors on

the accuracy of the proposed method will be eliminated.
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