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The subtraction or addition of a prescribed number of photons to a field mode does not, in general,
simply shift the probability distribution by the number of subtracted or added photons. Subtraction
of a photon from an initial coherent state, for example, leaves the photon statistics unchanged and
the same process applied to an initial thermal state increases the mean photon number. We present
a detailed analysis of the effects of the initial photon statistics on those of the state from which the
photons have been subtracted or to which they have been added. Our approach is based on two
closely-related moment generating functions, one well-established and one that we introduce.

I. INTRODUCTION

The addition or subtraction of a single photon from
the radiation field is the most fundamental process by
which matter interacts with light. The ability to achieve
this level of control in experiments has been used to pro-
duce novel non-classical states of light by the process of
“degaussification” [1] and in a direct demonstration of
the commutation relation between the annihilation and
creation operators [2–4].

There has been considerable interest in both the pro-
cesses of photon addition and subtraction and also in the
properties of the quantum states produced by these pro-
cesses. Indeed, a discussion of these appears in Agarwal’s
textbook [5]. Four developments make these states wor-
thy of further consideration. First there is the rapid ad-
vance towards practical implementation of quantum key
distribution [6–8] and the associated eavesdropping ac-
tivities including photon removal. Second is the demon-
stration, recently, of the effects of photon subtraction on
the visibility of optical fringes with thermal light [9, 10]
and, more generally, the suggestion that both photon-
subtracted and photon-added states may provide advan-
tages in metrology [11]. Third is the requirement for
non-Gaussian processes (including photon subtraction or
addition) in order to demonstrate the supremacy of con-
tinuous variable quantum computing [12–15]. Finally,
and perhaps most intriguing, is the demonstration that
photon subtraction from a thermal pulse results in an
increase in the energy and that this information can be
used for the extraction of work [16].

There have been a number of earlier studies of photon-
added, and particularly of photon-subtracted states. In-
terest in these states appears to originate with the work
of Agarwal and Tara [17, 18]. Implementing this tech-
nique has been shown to introduce novel quantum effects
including the generation of novel superposition states
[19–22]. More recently, attention has turned to the re-
sults of multiple addition and subtraction events and how
these might be used to engineer the properties of the
light [23, 24].

We note that uncontrolled photon subtraction events
arise in the quantum jumps approach to dissipation [25–
28] and these have been shown to have a dramatic ef-
fect, in particular, on non-classical phenomena including
Schrödinger-cat states [29] and on revivals in the Jaynes-
Cummings model [30, 31]. Here, however, our focus will
be on processes designed to subtract or add a given num-
ber of photons even though the probability for the process
to be successful will typically be small.
In this paper we aim to give a thorough description

of the photon statistics of photon-added and photon-
subtracted states. Our preferred tools for this are the
moment generating function, as advocated by Bogdanov
et al [24], and a closely related function which we intro-
duce. We find that a combination of these allows us to
make very general statements about the effects of sub-
tracting or adding a given number of photons and also
about the relationships between these two processes.

II. PHOTON-ADDED AND

PHOTON-SUBTRACTED STATES

We shall be concerned, for simplicity, solely with states
of a single quantised field mode and the effect of success-
fully either subtracting or adding one or more photons to
the state of the field. We denote by ρ̂0 the initial state of
the field mode and then the subtraction or addition of a
single photon will produce a state with density operator

ρ̂1− =
âρ̂0â†

Tr(ρ̂0â†â)

ρ̂1+ =
â†ρ̂0â

Tr(ρ̂0ââ†)
, (1)

respectively. Adding or subtracting more than a single
photon in this way is challenging, experimentally, but
it is, nevertheless, interesting to consider this possibil-
ity at least theoretically, principally for the insights into
the nature of the statistics, to consider states in which
more than a single photon is subtracted or added. We
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denote the states following the subtraction or addition of
ℓ photons as

ρ̂ℓ− =
âℓρ̂0â†ℓ

Tr(ρ̂0â†ℓâℓ)

ρ̂ℓ+ =
â†ℓρ̂0âℓ

Tr(ρ̂0âℓâ†ℓ)
. (2)

That these photon-added states, in particular, are worthy
of further consideration was suggested many years ago by
Agarwal and Tara [17].
We note that producing photon-subtracted or photon-

added states of the form under consideration is necessar-
ily a probabilistic process with, typically, a low probabil-
ity of success. There are processes that remove a photon
with certainty, if at least one photon is present [32–34],
but these are more difficult to implement than the proba-
bilistic processes and will not concern us here. The sim-
plest way to either subtract or add a single photon is
by a weak interaction with an ancillary mode, with the
detection of a photon in this additional mode heralding
a successful subtraction or addition event [5]. For com-
pleteness, we summarise briefly these two processes. To
realise photon subtraction we combine our mode, â, with

a second one, b̂, prepared in its vacuum state, using a
weakly-reflecting beam splitter as depicted in Fig. 1(a).
We can describe the action of the beam splitter by a uni-
tary transformation coupling the two modes [35]:

Û = exp
[

iθ(â†b̂+ b̂†â)
]

. (3)

The action of this on the two input modes produces the
state

Û ρ̂0 ⊗ |0〉〈0|Û† ≈ (1 + iθb̂†â)ρ̂0 ⊗ |0〉〈0|(1− iθâ†b̂). (4)

If we detect a photon in the output b mode then the
output a mode conditioned on this detection will be the
photon-subtracted state ρ̂1−. To realise photon addition
we proceed in the same way but utilise a weak nonlinear
optical parametric-amplfication process, as depicted in
Fig. 1(b), rather than a beam splitter. We can describe
this process by a unitary transformation of the form [35]

Û = exp
[

iϑ(â†b̂† + b̂â)
]

. (5)

The action of this on the two input modes, with mode b
again prepared in the vacuum state, produces the two-
mode output state

Û ρ̂0 ⊗ |0〉〈0|Û † ≈ (1 + iϑâ†b̂†)ρ̂0 ⊗ |0〉〈0|(1− iϑb̂â). (6)

As with the photon-subtraction process, if we detect a
photon in the output b mode then the output a mode
conditioned on this detection will be the photon-added
state ρ̂1+. We can produce, at least in principle, mul-
tiple photon-subtracted or photon-added states by com-
bining a number of single-photon subtraction or addition

â

b̂(a)

pump

â

b̂(b)

FIG. 1: Schematic for implementations of (a) photon subtrac-
tion using a weakly reflecting beam splitter and (b) photon
addition using a weak parametric amplifier.

events accepting, of course, the fact that the probability
for successfully adding or subtracting the photons falls off
rapidly as the number of subtraction or addition events
increases.
We present in this paper a detailed study of the statis-

tics of photon-subtracted and photon-added states and
provide a simple and efficient way of obtaining these by
expressing the properties of these states in terms of those
of the preprocessed state ρ̂0. As a foretaste of this we
prove two simple properties. The first of these is the well-
known fact that subtracting a single photon can result in
an increase in the mean photon number [36–39] and there
is a simple and general criterion for this to occur. The
second is that adding a single photon results in the mean
photon number increasing by at least one. The mean
photon number for the photon-subtracted state is [24]

〈n̂〉1− =
Tr(ρ̂0â†2â2)

Tr(ρ̂0â†â)
. (7)

This will be greater than the mean photon number for the
original state, Tr(ρ̂0â†â), if the second-order coherence
function for ρ̂0

g(2) =
Tr(ρ̂0â†2â2)

[Tr(ρ̂0â†â)]2
(8)

is greater than unity, corresponding to a super-Poissonian
state, one with a photon-number variance exceeding the
mean value: ∆n2 > 〈n̂〉 [16, 36, 38]. For the photon-
added state the mean value of the photon number is

〈n̂〉1+ =
Tr(ρ̂0ââ†ââ†)

Tr(ρ̂0ââ†)

=
Tr[ρ̂0(n̂+ 1)2]

Tr[ρ̂0(n̂+ 1)]
. (9)

As the mean square of a quantity (in this case n̂ + 1)
is greater than or equal to the square of the mean it
necessarily follows that photon addition will increase the
mean photon number by at least one: 〈n̂〉1+ ≥ 〈n̂〉0 + 1.

III. MOMENT GENERATING FUNCTIONS

Our aim is to determine, in a general manner and as
simply as possible, the relationship between the photon
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statistics of the initial state, with density operator ρ̂0,
and that of a state following the subtraction or addition
of a given number of photons. The most natural tool
to use for this is a moment generating function, as is so
often the case in statistics [40–46]. We shall employ a
pair of closely related moment generating functions:

M(µ) =

∞
∑

n=0

(1− µ)nP (n)

N (λ) =
∞
∑

n=0

(1 + λ)−(n+1)P (n), (10)

where P (n) is the probabililty that n photons are present.
The first of these is the familiar quantity introduced
into quantum optics by Glauber (and denoted by him
as Q(s)) [47, 48]. The second, although clearly sim-
ply related to the first is, to the best of our knowl-
edge, new to quantum optics and is introduced here be-
cause of its use in treating photon-added states. Some
of the properties of these functions are reviewed in Ap-
pendix A. The main properties of these that we shall
exploit are that M(µ) and N (λ) give, resepctively, the
factorial moments, 〈n̂(m)〉 = 〈n̂(n̂ − 1) · · · (n̂ − m + 1)〉,
and the negative factorial moments, 〈(n̂ + 1)(−m)〉 =
〈(n̂+ 1)(n̂+ 2) · · · (n̂+m)〉, simply by differentiation:

〈n̂(m)〉 =

(

− d

dµ

)m

M(µ)

∣

∣

∣

∣

µ=0

〈(n̂+ 1)(−m)〉 =

(

− d

dλ

)m

N (λ)

∣

∣

∣

∣

λ=0

, (11)

and that both functions give, straightforwardly, the prob-
ability that the photon number is even or odd [35]:

M(2) = P (even)− P (odd) = −N (−2). (12)

An important feature of the moment generating func-
tions is the comparative ease with which we can find these
quantities for important quantum states of light. We il-
lustrate this point by presenting these for five commonly
used types of state: the number (or Fock) states, the co-
herent states, the thermal or chaotic states, the squeezed
vacuum states and finally the Schrödinger cat states. For
the photon-number state |N〉 the probability distribution
is simply P (n) = δn,N and we have

M|N〉(µ) = (1− µ)N

N|N〉(λ) = (1 + λ)−(N+1). (13)

The coherent states, |α〉, have a Poissonian pho-
ton number probability distribution [35, 49], P (n) =

e−|α|2 |α|2n/n!, and the moment generating functions are

M|α〉(µ) = e−µ|α|2

N|α〉(λ) =
1

1 + λ
exp

(

−λ|α|2
1 + λ

)

. (14)

It is straightforward to use these to calculate the factorial
moments from the moment generating functions using
(11). For the positive moments we find the familiar form
[35, 49]

〈n̂(m)〉|α〉 = |α|2m. (15)

The negative moments have a more complicated form and
we give, here, only the first two of these:

〈(n̂+ 1)(−1)〉|α〉 = |α|2 + 1

〈(n̂+ 1)(−2)〉|α〉 = |α|4 + 4|α|2 + 2. (16)

Higher order moments are readily obtained by further
differentiation of N|α〉(λ). The moment generating func-
tion shows, also, that all coherent states have a greater
probability that the photon number is even than that it

is odd as M(2) = −N (−2) = e−2|α|2 .
The thermal state is mixed with a density operator

that is diagonal in the number-state basis. The prob-
ability that there are n photons has the familiar Bose-
Einstein form, P (n) = n̄n/(n̄ + 1)n+1, where n̄ is the
mean photon number. For this state the moment gener-
ating functions are

Mth(µ) =
1

1 + µn̄

Nth(λ) =
1

1 + λ(n̄+ 1)
. (17)

The positive and negative moments for the thermal state,
derived from these moment generating functions, have
the simple forms:

〈n̂(m)〉th = m!n̄m

〈(n̂+ 1)(−m)〉th = m!(n̄+ 1)m. (18)

Like the coherent states, all thermal states have a higher
probability that the photon number is even than that it
is odd: M(2) = −N (−2) = (1 + 2n̄)−1.
A much-studied and important non-classical state is

the squeezed vacuum, |ζ〉, which is a superposition of
only even photon-number states [35, 49]:

P|ζ〉(2n) =
1√
n̄+ 1

(

n̄

n̄+ 1

)n
(2n)!

22n(n!)2

P|ζ〉(2n+ 1) = 0, (19)

where n̄ is the mean photon number. For this state the
moment generating functions are

M|ζ〉(µ) = (1 + 2µn̄− µ2n̄)−1/2

N|ζ〉(λ) =
1

1 + λ

(

1 +
λ(2 + λ)

(1 + λ)2
n̄

)−1/2

. (20)

Note that for this state M(2) = 1 = −N (−2), which
reflects the fact that the photon number is even. For the
squeezed vacuum state the first two positive and negative
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factorial moments, calculated from the moment generat-
ing function, are

〈n̂(1)〉 = n̄

〈n̂(2)〉 = 3n̄2 + n̄

〈(n̂+ 1)(−1)〉 = n̄+ 1

〈(n̂+ 1)(−2)〉 = 3n̄2 + 5n̄+ 2. (21)

Our final example is the even and odd Schrödinger
cat states, |α±〉, which are superpositions of a pair of
coherent states [5]:

|α±〉 = 1
√

2(1± e−2|α|2)
(|α〉 ± | − α〉) . (22)

Among the interesting properties of these states is the
fact that they are superpositions of only even photon
numbers

P|α+〉(2n) =
1

cosh |α|2
|α|4n
(2n)!

P|α+〉(2n+ 1) = 0 , (23)

or odd photon numbers respectively

P|α−〉(2n) = 0

P|α−〉(2n+ 1) =
1

sinh |α|2
|α|2(2n+1)

(2n+ 1)!
. (24)

It is straightforward to calculate the forms of our two
moment generating functions for these states. For the
even Schrödinger cat state we find

M|α+〉(µ) =
cosh[(1− µ)|α|2]

cosh |α|2

N|α+〉(λ) =
cosh[|α|2/(1 + λ)]

(1 + λ) cosh |α|2 , (25)

so that M(2) = 1 = −N (−2) because the photon num-
ber is even. For the odd Schrödinger cat state, however,
our moment generating functions are

M|α−〉(µ) =
sinh[(1− µ)|α|2]

sinh |α|2

N|α−〉(λ) =
sinh[|α|2/(1 + λ)]

(1 + λ) sinh |α|2 , (26)

for whichM(2) = −1 = −N (−2), which is a consequence
of the fact that only odd photon numbers are present in
the odd cat state. As with our other examples, it is
straightforward to use the moment generating functions
to obtain the positive and negative factorial moments for
these states. For the even cat states we find

〈n̂(1)〉|α+〉 = |α|2 tanh |α|2

〈n̂(2)〉|α+〉 = |α|4

〈(n̂+ 1)(−1)〉|α+〉 = |α|2 tanh |α|2 + 1

〈(n̂+ 1)(−2)〉|α+〉 = |α|4 + 4|α|2 tanh |α|2 + 2. (27)

The first two of these mean that the even cat state is
super-Poissonian with ∆n2 > 〈n̂〉. For the odd cat states
we have

〈n̂(1)〉|α+〉 = |α|2 coth |α|2

〈n̂(2)〉|α+〉 = |α|4

〈(n̂+ 1)(−1)〉|α+〉 = |α|2 coth |α|2 + 1

〈(n̂+ 1)(−2)〉|α+〉 = |α|4 + 4|α|2 coth |α|2 + 2. (28)

We see that, in contrast with the even cat states, the odd
states are sub-Poissonian with ∆n2 < 〈n̂〉.

IV. STATISTICS OF PHOTON-SUBTRACTED

STATES

The simplest way to appreciate the changes in the
statistics of a photon-subtracted state is through the fac-
torial moments. The mth factorial moment of the photon
number is defined to be

〈n̂(m)〉 = 〈n̂(n̂− 1) · · · (n̂−m+ 1)〉
= 〈â†mâm〉. (29)

When written in this form it is readily apparent that the
mth factorial moment for the ℓ-photon subtracted state
is simply related to the (m+ ℓ)th factorial moment of the
initial, pre photon-subtraction state:

〈n̂(m)〉ℓ− =
Tr(â†mâmâℓρ̂0â†ℓ)

Tr(ρ̂0â†ℓâℓ)

=
〈n̂(m+ℓ)〉0
〈n̂(ℓ)〉0 , (30)

which is the ratio of the (m + ℓ)th and ℓth factorial mo-
ments for the initial, pre photon-subtraction state.
It is natural and straightforward to express the full

photon statistics of the photon subtracted states in terms
of the moment generating function M(µ). To see this we
make use of the expression for the moment generating
function in terms of the factorial moments, Eq. (A10),
to write M(µ) for the ℓ-photon subtracted state in the
form

Mℓ−(µ) =

∞
∑

m=0

(−µ)m

m!

〈n̂(m+ℓ)〉0
〈n̂(ℓ)〉0

=
1

〈n̂(ℓ)〉0
(

− d

dµ

)ℓ

M0(µ), (31)

so the moment generating function for the ℓ-photon
subtracted state is simply the ℓth derivative of that
for the pre photon-subtracted state, normalised so that
Mℓ−(0) = 1 [24].
It remains to demonstrate the utility of the simple

photon-subtraction transformation of the moment gen-
erating function, which we do by exploring the effects on
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|α〉
|tα〉

|vac〉

|rα〉

FIG. 2: The action of our photon subtraction process on an
initial coherent state |α〉.

the states considered in the preceding section. The effect
of a successful ℓ-photon subtraction on the number state
|N〉 is simply to reduce the photon number to N − ℓ and
this is reflected in the corresponding moment generating
function, which takes the form

Mℓ−
|N〉(µ) = (1− µ)N−ℓ, (32)

which we recognise as the moment generating function
for the photon number state |N − ℓ〉.

The effect of photon subtraction on the coherent state
is interesting; the statistics are unchanged by the process:

Mℓ−
|α〉(µ) = e−µ|α|2 = M0

|α〉(µ). (33)

The reason for this is that the coherent state is a
right-eigenstate of the annihilation operator and hence
(â)ℓ|α〉 = (α)ℓ|α〉, so the ℓ-photon subtracted coherent
state is simply the initial coherent state. The physical
origin of this unchanging character under photon sub-
traction is the fact that a coherent state incident on a
beam-splitter produces two output modes each of which
is in a coherent state, with no entanglement created be-
tween the modes. This process is depicted in Fig. 2. Here
an initial coherent state is combined with a vacuum mode
on a very weakly reflecting beam splitter, which enacts
the state transformation |α〉|vac〉 → |tα〉|rα〉 ≈ |α〉|rα〉.
There is no correlation between the two output modes
and the statistics of the transmitted mode are indepen-
dent of whether or not a photocount is recorded at the
detector placed to detect any reflected light.
For the thermal states, photon subtraction has a dra-

matic effect on the statistics [24] including the increase
in the mean photon number mentioned earlier. After the
successful subtraction of ℓ photons, an initial thermal
state with mean photon number n̄ will have the moment
generating function

Mℓ−
th (µ) = (1 + µn̄)−(ℓ+1) = [Mth(µ)]

ℓ+1. (34)

This means, in particular, that the mean photon num-
ber but also all of the factorial moments for the photon-
subtracted thermal state exceed those for the initial ther-
mal state:

〈n̂(m)〉ℓ−th =
(m+ ℓ)!

ℓ!
n̄m

=

(

m+ ℓ
ℓ

)

〈n̂(m)〉0th. (35)

To understand how this happens, we need only note that
the photon subtraction process is more likely to succeed
if there are more photons initially present, hence success
in subtracting photons makes it a posteriori more likely
that a greater number of photons were present initially.
We return to this point at the end of this section.
As a final illustration, we turn to the two classes of

non-classical state for which the photon number is ei-
ther even or odd: the squeezed vacuum and Schrödinger
cat states. For the cat states this is a very simple pro-
cess - subtracting an even number of photons leaves the
cat-state unchanged, but taking away an odd number of
photons causes an even cat to become an odd cat and an
odd cat is transformed into an even cat state:

M2ℓ−
|α±〉(µ) = M|α±〉(µ)

M2ℓ+1−
|α±〉 (µ) = M|α∓〉(µ). (36)

The same procedure may readily be applied to the
squeezed vacuum state, but the general expression for the
moment generating function for the ℓ-photon subtracted
state is rather unwieldy and we give here expressions only
for the subtraction of one or two photons:

M1−
|ζ〉(µ) =

1− µ

(1 + 2µn̄− µ2n̄)3/2

M2−
|ζ〉(µ) =

1 + n̄(3− 4µ+ 2µ2)

(1 + 2µn̄− µ2n̄)5/2(1 + 3n̄)
. (37)

We note thatM1−
|ζ〉(1) = 0, corresponding to the fact that

there is no vacuum component in this state and also that
M1−

|ζ〉(2) = −1 and M2−
|ζ〉(2) = 1, corresponding to states

with only odd or even photon numbers, as should be the
case.

A. Probability of successful photon subtraction

We have seen that the process of photon subtraction
has features that might seem at first to be counter-
intuitive. These include the fact that the mean photon
number for an initial thermal state is increased by photon
subtraction and that the Poissonian statistics of a coher-
ent state are unchanged by the process. It should be em-
phasised that these features alone suffice to demonstrate
that the process of photon subtraction, as envisaged here,
must be a probabilistic one, for were it deterministic then
photon-number conservation would, necessarily, produce
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a reduced number of photons in the output state [32].
A simple example may help to clarify this point. Let us
suppose that we have a mode prepared in a mixture (or
a superposition) of the vacuum and the 10 photon state
with equal prior probabilities (P 0(0) = 1

2 , P
0(10) = 1

2 ).
It follows that the initial mean photon number is 5. If we
succeed in subtracting a photon then the resulting field
mode will have a mean photon number of 9, as the fact
that the photon subtraction was successful implies that
there were, on this occasion, 10 photons present initially.

It is interesting to note, however, that the statistics of
the photon-subtracted states allow us to make inferences,
using Bayesian reasoning [50, 51], concerning the prob-
ability of success in the process of photon subtraction.
To demonstrate this we consider just a single simple ex-
ample, the success of photon subtraction for an initial
coherent state. We know that a successful single-photon
subtraction leaves the photon number probability distri-
bution for an initial coherent state unchanged and hence
the probability that there are n−1 photons present given
a successful photon subtraction is

P 1−(n− 1|succ.) = e−|α|2 |α|2(n−1)

(n− 1)!
. (38)

As there was a photon subtraction it follows, necessarily,
that this is also the posterior probability that there were
n photons present prior to the subtraction event:

P 0(n|succ.) = e−|α|2 |α|2(n−1)

(n− 1)!
. (39)

We can use Bayes’ theorem to obtain, from this, the prob-
ability of successfully subtracting a photon given that n
photons were initially present:

P 0(succ.|n)P 0(n) = P 0(n|succ.)P (succ.)

⇒ P 0(succ.|n)e−|α|2 |α|2n
n!

= e−|α|2 |α|2(n−1)

(n− 1)!
P (succ.)

⇒ P 0(succ.|n) = n
P (succ.)

|α|2 . (40)

Hence the probability for successfully subtracting a single
photon is proportional to the number of photons initially
present. There is a simple reason for this, which becomes
clear on referring to the physical realisation of the pho-
ton subtraction device, based on a weakly reflecting beam
splitter: each photon in the input state is reflected and
then detected with a small probability, p, thus the prob-
ability that one of the initial n photons present will be
so removed is np(1−p)n−1 [35], which, for the very small
reflection probabilities considered here, is approximately
np.

V. STATISTICS OF PHOTON-ADDED STATES

For the photon-added states it is the negative or as-
cending factorial moments [52],

〈(n̂+ 1)(−m)〉 = 〈(n̂+ 1)(n̂+ 2) · · · (n̂+m)〉
= 〈âmâ†m〉, (41)

rather than the more familiar factorial moments that
provide the natural description of the photon statistics.
These negative factorial moments are the expectation
values of the antinormal-ordered powers of the number
operator rather than the normally-ordered moments that
form the factorial moments. There is a simple rela-
tionship between the negative factorial moments for the
photon-added states and those for the initial state that
follows directly from the form of the states:

〈(n̂+ 1)(−m)〉ℓ+ =
Tr(âmâ†mâ†ℓρ̂0âℓ)

Tr(ρ̂0â†ℓâℓ)

=
〈(n̂+ 1)(−m−ℓ)〉0
〈(n̂+ 1)(−ℓ)〉0 , (42)

which is the ratio of (m+ ℓ)th and ℓth negative factorial
moments for the initial, pre photon-addition state.
For the photon-added states it is natural to use our

second moment generating function, N (λ). To construct
this quantity we make use of the expression, Eq. (A20),
for N (λ) in terms of the negative factorial moments:

N ℓ+(λ) =

∞
∑

m=0

(−λ)m

m!

〈(n̂+ 1)(−m−ℓ)〉0
〈(n̂+ 1)(−ℓ)〉0

=
1

〈(n̂+ 1)(−ℓ)〉0
(

− d

dλ

)ℓ

N 0(λ), (43)

so the moment generating function (of the second kind)
for the ℓ-photon added state is simply the ℓth derivative
of that for the pre photon-added state, normalised so that
N ℓ+(0) = 1.
We have seen that the process of adding a single photon

increases the mean photon number by at least one. We
can also arrive at this as a result of the general expression
Eq. (42), by noting that

〈(n̂+ 1)(−1)〉ℓ+ = 〈(n̂+ 1)〉ℓ+

=
〈(n̂+ 1) · · · (n̂+ ℓ+ 1)〉0
〈(n̂+ 1) · · · (n̂+ ℓ)〉0

= ℓ+
〈(n̂+ 1)(n̂+ 1) · · · (n̂+ ℓ)〉0

〈(n̂+ 1) · · · (n̂+ ℓ)〉0
≥ ℓ+ 〈(n̂+ 1)〉0, (44)

where we have used the inequality derived in Appendix
B. Clearly ℓ photon addition events increase the mean
photon number (and indeed the mean of n̂ + 1) by at
least ℓ. The equality holds only for an initial photon
number state for which, naturally enough, ℓ photon ad-
dition events add precisely ℓ photons. This is reflected
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in the form of the moment generating function for the ℓ
photon added state:

N ℓ+
|N〉(λ) = (1 + λ)−(N+ℓ+1), (45)

which is the form for the photon number state |N + ℓ〉.
For all states other than the photon number states,

ℓ photon addition events will increase the mean photon
number by more than ℓ. The reason for this can be traced
to the fact that the probability for adding a single photon
given that n are initially present is proportional to n+1,
a feature that is reflected in the form of the creation
operator and has its origins in Bose symmetry [53]. It
follows that the probability that n+1 photons are present
given a successful photon-addition event is

P 1+(n+ 1|succ.) = (n+ 1)P 0(n)

〈n̂〉0 + 1
, (46)

where the form of the denominator is determined by the
requirement that this probability is normalised. From
this it follows that the mean photon number in the
photon-added state is

〈n̂〉1+ =
∞
∑

n=0

(n+ 1)P 1+(n+ 1|succ.)

= 〈n̂〉0 + 1 +
(∆n2)0

〈n̂〉0 + 1
, (47)

which exceeds 〈n̂〉0 + 1, corresponding to an increase of
unity, only if (∆n2)0 = 0, that is if the initial state is a
photon number state.
As an example of the effects of photon addition, we

consider the effect of ℓ photon additions to a thermal
state. For this state we find that the moment generating
function (of the second kind) is

N ℓ+
th (λ) = [1 + λ(1 + n̄)]−(ℓ+1) = [Nth(λ)]

ℓ+1. (48)

Note the similarity between this expression, for photon
addition, and that found for the first moment generat-
ing function for an ℓ-photon subtracted thermal state,
Eq. (34). From this function we can obtain the full pho-
ton statistics of the ℓ-photon added state. We find, in
particular, that the mth negative factorial moment may
be evaluated by differentiation of N (λ) with respect to
λ:

〈(n̂+ 1)(−m)〉ℓ+th =
(m+ ℓ)!

ℓ!
(1 + n̄)m. (49)

For the first negative factorial moment following a single
photon addition, for example, we find

〈(n̂+ 1)〉1+th = 2(〈n̂〉0 + 1), (50)

in agreement with Eq. (47).
We conclude this discussion by examining the effects of

photon addition on a coherent state, with its associated

Poissonian probability distribution. Successful comple-
tion of ℓ photon additions to an initial coherent state
produces a state with photon statistics completely spec-
ified by the moment generating function N ℓ+

|α〉, which we

can write in the closed form

N ℓ+
|α〉(λ) =

(

− d
dλ

)ℓ N|α〉(λ)
(

− d
dλ

)ℓ N|α〉(0)

= exp

(

−λ|α|2
1 + λ

) Lℓ

(

− |α|2

1+λ

)

(1 + λ)ℓ+1Lℓ(−|α|2)

= N|α〉(λ)
Lℓ

(

− |α|2

1+λ

)

(1 + λ)ℓLℓ(−|α|2) , (51)

where Lℓ(x) is the familiar Laguerre polynomial of order
ℓ. As a demonstration of this approach to calculating
the statistics, the first negative factorial moment for the
state produced by ℓ photon addition events is

〈(n̂+ 1)(−1)〉ℓ+|α〉 = 〈(n̂+ 1)〉ℓ+|α〉

=

(

− d

dλ

)

N ℓ+
|α〉(λ)

∣

∣

∣

∣

λ=0

= |α|2 + 2ℓ+ 1− ℓLℓ−1(−|α|2)
Lℓ(−|α|2) .(52)

For single-photon addition, this becomes |α|2+2+ |α|2

1+|α|2

in agreement with Eq. (47). More generally, the suc-
cessful addition of ℓ photons has increased the mean

photon number by 2ℓ − ℓLℓ−1(−|α|2)
Lℓ(−|α|2) . This implies that

the initial mean photon number given that the sub-
traction events were successful is increased from |α|2 to

|α|2 + ℓ − ℓLℓ−1(−|α|2)
Lℓ(−|α|2) . For small amplitude coherent

states, |α|2 ≪ 1, this tends to |α|2, but for higher values,
|α|2 ≫ 1, it tends to |α|2 + ℓ. This can be verified using
the Bayesian approach outlined in subsection IVA.

VI. CASE STUDIES

It remains to demonstrate the utility of the moment-
generating techniques described above. This we do by
presenting results for the subtraction or addition of pho-
tons from coherent and thermal states. We then address
the effects of the processes of optical attenuation or am-
plification based on the properties of binomial [54] and
negative binomial states [55].

A. Coherent states

The coherent states are right-eigenstates of the anni-
hilation operator and, as we have seen, this means that
the states ρ̂ℓ− produced from it by the subtraction of
ℓ photons are the same coherent states that we started
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FIG. 3: (color online) The photon number probability distri-
butions for (a) an initial coherent state with a mean photon
number of unity (black circles, dash-dotted line) (b) the state
produced by a single photon addition (blue circles, dotted
line) and (c) the state produced by two photon addition (red
circles, dashed line). Photon subtraction leaves the initial
coherent-state statistics unchanged.

with and our photon-subtraction process has no effect on
the statistics of a coherent state. This is not true for
photon addition, which markedly changes the statistics
of the state.

The natural way to derive the photon number prob-
ability distribution for a photon-added coherent state is
to use the expression Eq. (43) for our second moment
generating function. Following this procedure we find for
the one-photon added coherent state, the function

N 1+
|α〉 (λ) =

e−|α|2

(1 + λ)2(1 + |α|2) exp
( |α|2
1 + λ

)(

1 +
|α|2
1 + λ

)

,

(53)
from which we can readily extract the corresponding pho-
ton number probability distribution, either by construct-
ing the power series in (1 + λ)−1 or using Eq. (A21):

P 1+
|α〉 (n) =

e−|α|2

1 + |α|2
[ |α|2(n−1)

(n− 1)!
+ |α|2 |α|

2(n−2)

(n− 2)!

]

(54)

where factorials of negative numbers are to be understood
to take an infinite value. This probability distribution is a
combination of two shifted Poissonian distributions, one
shifted up by one and the other shifted up by two. For
small amplitude coherent states, the former dominates
and the mean photon number is increased by unity in the
process. For large amplitude coherent states, however,
the latter dominates and the mean photon number is
increased by two, in agreement with the behaviour noted
in the preceding section.

We can extend this technique to find the photon num-
ber probability distribution after any number of photon
additions, but present here only the example of two pho-
ton additions. After two successful photon addition pro-

cesses our moment generating function is

N 2+
|α〉 (λ) =

e−|α|2 exp
(

|α|2

1+λ

)

(1 + λ)3(|α|4 + 4|α|2 + 2)

×
(

2 +
4|α|2
1 + λ

+
|α|4

(1 + λ)2

)

. (55)

From this we can readily extract the photon number
probability distribution:

P 2+
|α〉 (n) =

e−|α|2

(|α|4 + 4|α|2 + 2)

[

2
|α|2(n−2)

(n− 2)!

+4|α|2 |α|
2(n−3)

(n− 3)!
+ |α|4 |α|

2(n−4))

(n− 4)!

]

,(56)

which comprises three shifted Poissonian distributions,
shifted up by 2, 3 and 4 respectively.

In Fig. 3 we plot the photon number probability distri-
butions for an initial coherent state with a mean photon
number of unity and the distributions that result from
successful one- and two-photon addition processes. The
absence of a probability for the vacuum state in the for-
mer and for both the vacuum and one-photon states in
the latter is readily apparent. It is also clear that adding
a photon has the effect of broadening the probability dis-
tribution, what may be seen as a consequence of the com-
bination of multiple shifted Poissonian distributions.

B. Thermal states

The moment generating functions for the photon-
subtracted and photon-added thermal states have the
simple forms given in Eqs. (34) and (48). From the simi-
larity in the forms of these it should come as no surprise
that the statistics of an ℓ-photon subtracted and an ℓ-
photon added thermal state are simply related. For this
reason it is sensible to treat them together.

The simplest way to proceed is to expand the two mo-
ment generating functions Mℓ−

th (µ) and N ℓ+
th (λ) as power

series in 1− µ and 1 + λ respectively. This gives

Mℓ−
th (µ) = (1 + µn̄)−(ℓ+1)

=

(

1

1 + n̄

)ℓ+1 ∞
∑

m=0

(

(1− µ)n̄

1 + n̄

)m (

ℓ+m
ℓ

)

,

(57)

which corresponds to a negative binomial probability dis-
tribution [40, 41, 46] for the photon number

P ℓ−
th (n) =

n̄n

(1 + n̄)n+ℓ+1

(

ℓ+ n
ℓ

)

. (58)

For the photon-added thermal states we proceed in the
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FIG. 4: (color online) The photon number probability distri-
butions for (a) an initial thermal state with a mean photon
number of unity (black circles, dash-dotted line) (b) the state
produced by a single photon subtraction (blue circles, dotted
line) and (c) the state produced by single photon addition
(red circles, dashed line).

same way but work with N (λ):

N ℓ+
th (λ) = [1 + λ(1 + n̄)]−(ℓ+1)

=

(

1

(1 + λ)(1 + n̄)

)ℓ+1

×
∞
∑

m=0

(

n̄

(1 + λ)(1 + n̄)

)m (

ℓ+m
ℓ

)

,

(59)

corresponding to another negative binomial distribution

P ℓ+
th (n) =

n̄(n−ℓ)

(1 + n̄)n+1

(

n
ℓ

)

(n ≥ ℓ). (60)

For n < ℓ the probability is zero, which reflects the fact
that ℓ photons have been added.
It is clear that the two photon probability distribu-

tions, Eqs. (58) and (60) are the same apart from a shift:
they have the same shape but the probability distribu-
tion for the photon-subtracted states starts at zero pho-
tons, but that for the photon-added states starts, nat-
urally, at n = ℓ. This behaviour is clear in Figs. 4
and 5, which show the effects on the statistics of adding
or subtracting one photon and of adding or subtracting
two photons, respectively. The similarity in the distribu-
tions means that the statistics of photon-subtracted and
photon-added thermal states are very similar. In partic-
ular, the mean photon number resulting from ℓ-photon
addition will exceed that resulting from ℓ-photon sub-
traction by precisely ℓ and the variance in the photon
number for the two states will be the same.

C. Binomial and negative binomial states

Among the most important and most studied quan-
tum optical processes are attenuation due to propagation
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0.4
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FIG. 5: (color online) The photon number probability distri-
butions for (a) an initial thermal state with a mean photon
number of unity (black circles, dash-dotted line) (b) the state
produced by a two photon subtraction (blue circles, dotted
line) and (c) the state produced by a two photon addition
(red circles, dashed line).

through a lossy medium, and amplification using an in-
verted population or a parametric amplifier [35, 56–58].
It should be emphasised that these processes are not sim-
ply related to the photon subtraction and addition pro-
cesses discussed here. Rather they are processes formed
by random combinations of successful and unsuccessful
subtraction or addition events.
The effect of an ideal (zero-temperature) attenuator is

to reduce the factorial moments by a factor depending
on the strength of the attenuation:

〈n̂(m)〉Att. = ηm〈n̂(m)〉, (61)

where 0 ≤ η < 1, with smaller values corresponding to
stronger attenuation. It follows immediately, on using
Eq. (A10), that the moment generating function for the
attenuated state has the same form as that for the pre-
attenuated state, but with µ replaced by ηµ [35]:

MAtt.(µ) = M(ηµ). (62)

Moment generating functions have been used to de-
scribe the statistics of optical amplifiers [59, 60]. Here we
consider only the ideal case of a fully-inverted medium
amplifier for which the mean photon number at the out-
put is related to that at the input by

〈n̂〉Amp. = G〈n̂〉+G− 1, (63)

where G ≥ 1 is the gain. More generally, we find that
negative factorial moments are related simply to those
for the input state

〈(n̂+ 1)(−m)〉Amp. = Gm〈(n̂+ 1)(−m)〉. (64)

It follows, using Eq. (A20), that the moment generating
function (of the second kind) has the same form as that
of the pre-amplified state, but with λ replaced by Gλ:

NAmp.(λ) = N (Gλ). (65)
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The simple expressions, Eqs. (62) and (65), enable us
to determine the effects of amplification or attenuation
on the statistics of our photon-added states or, indeed,
the effects of photon addition or subtraction on photo-
subtracted or photon-added states. As an illustration,
we consider photon subtraction or addition to an attenu-
ated or amplified photon number state. The attenuated
number state exhibits binomial statistics and the ampli-
fied number state has negative-binomial statistics. It is
convenient to investigate these using the binomial [54]
and negative binomial states [55].

1. Binomial states

If we send an M -photon state through a lossy medium,
in which the probability for any one photon to survive is
η, then we end up with an incoherent mixture of number
states in which the probability for n photons to remain
is

PAtt.
|M〉 (n) =

(

M
n

)

ηn(1− η)M−n. (66)

This mixed state has the same photon statistics as the
pure binomial state |η,M〉 [54]:

|η,M〉 =
M
∑

n=0

[(

M
n

)

ηn(1− η)M−n

]1/2

|n〉. (67)

There is no suggestion that this is the state produced
by attenuation, but merely that it has the same pho-
ton statistics. The link with attenuation is simply one
reason to consider the properties of the binomial states.
Some of the principal properties of the binomial states
are summarised in Appendix C.
The action of the annihilation operator on the binomial

state |η,M〉 produces another binomial state, but with
M reduced by unity, see Eq. (C3). It follows that the
factorial moments for an ℓ photon subtracted binomial
state are simply that for a binomial state withM reduced
by ℓ:

〈n̂(m)〉ℓ−|η,M〉 = 〈n̂(m)〉|η,M−ℓ〉

= ηm
(M − ℓ)!

(M −m− ℓ)!
. (68)

This result has implications for a situation in which both
photon addition and subtraction act to produce the final
state. In particular, the form of the final state does not
depend on the whether the subtraction occurs before,
after or during the attenuation. The only difference is
the success probability for the subtraction processes.

2. Negative binomial states

Ideal amplification, with gain G, of an initial M -
photon state produces an incoherent mixture of number

states in which the probability for n photons to be present
is given by the negative binomial distribution,

PAmp.
|M〉 (n) =

(

n
M

)

G−(M+1)(1−G−1)n−M . (69)

This mixed state has the same photon statistics as the
pure negative binomial state |η,−(M +1)〉 [55] with gain
G = η−1 [55]:

|η,−(M + 1)〉 =
∞
∑

n=M

[(

n
M

)

ηM+1(1− η)n−M

]1/2

|n〉.

(70)
As with attenuation and the binomial states, there is no
suggestion that this is the state produced by amplifica-
tion, but merely that it has the same photon statistics.
The link with amplification is simply one reason to con-
sider the properties of the negative binomial states, some
of the properties of which are presented in Appendix C.
The action of the creation operator on the negative

binomial state |η,−(M + 1)〉 produces another negative
binomial state, but with M increased by unity, as in
Eq. (C11). Hence the negative factorial moments for an
ℓ-photon added negative binomial state are those for a
negative binomial state with M increased by ℓ:

〈(n̂+ 1)(−m)〉ℓ−|η,−(M+1)〉 = 〈(n̂+ 1)(−m)〉|η,−(M+ℓ+1)〉

= η−m (M + ℓ+m)!

(M + ℓ)!
. (71)

We note that, as with the corresponding result for the
binomial states, this expression tells us that the form of
the state produced by a combination of amplification and
photon addition does not depend on the order in which
these processes are applied.

3. Agarwal’s negative binomial states

As noted above, Agarwal defined negative binomial
states somewhat differently, with a photon number prob-
ability distribution starting at n = 0 rather than at
n = M so that the photon number probability distri-
bution is [18]

PAgar(n) =

(

n+ s
n

)

βs+1(1− β)n. (72)

To see the connection with the states |η,−(M + 1)〉 let
us rewrite these probabilities in a different notation:

PAgar(n) =

(

n+M
M

)

ηM+1(1− η)n. (73)

It is clear from this that

PAgar(n) = P|η,−(M+1)〉(n+M). (74)
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The moment generating function of the second kind for
this state is

NAgar(λ) =
1

1 + λ

[

η(1 + λ)

λ+ η

]M+1

(75)

from which it is straightforward to calculate the negative
factorial moments. For the first of these we find

〈n̂+ 1〉 = − d

dλ
NAgar(λ)

∣

∣

∣

∣

λ=0

=
M + 1

η
−M. (76)

We note that this is M less than the corresponding value
for the state |η,−(M + 1)〉, as it should be.

VII. CONCLUSIONS

Experiments realising both photon subtraction and
photon addition have been shown to lead to novel quan-
tum states [1] and have been employed to test one of the
most fundamental ideas in quantum optics [2–4]. It has
been shown, moreover, that these processes can lead to,
at first sight, surprising phenomena in optical measure-
ments [9, 10]. These developments motivated the study
presented here. We have shown how the statistics of the
states produced by photon subtraction and photon addi-
tion can be derived directly and simply from those of the
original state. The natural tools for this are the moment
generating function M(µ), familiar to quantum optics
[35], and a second, closely related function N (λ), which
we introduce here.
We have presented a comprehensive study of the statis-

tics of photon subtracted and photon added states. We
have found, in particular, that photon subtraction will re-
sult in a increase in the mean photon number if the initial
state was super-Poissonian and that successful photon
addition will, except for an initial number state, increase
the mean photon number by more than the number of
photons added and that photon subtraction leaves the
mean photon number, and indeed the full probability dis-
tribution, unchanged. We have seen that the resolution
of these apparently paradoxical behaviours lies in the fact
that the processes are necessarily probabilistic and that
the photon number probability distribution for the inci-
dent light given that the subsequent process of subtrac-
tion or addition is successful is not the same as the initial
distribution. The explanation for these behaviours lies,
as is so often the case, in the correct application of Bayes’
theorem.
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Appendix A: Moment generating functions

1. M(µ)

Our first moment generating function is

M(µ) =

∞
∑

n=0

(1− µ)nP (n). (A1)

This function was once a commonly employed tool in
quantum optics. Its values and those of its derivatives
provide a wealth of information. In particular the deriva-
tives evaluated at µ = 1 give the photon-number proba-
bilities:

P (n) =
1

n!

(

− d

dµ

)n

M
∣

∣

∣

∣

µ=1

. (A2)

The derivatives evaluated at µ = 0 give the factorial mo-
ments:

〈n̂(m)〉 = 〈n̂(n̂− 1) · · · (n̂−m+ 1)〉

=

(

− d

dµ

)m

M(µ)

∣

∣

∣

∣

µ=0

. (A3)

The first few of these are

M(0) = 1

− d

dµ
M(0) = 〈n̂〉

d2

dµ2
M(0) = 〈n̂(n̂− 1)〉 = 〈:n̂2:〉, (A4)

where the dots : : denote normal ordering. More gener-
ally the factorial moment 〈n̂(m)〉 is the normal ordered
expectation value of the n̂m, so that 〈n̂(m)〉 = 〈:n̂m:〉 =
〈â†mâm〉.
We can also extract the moments of the photon number

by differentiation. To this end we introduce the change
of variable, x = ln(1− µ), so that

M =

∞
∑

n=0

enxP (n). (A5)

It follows that the required moments are simply deriva-
tives with respect to x evaluated at x = 0 (or µ = 1):

〈n̂m〉 =
(

d

dx

)m

M
∣

∣

∣

∣

x=0

. (A6)
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One additional property that we make use of is the fact
that M(2) reveals the probabilities that the number of
photons is either even or odd:

M(2) = P (even)− P (odd). (A7)

Part of the utility of the moment generating function
arises from the fact that its evolution can be readily cal-
culated in a number of situations including both linear
amplification and loss. It is also possible to evaluate it
directly from the quasi-probability phase-space distribu-
tions. In particular, it has a simple form in terms of the
Glauber-Sudarshan P function:

M(µ) =

∫

d2αe−µ|α|2P (α). (A8)

This follows directly from the operator ordering theorem

(1− µ)n̂ = :e−µn̂: . (A9)

If we take the expectation value of this operator we
find an expression for the moment generating function
in terms of the factorial moments:

M(µ) =

∞
∑

m=0

(−µ)m

m!
〈n̂(m)〉, (A10)

the Maclaurin series of which gives the factorial moments
as in Eq. (A3). It should be emphasised, however, that
the integral form Eq. (A8) may run into convergence
problems for some states and for certain values of µ.
When such difficulties arise, the original form Eq. (A1)
should be used.

2. N (λ)

Our second moment generating function is

N (λ) =

∞
∑

n=0

(1 + λ)−(n+1)P (n). (A11)

The first thing that should be noted is that this function
is simply related to the first moment generating function,

N (λ) =
1

1 + λ
M

(

λ

1 + λ

)

M(µ) =
1

1− µ
N

(

µ

1− µ

)

, (A12)

but it proves convenient to introduce it as a separate
function because of its distinctive properties. Principal
among these is the ease with which we can generate neg-
ative or ascending factorial moments:

〈(n̂+ 1)(−m)〉 = 〈(n̂+ 1)(n̂+ 2) · · · (n̂+m)〉, (A13)

where x(−m) denotes the ascending factorial [52] or
Pochhammer symbol [61, 62]

x(−m) = x(x+ 1) · · · (x+m− 1) (A14)

The negative factorial moments are simply the expecta-
tion values of the corresponding powers of the number
operator in antinormal order:

〈(n̂+ 1)(−m)〉 = 〈...n̂m.

.

.〉, (A15)

where the dots
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. denote antinormal order, that is

〈...n̂m.

.

.〉 = 〈âmâ†m〉. The negative factorial moments are
obtained from N (µ) by differentiation in an analogous
manner to the factorial moments from M(µ):

〈(n̂+ 1)(−m)〉 =
(

− d

dλ

)m

N (λ)

∣

∣

∣

∣

λ=0

. (A16)

We note also that the function N (λ) provides other in-
formation including the probability that the photon num-
ber is even or odd:

N (−2) = P (odd)− P (even) = −M(2). (A17)

It is also simply related to the Husimi or Q quasi-
probability distribution:

N (λ) =

∫

d2αe−λ|α|2Q(α), (A18)

which follows from the operator identity

(1 + λ)−(n̂+1) =
.

.

.e−λn̂.

.

. . (A19)

If we take the expectation value of this operator we
find an expression for the moment generating function
in terms of the negative factorial moments:

N (λ) =

∞
∑

m=0

(−λ)m

m!
〈(n̂+ 1)(−m)〉, (A20)

the Maclaurin series of which gives the negative facto-
rial moments as in Eq. (A16). As with our first mo-
ment generating function, the integral form given here,
in Eq. (A18), may have convergence problems for some
values of λ. In such cases the original form, Eq. (A11)
should be used.
Finally, we note that the photon number probability

distribution can be obtained from N (λ) by differentia-
tion:

P (n) = lim
λ→∞

(1 + λ)n+1

n!

(

− d

dλ

)n

(1+λ)nN (λ). (A21)

Appendix B: Derivation of an inequality

We require the inequality

〈(n̂+1)(n̂+1) · · · (n̂+ ℓ)〉 ≥ 〈(n̂+1) · · · (n̂+ ℓ)〉〈(n̂+1)〉
(B1)
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in the derivation of Eq. (44). To establish this let us
consider, first, a more general combination:

〈B(n̂)A(n̂)〉 − 〈B(n̂)〉〈A(n̂)〉
=

∑

n

P (n)B(n)A(n)

−
∑

n

∑

m

P (n)P (m)B(n)A(m)

=
∑

n

∑

m

P (n)P (m)B(n)A(n)

−
∑

n

∑

m

P (n)P (m)B(n)A(m)

=
1

2

∑

m

∑

n

P (n)P (m)[A(m)−A(n)]

×[B(m)−B(n)]. (B2)

For A(n) = n+1 and B(n) = (n+1) · · · (n+ ℓ) the com-
binations A(m)−A(n) and B(m)−B(n) are either both
positive or both negative for all m 6= n and hence the
terms in the summation are all greater than or equal to
zero and the inequality Eq. (B1) follows. Note that for
this reason the equality in Eq. (B1) holds if and only if
P (n) = δn,N for some N corresponding to photon num-
ber state.

Appendix C: Binomial and negative binomial states

The binomial and negative binomial states are pure
states for which the photon number probabilities corre-
spond to the binomial and negative binomial distribu-
tions respectively. We summarise here some of the more
important properties of these states.

1. Binomial states

The binomial states are defined to be pure states with
a photon number probability distribution that is of bino-
mial form [54]:

|η,M〉 =
M
∑

n=0

βM
n |n〉, (C1)

where

βM
n =

[(

M
n

)

ηn(1− η)M−n

]1/2

. (C2)

Here M is a non-negative integer and η can take any
value between 0 and 1. The action of the annihilation
operator on this state produces another binomial state,
one with M reduced by unity:

â|η,M〉 =
√

ηM |η,M − 1〉. (C3)

It follows that the mean photon number for this state is
ηM and, more generally, the factorial moments for this
state are

〈n̂(m)〉 = ηm
M !

(M −m)!
. (C4)

This means, in particular, that the states exhibit sub-
Poissionian statistics, with a normally-ordered photon
number variance that is negative:

: ∆n2 := 〈n̂(2)〉 − 〈n̂〉2 = −η2M. (C5)

If we generalise the states to include a phase,

|η,M, θ〉 =
M
∑

n=0

βM
n einθ|n〉, (C6)

then we have an over-complete set of states. To see this
we need only note that the states are, in general, not
orthogonal but can be used to represent the identity op-
erator:

1

2π

∫ 2π

0

dθ η

∞
∑

M=0

|η,M, θ〉〈η,M, θ|

=

∞
∑

M=0

M
∑

n=0

η
(

βM
n

)2 |n〉〈n|

=

∞
∑

n=0

|n〉〈n|

= Î. (C7)

For example, the mixed state produced by attenuating
the photon number state |M〉 has the density operator

ρ̂Att.
|M〉 =

1

2π

∫ 2π

0

dθ|η,M, θ〉〈η,M, θ|. (C8)

Further properties of this state may be found in [54].

2. Negative binomial states

The negative binomial states are defined to be pure
states with a photon number probability distribution
that is of negative binomial form [55]:

|η,−(M + 1)〉 =
∞
∑

n=M

β−(M+1)
n |n〉, (C9)

where

β−(M+1)
n =

[(

n
M

)

ηM+1(1− η)n−M

]1/2

. (C10)

Here M is again a non-negative integer and η can take
any value between 0 and 1. For these states it is the
action of the creation operator that is simple:

â†|η,−(M + 1)〉 =
√

M + 1

η
|η,−(M + 2)〉. (C11)
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It follows that the mean photon number for this state
is (M + 1)/η − 1 and, more generally, that the negative
factorial moments for this state have the form

〈(n̂+ 1)(−m)〉 = η−m (M +m)!

M !
, (C12)

so that the antinormally ordered variance in the photon
number is

:̇∆n2 :̇ = 〈(n̂+ 1)(−2)〉 − 〈(n̂+ 1)〉2 =
M + 1

η2
. (C13)

As with the binomial states, we can generalise the neg-
ative binomial states by including a phase

|η,−(M + 1), θ〉 =
M
∑

n=0

β−(M+1)
n einθ|n〉, (C14)

with the resulting set of states being overcomplete so that
they form a resolution of the identity:

1

2π

∫ 2π

0

dθ η−1

∞
∑

M=0

|η,−(M + 1), θ〉〈η,−(M + 1), θ|

=

∞
∑

M=0

∞
∑

n=M

η−1
(

β−(M+1)
n

)2

|n〉〈n|

=

∞
∑

n=0

|n〉〈n|

= Î. (C15)

In particular, the mixed state produced by amplifying
the photon number state |M〉 with a gain G = η−1 has
the density operator

ρ̂Amp.
|M〉 =

1

2π

∫ 2π

0

dθ|η,−(M + 1), θ〉〈η,−(M + 1), θ|.
(C16)

Further properties of this state may be found in [55].
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