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Abstract—Transformers are critical assets for the reliable
operation of the power grid. Transformers may fail in service
if monitoring models do not identify degraded conditions in
time. Dissolved gas analysis (DGA) focuses on the examination
of dissolved gasses in transformer oil to diagnose the state of
a transformer. Fusion of black-box classifiers, also known as
an ensemble of diagnostics models, have been used to improve
the accuracy of diagnostics models across many fields. When
independent classifiers diagnose the same fault, this method
can increase the veracity of the diagnostics. However, if these
methods give conflicting results, it is not always clear which
model is most accurate due to their black-box nature. In this
context, the use of white-box models can help resolve conflicted
samples effectively by incorporating uncertainty information
and improve the classification accuracy. This paper presents
an uncertainty-aware fusion method to combine black-box and
white-box diagnostics methods. The effectiveness of the proposed
approach is validated using two publicly available DGA datasets.

Index Terms—Condition monitoring, transformer diagnosis,
ensembles, classifiers, uncertainty.

I. INTRODUCTION

TRANSFORMERS are critical assets in the power grid.

The unexpected failure of a power transformer can lead to

different consequences ranging from a lack of export capability

to catastrophic failure [1]. Condition monitoring techniques

examine the health of the system under study periodically

with the aim to identify anomalies and avoid unexpected

failures, e.g. [2], [3], [4]. The different components of a

transformer can be monitored through different parameters [5].

This paper focuses on transformer insulation health assessment

through dissolved gas analysis (DGA) [6]. The wide industrial

acceptance and extended implementation of DGA monitors is

the rationale and motivation to focus on DGA.

Operational and fault events generate gases which are

dissolved in the oil that circulates through a transformer

for cooling and insulation purposes. DGA is a mature and

industry-standard method that focuses on the study of these

gases [6]. The effective application of DGA enables timely

diagnostics of possible insulation problems.
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There are different industry-accepted classical DGA meth-

ods including Duval’s triangle, Roger’s ratios or Doernen-

burg’s ratios [6]. These techniques classify transformer faults

based on the predefined range of specific fault gas ratios.

However, their accuracy is limited because they assume crisp

decision bounds [7]. This leads to a decreased diagnostics

accuracy and conflicting diagnostics outcomes among methods

which do not help engineers in the decision-making process.

So as to improve the classification accuracy a number of black-

box (BB) machine learning models have been proposed.

Comparisons among different DGA models are represen-

tative only when they are analysed in the same conditions.

Focusing on the methods tested on the publicly available IEC

TC 10 dataset [8], Mirowski and LeCun used k-nearest neigh-

bor (kNN), support vector machine (SVM) and artificial neural

network (ANN) models [9]. Wang et al. used deep learning

methods through a continuous sparse autoencoder (CSA) [10].

The combined use of optimization and classification models

has also been explored through gene programming (GP) and

SVM, ANN and kNN models [11] or genetic algorithms (GA)

and SVM models [12]. Table I reports the main characteristics.

TABLE I
MACHINE LEARNING MODELS TESTED ON THE IEC TC 10 DATASET.
Ref Machine learning model Type Train/Test Mean accuracy

[9] kNN, SVM, ANN Binary 134/33 91%, 90%, 89%

[10] CSA Multiclass 125/9 93.6%

[11] GP + kNN Multiclass 830/228 92%

[12] GA + SVM Multiclass 134/33 84%

The type of the classification problem has implications

for decision-making purposes. Binary classifiers focus on

identifying healthy or faulty samples, but they do not give

more information about the type of fault present. Additionally,

the number of training and testing samples directly influences

the classification accuracy. The more samples that are used for

training the greater will be the accuracy (e.g. [10]). However,

the generalization of the diagnostics model is penalised when

the testing set is much smaller than the training set.

There have been more DGA classification models tested on

different proprietary datasets so as to improve the accuracy

of classical methods such as fuzzy logic based DGA method

[13], adaptive neuro fuzzy inference system (ANFIS) which

combines ANN with fuzzy logic [14], SVM with resampling

and boosting [15], differential evolution (DE) combined with

extreme learning machines [16], or relevance vector machines

combined with ANFIS [17].
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Although the accuracy of these BB models tends to be high

(∼90%), there is no explainability of the results, i.e. they rep-

resent purely numerical connections and lack an interpretation

of physical significance for an engineer. Additionally they do

not integrate the uncertainty associated with the diagnostics

outcome and assign either 100% belief to a single health state

or a deterministic probability value. Therefore these techniques

may be less desirable for engineering usage because there is

no further information about the confidence in the result.

It is possible to specify subjective and imprecise information

through fuzzy logic. However, fuzzy rules need to be specified

manually based on experience and their diagnosis outcome

is not a probability density function (PDF) which integrates

uncertainty information. The work introduced in this paper fo-

cuses on data-driven Bayesian methods to determine decision

bounds and deal with diagnostics uncertainties. Some fuzzy

logic models have been designed to identify multiple fault

conditions [13]. This work is focused on the identification of

single fault conditions and multiple fault conditions will be

considered as part of future work (see Section V).

Optimization methods along with BB models (GP in [11],

GA in [12], DE in [16]) can increase the accuracy of the

diagnosis model by selecting gas samples that minimize the

error, or resampling the data space to generate more samples.

Resampling methods generate synthetic data samples by an-

alyzing the statistical properties of the inspection data (e.g,

[11], [15]). However, this process may impact the adoption of

these methods because with the extra data generation process

there is a risk of losing information when undersampling and

overfitting when oversampling [18]. For instance, it may have

been the case that during the resampling process copies of the

same data point may end up both in the training and testing set.

So as to avoid any type of dependencies between the training

and testing datasets this work only considers inspection data.

Ensembles of classifiers have been used to avoid the po-

tential bias and risk of errors of individual classifiers and

improve the diagnostics accuracy and prediction stability [19].

Ensemble models require post-processing the outcome of

the source models so as to generate a consistent prediction.

However, most of the transformer classification models have

been focused on single classification algorithms and there are

few works focused on ensembles, such as the fusion model in

[20] which combines classical Roger, Duval, Doernenburg and

IEC methods through a gating network, the hybrid approach in

[21] which combines fuzzy logic with ANN through Dempster

Shafer’s (DS) theory, the multi-ANN approach in [22] which

combines ANN models through majority voting, or the sequen-

tial combination of multiple gene expression programming

models through an if-else process [23].

Ensemble strategies increase the veracity of the diagnostics

when independent classifiers diagnose the same fault. Classical

DGA and machine learning models can be combined through

different methods (e.g. majority voting, weighted average,

gating networks, DS). However, there is no way to further

interpret the diagnostic outcome of these methods due to

lack of uncertainty information associated with their outcome.

Therefore, if these methods give conflicting results, it is not

clear which model is most accurate, and in this situation, the

engineer will not know which diagnostic conclusion to trust.

Accordingly, due to the lack of uncertainty modelling of BB

and classical DGA models, the application of ensembles in

the field has been limited. This research addresses this and

improves the selection of the correct diagnostic conclusion.

From an engineering viewpoint, the disagreements among

independent classifiers are the most important situations that

need to be resolved effectively because conflicting diagnoses

may imply very different maintenance actions. Therefore, it is

critical to analyse and quantify the strength of classifiers in the

presence of conflicting data. Uncertainty quantification is very

important for condition monitoring systems [24]. For instance,

assume that a model has been trained to classify certain faults.

So long as the test data is comprised of faults which are

similar to the trained model, it should return a prediction with

high confidence. However, if the model is tested on an unseen

class of fault, the model should be able to quantify this with

uncertainty levels, which can convey information about the

confidence of the diagnosis of the model. This information

is completely lost with BB models. Conversely, white-box

(WB) models capture expert knowledge either as a causal

model or through first-principle models. They generate the

uncertainty associated with the decision-making process by

quantifying the PDF of the likelihood of different diagnostics

states. This function represents the strength of the model’s

diagnosis, i.e. the wider the variance, the lesser the confidence

in the diagnostics outcome and vice-versa.

In this context, it is possible to combine WB and BB models

to resolve conflicting samples effectively, assist the engineer

in the decision-making process, and improve the diagnostics

accuracy. To the best of the authors’ knowledge this is the

first approach which complements the accuracy of BB models

with the uncertainty information of WB models for improved

transformer diagnostics. Particularly for transformer DGA the

use of ensembles has been limited. Therefore, the proposed

approach aims to cover both gaps by proposing a novel

ensemble classification framework and improving the accuracy

of DGA diagnosis. The main contribution of this paper is

thus the proposal of a novel probabilistic framework for

uncertainty-aware fusion of classifiers to assist engineers in the

decision-making process. The effectiveness of the framework

is validated using publicly available datasets.

The rest of this paper is organised as follows. Section

II introduces the datasets. Section III defines the proposed

approach. Section IV presents results and finally, Section V

draws conclusions.

II. INTRODUCTION TO THE DGA DATASETS

The proposed approach is tested and validated using two real

datasets. The IEC TC 10 is a standard benchmark dataset used

to validate DGA methods [8]. It contains sets of seven dif-

ferent gases: ethane (C2H6), ethylene (C2H4), hydrogen (H2),

methane (CH4), acetylene (C2H2), carbon monoxide (CO), and

carbon dioxide (CO2) sampled from different transformers,

and labelled with their corresponding fault mode. Faults are

classified into Normal degradation samples, Thermal faults

(T<700◦C and T>700◦C), Arc faults (low and high energy

discharges), and partial discharge (PD) faults.
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In order to generate this database, faulty equipment was

removed from service, visually inspected by experienced engi-

neers, and the fault clearly identified. The dataset also contains

typical normal degradation values observed in several tens of

thousands of transformers. In total, the dataset is comprised of

167 samples distributed as follows: 5.3% PD failure samples,

44.4% arcing failure samples, 20.4% thermal failure samples

and 29.9% normal degradation samples.

In order to further validate the method another dataset

is created comprised of C2H6, C2H4, H2, CH4 and C2H2

gas samples. This dataset is created by integrating datasets

presented in [8], [25] [26] [27] and it is named Extended.

In total it is comprised of 302 data samples: 3.3% PD, 40.4%

arcing, 33.4% thermal and 22.9% normal degradation samples.

This work focuses on unbalanced classification problems

without modifying the inspection data. So as to obtain statisti-

cally significant results Monte Carlo cross-validation (MCCV)

also known as repeated random subsampling is used [28].

III. UNCERTAINTY-AWARE ENSEMBLE FRAMEWORK

The proposed framework focuses on the diagnostics of

transformer faults through a supervised learning process using

a dataset, DGA, comprised of n samples,

DGA = {xi, yi}ni=1 (1)

where the pair {xi, yi} contains the data related to the i-th

observation, xi ∈ X , yi ∈ Y . The matrix X ∈ R
n×p contains

the information X = {x1, . . . , xn} for p fault gases, and the

vector Y ∈ R
n×1 contains the information about the health

state of the transformer. In a binary classification problem the

set of possible states of yi are limited to normal and fault

states. However, in this case there are multiple states and

the transformer state can be classified as: normal degradation,

thermal fault, arc fault, and PD. Therefore, each output yi can
take the following values: yi = {normal, thermal, arc, PD}.
Multiclass classification problems are more challenging than

binary classification problems, but they also generate more

useful information for maintenance planning.

Fig. 1 shows the proposed generic classification frame-

work. The ensemble classifier takes as input the deterministic

probability values of each classifier (mclassifieri ) and the

uncertainty parameters inferred from the WB model (mu).

BlackBox1

BlackBox2

class
A B C

prob.

WhiteBox
rv

prob. A
B
C

DGA

data

Uncertainty Parameters

Ensemble of

Diagnostics

Models

mBB1

mBB2

mWB mu

i-th

sample

i-th

sample

Fig. 1. Proposed uncertainty-aware ensemble diagnostics framework.

ANN and SVM models will be used as BB classification

models as they have shown a high accuracy on DGA data

(Table I). For WB modelling Gaussian Bayesian networks

(GBNs) will be used because they are able to capture the

causality among random variables and infer uncertainty infor-

mation [29]. Algorithm 1 defines the implemented algorithm.

Transformer diagnostic information does not reside in abso-

lute gas values (expressed in parts per million units, ppm) but

instead in the order of magnitude. Therefore the dataset is log-

normalized [9]. Firstly, the logarithm of every gas sample for

all fault gases xi ∈ X is taken. Then each fault gas variable in

the dataset is scaled to mean zero and standard deviation one.

This is done for each fault gas {1, . . . , p} by subtracting the

mean value and dividing by the standard deviation, for each

sample of the fault gas variable {1, . . . , n} (cf. line 2).

MCCV is used for the quantification of the results [28].

For each trial i (cf. line 3), the log-normalized DGA

data is randomly shuffled and then it is divided into 80%

and 20% for training and testing (cf. lines 4-5). Then

independent classifiers and ensemble models are trained and

tested (cf. lines 6-12). The classification results of each

trial i for each of the classifiers (−→m) are evaluated with

the accuracy metric (cf. line 14), and after repeating this

process N times, the accuracy statistics are quantified (cf.

lines 18-19) [28]:

â =
1

N

N
∑

i=1

acci sdâ =

√

√

√

√

1

N

N
∑

i=1

(acci − â)2 (2)

The repeated random subsampling process trains and tests N

times all the models ensuring the generalization of the results.

Algorithm 1 Uncertainty-aware ensemble framework

1: i=1; m acc=∅; ⊲ initialize variables

2: norm data=lognorm(DGA); ⊲ log-normalize DGA data

3: while i < N do

4: rnd dga=shuffle(norm data); ⊲ randomize data

5: [rnd dgatrain, rnd dgatest]=split TrainTest(rnd dga);

6: mSV M=SVM(rnd dgatrain, rnd dgatest);
7: mANN=ANN(rnd dgatrain, rnd dgatest);
8: PDFBN=GBN(rnd dgatrain, rnd dgatest);
9: [mBN , mu]=Parameterization(PDFBN);

10: mDS=DS(mBN , mANN , mSVM );

11: mSt=Stacking(mBN , mANN , mSVM );

12: mMDS=MDS(mBN , mANN , mSVM , mu);

13:
−→m = {mSVM ,mANN ,mBN ,mDS ,mSt,mMDS}

14:
−→acc = accuracy(−→m) ⊲ accuracy for all the models

15: m acc[i, ] = −→acc ⊲ save i-th trial accuracy results

16: i = i+ 1 ⊲ increase trial counter

17: for each mclassifierj ∈ −→m do ⊲ for each classifier

18: âj=mean(m acc[ , mclassifierj ])

19: sdâj
=sd(m acc[ , mclassifierj ])

Firstly Algorithm 1 trains and tests independent classifiers

as follows (lines 4-9):

• Line 4: for each trial i, the log-normalized dataset

norm data is randomly shuffled.

• Line 5: the randomly shuffled dataset rnd dga is di-

vided into training and testing sets.
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• Lines 6-7: SVM and ANN classifiers are trained

by learning their corresponding hyperparameters. Subse-

quently, using the test data, their diagnostics outputs are

obtained in matrix form comprised of p columns (one for

each class) and |test| rows. SVM and ANN classifiers

generate a matrix (mSVM and mANN , respectively) of

deterministic probability estimates of size |test| × p,
where each cell specifies the diagnostics probability for

each possible health state.

• Line 8: The GBN classifier is trained and tested. In

the training process its hyperparameters are learned. In

the testing process the PDF information is generated,

PDFBN , which includes PDFs for each health state for

each test sample, i.e. a matrix of PDFs of size |test|× p.
• Line 9: the uncertainty information is inferred from the

PDFBN outcome of the GBN model resulting in the

maximum likelihood value matrix, mBN , and the matrix

of the selected uncertainty metric, mu, such as standard

deviation, entropy or kurtosis.

The test matrix (mSVM , mANN , mBN ) can be directly

used for diagnostics by assigning the most likely status among

all possible faults. However, when the different classifiers

diagnose different faults with different probabilities for the

same gas samples, the decision-making process is complex.

There are some direct solutions that can be applied, e.g.

weight the training accuracy of the classifiers and then weight

test data accordingly. This strategy assumes that the training

data mirrors the test data. Therefore, the performance of this

method is directly linked to the similarity of training and

testing data, which impacts negatively on the generalization of

the method. Algorithm 1 operates as follows with the adopted

fusion strategies that are able to combine different classifiers:

• Lines 10-11: evaluate Dempster Shafer’s theory and

Stacking fusion strategies using the outcome of ANN and

SVM models along with the maximum likelihood matrix

inferred from the GBN model.

• Line 12: evaluate the modified Dempster Shafer’s the-

ory using the outcome of ANN and SVM models along

with the maximum likelihood matrix inferred from the

GBN model and the associated uncertainty information.

• Lines 13-16: extract and save performance metrics

for the i-th trial results and prepare for the next iteration.

• Lines 17-19: extract performance statistics for all the

classifiers using all the N results saved in Line 15.

Subsection III-A to Subsection III-C define training and

testing strategies for ANN, SVM and GBN and Subsections

III-D and III-E present the fusion methods.

A. Artificial Neural Networks

Artificial neural networks (ANN) are BB models widely

used for classification and regression [30]. The multilayer

perceptron (MLP) feedforward model was used in this work.

The MLP is a three-layer network (input, hidden, output)

comprised of fully connected neurons. Each neuron performs

a weighted sum of its inputs and passes the results through

an activation function. All the designed ANN models use a

sigmoid activation function for hidden and output nodes.

Model training is performed using a back-propagation al-

gorithm. The goal is to learn the neuron weights so as to

generate the transformer health state (network output) from

DGA values (sample input), which minimizes the error with

respect to the target transformer health state. Input and hidden

layers may also have a bias unit analogous to intercept terms

in a regression model. As part of the MCCV process, a number

of networks were trained for each trial, using different gases

and their ratios at the input layer and varying the number of

hidden nodes. For each trial, the experiments were repeated 10

times so as to deal with the stochastic nature of ANN models

[30]. Of the trained networks for each trial, the one with the

highest mean accuracy was selected. For most of the trials best

results were obtained with 20 hidden nodes with the inputs in

Fig. 2, i.e. C2H6, C2H4, H2, CH4 and C2H2.

Fig. 2. ANN configuration.

Fig. 2 also shows the strength of the neuron weights with a

black line for higher weights and a grey line for lower weights.

Model training was performed using the R nnet library [31].

B. Support Vector Machines

The SVM maps input data into a space using a kernel

function [32]. The SVM learns the boundary separating one

transformer health state from another with maximum distance.

The kernel function aims to translate a problem that is nonlin-

early separable into a feature space, which is linearly separable

by a hyperplane. The hyperplane represents the transformer

health state classification boundary.

The SVM is parametrized through the choice of kernel

function. For a nonlinear problem, such as the transformer

health state estimation, the RBF kernel is recommended [32]:

k(x, x′) = exp(−γ||x − x′||2), where γ is the RBF width,

x and x′ are training and testing data samples, and ||d||
is the Euclidean norm. The SVM solves an optimization

problem maximizing the distance from the transformer health

classification hyperplane to the nearest DGA training point.

Generally the dataset is not linearly separable and slack

variables are used to allow wrongly classified samples. SVM

penalizes the objective function with a cost variable c, which
is a tradeoff between penalizing slack variables and obtaining

a large margin for the SVM.
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Therefore the SVM training consists of calculating the

hyperparameters c and γ. Grid search was used to find the opti-
mal parameters of c and γ from a grid of values. Note also that

there are other optimization algorithms for parameter selection,

e.g. Bayesian optimization based on Gaussian processes [33].

Namely, for each trial model training was performed using the

R e1071 package [34] and grid search was used to optimize

c and γ within c = [2−10, 210] and γ = [22, 29]. A number of

configurations were trained using all different gases and their

ratios as input to the SVM. Of the trained SVMs, the one

with the highest accuracy from the test data was selected as

the choice for that output, which matches with the input data

used for the ANN model (see Fig. 2).

C. Gaussian Bayesian Networks

Bayesian networks (BN) [29] are statistical models that

represent probabilistic dependencies among random variables

(RVs). In a BN model, a directed acyclic graph represents

graphically the causal relation between RVs. Statistically,

dependencies are quantified through conditional probabilities.

BNs are a compact representation of joint probability dis-

tributions. In probability theory, the chain rule permits the

calculation of any member of the joint distribution of a set of

RVs using conditional probabilities. When a BN is comprised

of continuous RVs a widely implemented approach adopted

in this paper is the use of Gaussian BNs (GBN) [29]. In a

GBN the conditional distributions are defined through linear

Gaussian distributions and local distributions are modelled

through Normal RVs, whose PDF is defined as:

f(x|µ, σ2) =
1

σ
√
2π

exp(−1

2
(
x − µ

σ
)2) (3)

where x is the variable under study, i.e. transformer health

state, µ is the mean, and σ2 is the variance, often denoted as

x ∼ N(µ, σ2).
Local distributions are linked through linear models in

which the parents, i.e. DGA samples, play the role of explana-

tory variables. Each node xi which represents one specific

health state of the transformer is regressed over its parent

nodes which are explanatory DGA samples. Assuming that the

parents of xi are {u1, . . . , uk}, then the conditional probability
of each node can be expressed as p(xi|u1, . . . , uk) ∼ N(β0+
β1u1 + . . .+ βkuk;σ

2), that is:

p(xi|u1, . . . , uk) =
1

σ
√
2π

exp(−1

2
(
x− (β0 + β1u1 + . . .+ βkuk)

σ
)2)

(4)

where β0 is the intercept and {β1, . . . , βk} are linear regres-

sion coefficients for the parent nodes {u1, . . . uk}.
So as to select the input gas variables the Normality of

the fault gases was analysed and those gases which follow

a Normal distribution were selected so as to match with

the underlying probabilistic model and maximize the inferred

information. Fig. 3 shows the GBN model comprised of nodes

and arrows, where the origin of the arrow is the parent node

and the destination is its child node, e.g. the parent nodes of

PD are C2H6, C2H2, CH4, C2H4 and H2.

C2H2

CH4

C2H4

C2H6

H2

Normal

Thermal

PD

Arc

Fig. 3. GBN configuration.

The parameter estimation for GBN models is based on

the maximum likelihood (ML) algorithm. The ML expression

is derived from the linear Gaussian density function and

the closed-form solution can be obtained (see [29] for more

details). This process is used to estimate the parameters for

each node in the BN model, e.g. for the PD node (Fig. 3):

P (PD|C2H6, C2H2, CH4, C2H4, H2) ∼ N (β0+β1C2H6 +
β2C2H2 + β3CH4 + β4C2H4 + β5H2; σ

2).

After learning the parameters, the estimation of the con-

ditional probability of nodes, i.e. probability of a specific

transformer health state given input DGA data, is based

on inferences using the likelihood weighting algorithm [29].

When applied to the DGA dataset, for each of the analyzed

transformer health state the outcome of the inference is a

set of random samples from the conditional distribution of

the transformer health state node given the test DGA sam-

ples. From the random samples density values are calculated

through Kernel density estimates [35]. The GBN model was

implemented using the bnlearn R package [36].

D. Ensemble of diagnostics models

Research suggests that combining multiple classifiers can

improve individual classifiers [19]. There are a number of

different methods for creating ensembles.

1) Dempster Shafer’s (DS) theory: DS builds beliefs of the

true state of a process from distinct pieces of evidence [21].

Assuming a set of faults F , where the i-th fault is denoted

fi, the set of possible states is called frame of discernment:

F = {f1, . . . , fi, . . . , f|F |}. Pieces of evidence are formulated

as mass functions, m : 2F 7−→ R, satisfying: m(fi) ≥ 0,
m(∅) = 0, and

∑

fi⊆F m(fi) = 1.
The combined probability mass for the i-th fault, fi, of two

classifiers, denoted c1 and c2, is defined as

mc1c2(fi) =
1

1−K

∑

A,B⊆F
A∩B=fi

mc1(A)mc2(B) (5)

∀fi ⊆ F , fi 6= ∅, where K is the degree of conflict between

two mass functions:

K =
∑

A,B⊆F
A∩B=∅

mc1(A)mc2(B) (6)

DS theory has been successfully applied to combine inde-

pendent classifiers (Section I). However, one of its criticisms

is the inability to handle some conflicting situations [21].
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2) Stacking: The stacking method is based on the meta-

learner concept in which a stacking model learns which

classifiers are reliable and which are not [19]. Instead of taking

the original input variables, a stacked model takes as input

the probabilistic outcomes generated from all the independent

classifiers. These models are trained first and then tested with

both training and testing data. The training and testing of a

stacked model is based on the training and testing outcomes of

the independent classifiers. Fig. 4 shows the stacking concept.

Fig. 4. Stacking configuration.

ANN and SVM models generate a deterministic probability

value for each health state. The GBN model generates a PDF

for each health state, and the maximum likelihood of each

PDF is used in the stacking configuration.

As opposed to DS theory, in the stacking configuration a

learning model is trained. An ANN model has been used

in this work as a stacking model to aggregate independent

classifiers. As part of the MCCV process, for each trial, a

number of stacking models are trained varying the number of

hidden nodes to select the one with the best performance. In

most of the cases the best ANN model is comprised of 10

hidden nodes. The activation function is the sigmoid function.

E. Reasoning under uncertainty with ensemble models

The methods outlined in Subsection III-D have been used

for the fusion of black-box classifiers. However, they ignore

any uncertainty information which may be generated by the

classifiers. There is potential for this information to improve

the performance of the ensemble, especially on conflicting

samples.

Fixsen and Mahlen proposed the Modified DS (MDS)

framework by merging DS theory and Bayesian approaches

[37]. In this work the MDS framework is adapted for the

particular case of evidence combination of different faults

to integrate the uncertainty information generated by WB

probabilistic classifiers.

Namely, assuming a set of faults F with a prior probability

πi for each fault (1 ≤ i ≤ |F|), the fusion of different clas-

sifiers for each fault taking into account the prior information

is calculated as follows:

mc1c2(fi|−→π ) =
mc1(fi).mc2(fi).

∏|F|\fi
j=1

πj

∑|F|
k=1

(mc1(fk).mc2(fk)
∏|F|\fk

l=1
πl)

(7)

where |F| is the cardinality of the set of faults and −→π is the

set of priors for each fault −→π = {π1, π2, . . . , π|F |}.
The strength of the proposed reasoning framework is high-

lighted with conflicting data samples which are incorrectly

classified by independent classifiers. In this situation, the prior

information is critical to weight the probabilities and decide

which is the real cause of the fault. For example, for two faults

f1 and f2, and two classifiers c1 and c2, (7) reduces to

mc1c2 (f1|−→π ) =
mc1 (f1).mc2 (f1).πf2

mc1 (f1).mc2 (f1)πf2 +mc1(f2).mc2 (f2)πf1

(8)

In the extreme case that both classifiers give the same

probabilistic output for both faults, (8) reduces to

mc1c2(f1|−→π ) =
1

1 + πf1/πf2

(9)

From (9) one can observe that the probability mass of fault

f1 is dependent on the ratio between πf2 and πf1 . Namely,

the greater the uncertainty of f2 with respect to f1, the greater
the assigned probability mass to f1 and the lower the assigned

probability mass to f2. Usually the probability mass values

of different faults and different classifiers are not equal, but

the same reasoning process is generally applicable for all

cases to reason under uncertainty. Therefore (7) creates a

suitable framework to integrate uncertainty information in the

ensemble of diagnostics classifiers.

The key assumption of this method is that the fusion

method accepts a common prior for different mass values.

That is, the uncertainty information inferred from a single

classification method will be used to influence the combi-

nation of different classifiers. Therefore, the generation of

representative uncertainty information will be critical. In the

set of classifiers analyzed in this work, only the GBN model is

able to generate uncertainty information from the classification

output. Therefore, uncertainty parameters will be extracted

from the density functions inferred by the GBN model so as

to reason under uncertainty.

1) Uncertainty parameters: There are different metrics

that can be used in order to extract uncertainty information

from density functions such as standard deviation, kurtosis or

entropy. Depending on the metric, the effect of the prior on the

final accuracy is different. Best results were obtained with the

standard deviation and weighted log-likelihood, wll, defined
as follows:

wll = − 1

M

M
∑

i=1

(wi.pi + log(wi.pi)) (10)

where M denotes the total number of Kernel density samples,

pi is the diagnosis probability of the fault i, and wi is the

weight assigned to this probability.

IV. CASE STUDIES

The proposed approach is tested on the datasets introduced

in Section II. So as to validate and generalize the result all the

models and ensemble strategies have been examined N=103

times using the MCCV strategy. For each trial, firstly the

dataset is shuffled, then it is divided into training and testing

sets, and finally training and testing steps are completed. After

randomly shuffling the dataset, different training and testing

data proportions and data split strategies have been tested (cf.

Algorithm 1, line 5):
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• 80%-20% global: all the dataset is divided into 80% and

20% for training and testing, respectively. In the testing

set there is always at least one sample of each state.

• 80%-20% class-by-class: each health state is divided into

80% and 20% for training and testing, respectively.

• 70%-30% class-by-class: each health state is divided into

70% and 30% for training and testing, respectively.

The 80%-20% global strategy reflects closely the real trans-

former operation. However, this strategy affects the number of

samples for each health state in the testing set. The class-by-

class strategies ensure the same amount of randomly sampled

data samples per each group for each trial.

Generally there are four possible outcomes for a classifier.

True positive (TP) when there is a fault and it is correctly

diagnosed, false positive (FP) when there is no fault, but the

classifier diagnoses a fault, true negative (TN) when there

is no fault and the classifier does not diagnose any fault,

and false negative (FN) when there is a fault and it is not

correctly diagnosed. In addition to the accuracy indicator (cf.

Algorithm 1, line 14), which quantifies the percentage of

correct predictions over the total number of predictions, four

complementary classification metrics have been analysed.

• Positive preditive value (PPV): PPV = TP
TP+FP

• Negative preditive value (NPV): NPV = TN
TN+FN

• False Positive rate (FPR): FPR = FP
FP+TN

• F1 score (F1): F1 = 2TP
2TP+FP+FN

PPV and NPV quantify respectively the proportions of pos-

itive and negative results in diagnostics tests. PPV is different

from accuracy because it considers only TP and FP events.

The PPV is also known as precision and its complement is the

false discovery rate. The complement of the NPV is the false

omission rate. The complement of the FPR is the specificity.

The F1 score is the harmonic mean of PPV and recall, which

is commonly used for unbalanced classification problems.

For multiclass classification problems, the classifier out-

comes and metrics are counted per class, and then they are

averaged according to the prevalence of each class.

A number of independent classifiers and ensemble strategies

have been examined:

#1 Gaussian Bayesian Networks.

#2 Support Vector Machines.

#3 Artificial Neural Networks.

#4 Stacking with ANN, SVM and GBN models aggregated

with an ANN model.

#5 Dempster-Shafer with ANN, SVM, and GBN models.

#6 Modified DS with ANN, SVM, and GBN models using

the standard deviation of GBN results as a prior.

#7 Modified DS with ANN, SVM, and GBN models using

the weighted log-likelihood of GBN results as a prior.

A. Results & Discussion

The accuracy results for the IEC TC 10 and Extended

datasets are displayed in Table II. The best performing results

with highest mean accuracy and lowest deviation are high-

lighted in bold.

Table II confirms that the overall accuracy of the proposed

novel configurations (#6, #7) are higher than other fusion (#4,

#5) and machine learning methods (#1-#3) for both datasets.

The order of the accuracy improvement of the proposed con-

figurations with respect to other fusion and machine learning

methods remains the same for both datasets, which confirms

the validity and consistency of the proposed approach.

As for the data training and testing strategies, it is possible

to see that the accuracy decreases for all the configurations

across both datasets when decreasing the size of the training

set from 80% to 70%. Additionally, the class-by-class strategy

reduces the standard deviation (SD) of the results by imposing

a predefined number of samples in the testing set. For PD

samples the SD is bigger compared with the rest of the

states because the accuracy values for most of the trials are

concentrated at one value with few outliers.

As for the comparison between datasets, in general the

overall accuracy improves with the Extended dataset. This

is due to an improved capability to detect Thermal and

Arc faults, purely because the training dataset contains more

examples of these fault types. Conversely, the accuracy of

PD faults decreases with the Extended dataset. The trend

of the PD samples on the IEC TC 10 dataset is predictable

(H2≃[10000-80000], CH4≃[1000-18000], C2H6≃[100-2000],

C2H2≃[1-25], C2H4≃[1-25], all in ppm). However, with the

Extended dataset the PD is more complex to diagnose due

to the introduced additional data samples for all fault types.

For instance, another PD sample is added (H2=980, CH4=73,

C2H6=58, C2H2=0.1, C2H4=1.2, all in ppm) [27], which is

more complex to diagnose and therefore, the PD accuracy

decreases.

As for the diagnostics capacity of specific models, it can

be seen that the GBN has a good performance for identifying

PD faults. Then, the classification outputs of the GBN model

also have less uncertainty for this fault, which in turn leads

to improving the ensemble models when including the prior,

e.g. see PD diagnostics accuracy for the IEC TC 10 dataset.

The improvements for Arc, Normal, and Thermal faults are

similar for all the fusion methods, with slight improvements

when including the uncertainty information in the ensemble.

For the Extended dataset the GBN model has a decreased

accuracy for the Normal state. This affects the fusion strategies

as the prior becomes less informative and the accuracy of

the proposed fusion strategies for the Normal state becomes

less accurate. In contrast, the GBN model has an increased

accuracy for the Thermal state for the same dataset. In this

case, this benefits the fusion strategies because the prior

becomes more informative and the accuracy of the proposed

fusion strategy for Thermal faults becomes more accurate.

Table III displays more performance metrics. For the overall

metrics, the best models in terms of F1, PPV, NPV and FPR

are the proposed fusion strategy results #6 and #7.

The PPV improvement of the proposed strategy results are

in the same order of improvement as the accuracy results.

The only difference with respect to the accuracy results in

Table II is the increased percentage value of PPV results

due to the definition of PPV, i.e. it only considers TP and

FP events and no FN events. The NPV is very high for all

the tested configurations. That is, these models are able to

correctly detect when a fault class has not occurred. The FPR
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TABLE II
CLASSIFICATION ACCURACY OF INDEPENDENT& ENSEMBLE MODELS.

A*

80%-20% global 80%-20% class-by-class 70%-30% class-by-class

Overall Thermal PD Arc Normal Overall Thermal PD Arc Normal Overall Thermal PD Arc Normal

â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ

#1 82.1 6.3 68.3 17.9 97.3 9.4 93.6 6.7 72.9 14.9 82.2 6.1 68.3 15.8 100 0 93.7 6.4 73.1 14.5 82.3 5 67.4 13.3 97 9.8 94.2 5.4 71.9 11.9

#2 86.6 6 71.6 18.3 93.1 17 92.8 7.3 87.6 11.2 86.6 5.4 70.9 16 99.4 7.7 93 7.1 87.5 11 86 4.6 70.5 14 87.9 19.8 92.6 6.1 86.5 9

#3 89.4 5.3 78.5 16.4 91.6 18.5 95.4 5.7 88.7 10.7 89.5 4.8 78.6 14.8 94.7 15.9 95.2 5.6 88.9 10.1 88.8 4 76.6 13 88.6 16.5 95 4.6 87.9 8.6

#4 89.7 5.3 79.1 16.3 91.5 20.6 95.5 5.6 88.5 10.9 89.8 4.8 79.1 14.8 89.8 30.2 95.5 5.6 88.8 10 89 4 77.2 13 90.2 16.1 95.1 4.6 87.8 8.8

#5 90.2 5.4 77.5 16.6 94.5 15.1 96.2 5.4 89.9 10.3 90.2 4.9 77.4 15.1 97.8 14.7 96 5.4 90.4 9.5 89.4 3.9 75.9 12.9 91.4 16.2 95.6 4.6 89 8.1

#6 90.7 5.2 78.5 16.5 99 6 96.3 5.4 89.5 10 90.7 4.9 79.1 14.9 99.9 3 96.2 5.3 89.6 9.9 89.9 4 77.4 12.7 98.2 7.9 95.8 4.5 87.9 8.6

#7 90.7 5.2 78.5 16.5 99 6 96.3 5.4 89.5 10 90.6 4.8 78.6 14.9 100 0 96.2 5.3 89.7 9.8 90 3.9 77 12.7 99.1 5 95.8 4.5 88.4 8.4

B*

80%-20% global 80%-20% class-by-class 70%/30% class-by-class

Overall Thermal PD Arc Normal Overall Thermal PD Arc Normal Overall Thermal PD Arc Normal

â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ â sdâ

#1 79.9 4.6 91 6.1 73.1 29.7 90.1 5.4 50.8 12.8 80.6 4.1 91.1 6.1 73.3 25.7 90.4 5.5 51.4 12.7 80.3 3.3 90.9 4.8 65.4 24.4 89.8 4.3 51.4 10

#2 88.9 3.6 90.3 6.6 81.7 23.8 93.4 5.1 82.4 11.3 89.3 3.5 90.6 6.5 77.4 25.3 93.6 5 82.7 10.8 88.7 3.3 90.4 5.5 73.6 22.3 93.1 4.4 80.5 10

#3 90.9 3.8 91.3 6.4 87.4 20.9 94.8 4.7 85.2 10 91.1 3.5 91.5 5.9 83.6 23.6 95 5 85 9.3 90.6 2.9 90.9 5.1 83.6 19.3 94.5 4.4 84.2 8.3

#4 90.9 3.4 91 6.5 76.7 31.4 95.1 4.4 85.9 9.7 91.1 3.4 91.2 6 78.3 27.9 95.4 4.6 85.6 9.2 90.7 2.9 90.8 5.3 79.9 20.4 94.9 3.9 84.5 3.9

#5 91.4 3.4 92.6 5.8 85.2 22.3 95 4.6 85.4 9.9 91.6 3.4 92.9 5.6 80.8 24.6 95.3 4.7 85.4 9.3 91.1 3 92.2 4.9 80.7 19.8 94.8 4.1 84.2 8.5

#6 91.9 3.5 93.3 5.5 92.8 16.2 95 4.7 84.6 10.3 92.1 3.4 93.8 5.2 90.7 19.4 95.2 4.8 84.6 9.6 91.5 2.9 92.9 4.6 91 15 94.8 4.1 83.3 8.7

#7 91.8 3.5 93.2 5.6 93 15.7 95.1 4.6 84.3 10.4 92 3.4 93.5 5.3 91 19.2 95.3 4.8 84.4 9.6 91.4 2.9 92.8 4.6 91.4 14.9 94.9 4.1 83.1 8.7

* A: IEC TC 10 dataset, B: Extended dataset. #1: GBN, #2: SVM, #3: ANN, #4: Stacking, #5: DS, #6: MDS with SD, #7: MDS with WLL.

TABLE III
PERFORMANCE METRICS OF INDEPENDENT& ENSEMBLE MODELS.

A*

80%-20% global 80%-20% class-by-class 70%-30% class-by-class

F1 PPV NPV FPR F1 PPV NPV FPR F1 PPV NPV FPR

m sd m sd m sd m sd m sd m sd m sd m sd m sd m sd m sd m sd

#1 82.6 6.6 83.9 5.9 91.8 3.7 9.7 4 81.1 6.5 83.5 6.3 92.5 3.2 10.4 4 81.7 5.3 83 5.1 92.9 2.5 9.9 3.1

#2 86.5 5.9 88.9 5.3 93.9 3.3 6.5 3.2 86.6 5.5 89.3 4.5 94.2 3.2 7 3 85.8 4.6 87.1 4.3 94.3 2.3 6.9 2.3

#3 89.4 5.4 90.6 4.9 95.4 2.8 5.2 2.9 89.8 4.7 91.1 4.2 95.6 2.3 5.5 2.7 88.6 4.1 89.6 3.8 95.6 1.8 5.5 2.1

#4 89.6 5.4 90.9 4.9 95.5 2.8 5.1 2.9 90.1 4.8 91.2 4.3 95.8 2.3 5.4 2.7 88.8 4.2 89.8 3.4 95.6 1.8 5.4 2.1

#5 90.1 5.4 91.4 4.8 95.8 2.8 4.9 2.9 90 4.9 91.6 4.3 96.1 2.4 5.1 2.9 89.2 4.2 90.2 3.7 95.9 1.8 5.3 2.1

#6 90.6 5.4 91.9 4.8 95.9 2.8 4.7 2.9 90.6 5 91.9 4.3 96.2 2.3 5 2.8 89.7 4.1 90.7 3.8 95.9 1.8 5.1 2.1

#7 90.7 5.4 91.9 4.8 95.9 2.8 4.7 2.9 90.5 5 91.8 4.2 96.1 2.4 5.1 2.8 89.8 4 90.8 3.7 96 1.8 5.1 2.1

B*

80%-20% global 80%-20% class-by-class 70%-30% class-by-class

F1 PPV NPV FPR F1 PPV NPV FPR F1 PPV NPV FPR

m sd m sd m sd m sd m sd m sd m sd m sd m sd m sd m sd m sd

#1 79 8 81.3 4.3 92.1 2.1 9.7 2.4 79.6 4.5 81.5 4.5 92.6 1.9 9.4 2.2 79.7 3.5 81.1 3.6 92.5 1.6 10.5 1.8

#2 88.9 3.9 89.7 3.7 95.1 1.8 5.1 2 89.4 3.9 90 3.8 95.6 2.7 5 1.9 88.6 3.3 89.1 3.2 95.2 2.6 5.4 1.7

#3 90.9 3.6 91.6 3.4 95.9 1.8 4 1.8 91.1 3.4 91.7 3.3 96.2 1.6 4 1.7 90.6 2.9 91.1 2.8 96 1.4 4.2 1.4

#4 90.9 3.5 91.7 3.3 96 1.7 4 1.8 91.2 3.3 91.8 3.2 96.3 1.5 4 1.6 90.7 2.9 91.1 2.8 96.1 1.4 4.3 1.4

#5 91.4 3.5 92 3.3 96.2 1.7 4 1.8 91.6 3.4 92.1 3.2 96.5 1.6 4 1.7 91.1 3 91.5 2.9 96.2 1.4 4.2 1.5

#6 91.9 3.5 92.4 3.4 96.3 1.7 3.7 1.8 92 3.4 92.5 3.2 96.6 1.6 3.7 1.7 91.5 3 91.8 2.9 96.3 1.4 3.9 1.4

#7 91.8 3.5 92.3 3.4 96.3 1.7 3.8 1.8 91.9 3.5 92.4 3.3 96.6 1.6 3.8 1.7 91.4 3 91.7 2.9 96.3 1.4 4 1.4

* A: IEC TC 10 dataset, B: Extended dataset. #1: GBN, #2: SVM, #3: ANN, #4: Stacking, #5: DS, #6: MDS with SD, #7: MDS with WLL.

improvement of the proposed strategy is in the same order of

improvement as the accuracy results. This is caused by the

reduced number of FP events and increased number of TN

events as confirmed by the NPV results. Finally, the F1 score

is very similar to the accuracy results both in the order of

improvement and absolute values. The F1 score is a combined

metric of precision and recall and therefore it includes the

number of correctly classified instances as well as FP and FN

events.

As for the effect of different training and testing strategies

on the performance results, the class-by-class strategy reduces

the SD of the results as happened with the accuracy results

in Table II. Concerning the effect of the size of the dataset, a

decrease in the training set causes a decrease of F1 and PPV

scores and an increase of the FPR score indicating a decreased

accuracy and an increased false positive rate respectively,

while the NPV score remains high for all the configurations.

Finally, with respect to the performance comparison across

datasets, the results are again consistent with the accuracy

results in Table II. That is, F1, PPV and NPV scores increase

and FPR decreases with the Extended dataset due to the

extended number of samples per health state.

Tables II and III agree that the accuracy and the performance

of the proposed fusion strategies (#6, #7) are superior to other

machine learning (#1-#3) and fusion (#4, #5) models. The

main factor which makes a difference among these models

is the post-processing and integration of the uncertainty in-

formation in the ensemble of classifiers. This is dependent

on the used WB approach and the post-processed uncertainty

information in the form of uncertainty metrics. These metrics

along with the combination of machine learning methods

enable the resolution of conflicting samples. As demonstrated

in the next section, the order of improvement of the proposed

method with respect to existing fusion methods is correlated

with the amount of conflicting diagnostics samples. That is,

the more conflicting samples the better the accuracy and

performance of the proposed approach.
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B. Decision Making Under Uncertainty

From an engineering viewpoint the data samples which

create disagreement among the source classifiers are the most

important cases. Table IV displays the accuracy results consid-

ering only conflictive samples, i.e. data samples which create

disagreements among GBN, ANN and SVM models.

TABLE IV
CLASSIFICATION ACCURACY FOR CONFLICTIVE DATA SAMPLES.

Strategy Dataset
#4 #5 #6 #7

â sdâ â sdâ â sdâ â sdâ

80%-20%

whole dataset

IEC TC 10 73.6 19.4 75.7 19.3 78.2 18.5 78 18.4

Extended 75.9 11.7 77.3 12 78.8 12 78.5 12

80%-20%

class by class

IEC TC 10 74 19.1 76.1 18.9 78.4 18.6 77.8 18.8

Extended 75.77 12 77.4 11 78.6 11.8 78.3 12

70%-30%

class-by-class

IEC TC 10 70.9 16.3 72.9 15.5 75 15.5 75.5 15

Extended 74.3 10.1 76 10.4 77 10.3 76.9 10.3

Results in Table IV are in agreement with the results in

Table II. However, the overall accuracy is lower because

consistently diagnosed data samples are removed, and the

differences in the accuracy of the fusion methods are higher

because only conflictive cases are taken into account. Under

conflicting situations, the proposed uncertainty-aware fusion

strategy is more effective due to the accuracy improvements

for all health states (cf. Table II). This accuracy is a critical

value for any ensemble approach because the strength of the

method is highlighted when independent classifiers diagnose

different faults and it is able to reason under uncertainty.

The proposed model is able to assist the engineer in the

decision-making process. For instance, consider that after

training the classifiers they are tested for the following absolute

gas values [8]: H2 = 26788 ppm, C2H4 = 27 ppm, C2H6 = 2111

ppm, C2H2 = 1 ppm, CH4 = 18342 ppm and the observed fault

type is PD. Table V displays probabilistic results for different

classifiers, mclassifiers.

TABLE V
EXAMPLE A: DIAGNOSTICS RESULTS OF SOURCE CLASSIFIERS.

ID Pr(Normal) Pr(Thermal) Pr(Arc) Pr(PD)

#1 0.23 0.28 0.18 0.31

#2 0.08 0.45 0.07 0.4

#3 3.9E-2 0.5 4.8E-6 0.46

The results of the independent classifiers highlight their

disagreement. BB models do not generate uncertainty infor-

mation, but observing the output of the GBN the PDFs for

different faults and the associated uncertainty can be inferred.

Fig. 5 shows the GBN’s output for the considered example.

That is, ID #1 in Table V without normalising probabilities.

The x-axis in Fig. 5 denotes random samples drawn from

the conditional distribution of the node given the evidence,

P (fi|C2H6, C2H4, H2, CH4, C2H2). The x-axis value of the
peak density indicates the maximum likelihood value. The

greater the peak density value, the narrower the variance, and

the higher the confidence of the GBN model in the diagnostics.

For instance, the density function of the PD fault shows

a narrow function with a high peak density value with a

maximum likelihood value located at 0.7. This suggests that

GBN is very confident that PD is the type of fault present for

these test gas values. Thermal fault has a maximum likelihood

value of 0.65, but its standard deviation is greater than the PD

fault, which indicates the decreased confidence of the GBN

that this is the true fault. The density functions for the rest of

faults located at lower x-axis probability values, indicate that

they are not the cause of this fault.

Fig. 5. Example A: GBN diagnostics output.

It is possible to evaluate different uncertainty metrics in Fig.

5 and use them as priors in (7) so as to influence the fusion

strategy. Using the standard deviation [Eq. (2)] and weighted

log-likelihood [Eq. (10)] as the prior, Table VI displays the

results of the analyzed ensemble strategies.

TABLE VI
EXAMPLE A: DIAGNOSTICS RESULTS OF ENSEMBLE MODELS.

ID Pr(Normal) Pr(Thermal) Pr(Arc) Pr(PD)

#4 0.027 0.59 0.023 0.36

#5 0.0061 0.522 0.0019 0.47

#6 0.0019 0.223 1.3E-7 0.775

#7 0.0005 0.107 2.9E-8 0.892

The fusion methods stacking and DS (#4, #5 Table VI) do

not identify the actual fault. However, the proposed approach

(#6, #7) which uses the uncertainty information inferred from

the GBN model is effective in resolving conflictive samples.

The crucial point of this method is the accuracy of the

WB model and conflictive cases. The GBN model has a

good performance for identifying PD faults. Therefore, this

leads to improving the ensemble models when including the

prior, because the uncertainty associated with the PD fault is

lower. However, note also that the deterministic probability

values of different classifiers count in the ensemble [cf. Eq.

(7)], and therefore, the fusion is not biased by the potential

poor performance of the GBN model. For instance, the GBN

performs worse than ANN or SVM for Normal and Thermal

faults, but the ensemble strategy improves the final accuracy.

In another test, the classifiers are tested for the following

absolute gas values [8]: H2 = 290 ppm, CH4 = 966 ppm,

C2H2 = 57 ppm, C2H4 = 1810 ppm, C2H6 = 299 ppm and the

observed fault type is a Thermal fault. Table VII displays the

classification results for different source classifiers.

In this case all the classifiers consistently diagnose a nor-

mally degrading transformer. Examining the output of the

GBN model in Fig. 6 (i.e. #1 in Table VII, normalised), it

is possible to see the uncertainty information of the diagnosis.
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TABLE VII
EXAMPLE B: DIAGNOSTICS RESULTS OF SOURCE CLASSIFIERS.

ID Pr(Normal) Pr(Thermal) Pr(Arc) Pr(PD)

#1 0.31 0.29 0.24 0.16

#2 0.47 0.44 0.08 0.01

#3 0.54 0.45 0.0082 0.0018

Thermal (m.lik.=0.52, sd=0.18)

Arc (m.lik.=0.438, sd=0.22)

Normal (m.lik.=0.55, sd=0.25)

PD (m.lik.=0.29, sd=0.08)

D
e
n
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y

10.750.50.250
0

1

2

3

Pr(fi | C2H6, C2H4, H2, CH4, C2H2)

Fig. 6. Example B: GBN diagnostics output.

Although the Normal fault has the highest maximum likeli-

hood value among all faults, the GBN’s diagnostics for the

Thermal fault has higher confidence with a slightly lower

maximum likelihood value. Using the uncertainty information

of the GBN model, Table VIII displays the fusion results.

TABLE VIII
EXAMPLE B: DIAGNOSTICS RESULTS OF ENSEMBLE MODELS.

ID Pr(Normal) Pr(Thermal) Pr(Arc) Pr(PD)

#4 0.57 0.39 0.02 0.02

#5 0.578 0.42 2.4E-4 5.4E-7

#6 0.431 0.568 2.36E-4 3.25E-6

#7 0.448 0.55 2.1E-4 9.2E-7

Stacking and DS (#4, #5 in Table VIII) do not identify the

actual fault. However, the proposed fusion strategy (#6, #7 in

Table VIII) again is effective in resolving conflictive samples.

Consider the classifiers are tested for the following values

[8]: H2 = 250 ppm, CH4 = 150 ppm, C2H2 = 150 ppm, C2H4

= 150 ppm, C2H6 = 250 ppm and the observed health state

is Normal. Table IX displays the classification results for the

source classifiers.

TABLE IX
EXAMPLE C: DIAGNOSTICS RESULTS OF SOURCE CLASSIFIERS.

ID Pr(Normal) Pr(Thermal) Pr(Arc) Pr(PD)

#1 0.296 0.195 0.33 0.179

#2 0.6 0.04 0.34 0.02

#3 0.38 5E-4 0.61 1e-4

GBN and ANN diagnose an Arc fault (#1, #3 in Table IX),

while SVM diagnoses a Normal transformer (#2 in Table IX).

Uncertainty information of the GBN’s diagnosis is inferred

from the GBN output in Fig. 7 (#1 in Table IX, normalised).

The Arc fault has the highest maximum likelihood value and

the Normal state has slightly higher confidence with a slightly

lower maximum likelihood value. Using the uncertainty infor-

mation of the GBN model, Table X displays fusion results.

Fig. 7. Example C: GBN diagnostics output.

TABLE X
EXAMPLE C: DIAGNOSTICS RESULTS OF ENSEMBLE MODELS.

ID Pr(Normal) Pr(Thermal) Pr(Arc) Pr(PD)

#4 0.195 0.01 0.78 0.015

#5 0.49 2.5E-5 0.5 2.76e-6

#6 0.54 3.9E-5 0.45 2e-6

#7 0.54 2E-5 0.45 4.1e-6

The proposed fusion strategy effectively diagnoses the Nor-

mal state and this justifies why despite the accuracy of the

GBN being lower, the fusion improves the final diagnosis

accuracy (Table II). Note that the GBN diagnosis results in

Figs. 5-7 show the non-normalized probabilities corresponding

to different Monte Carlo trials and this results in different SD

values.

Accordingly, results in Table IV report the accuracy of

the ensemble taking into account only conflictive diagnostics

of source classifiers and the presented examples focus on

conflicts among the source classifiers. These examples can

be individually analysed with classical DGA methods. For

instance, in Fig. 5 the Duval’s triangle correctly identifies a

PD fault, Roger indicates normal degradation and Doernenburg

does not give a diagnostics or in Fig. 7, the Duval’s triangle

incorrectly identifies an Arc fault, and Roger and Doernenburg

do not give a diagnostics. Even if there is a correct diagnostics

by some of the classical methods, their overall diagnostics

accuracy is lower. There are other cases where classical

methods do not diagnose the correct fault and all the analysed

models consistently diagnose the correct fault and this causes

the difference in the overall accuracy. Additionally, note that

the classical methods are not probabilistic models [7], which

makes it difficult to solve conflicts (see Subsection IV-C).

Note also that the density functions generated by the GBN

model (e.g., Figs 5-7) do not only help to improve the

accuracy of the ensemble, but they also represent a more

intuitive visualization for understanding the conflicts. This

representation should help to increase the trust of the engineer

in the technique as opposed to deterministic probability values

inferred from black-box models.
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C. Comparison to other methods

The results obtained by the proposed fusion framework are

better than other models tested in the same conditions (in this

paper) and very close to results obtained with the same dataset

but tested in different conditions (reported in the literature).

This demonstrates that despite the challenging conditions

(multiclass, imbalanced inspection data), the performance is

comparable to binary classifiers and to the techniques which

use resampling methods (see Table I).

Results displayed in Table II confirm that the proposed

fusion strategy improves the accuracy compared with other

fusion methods (Dempster Shafer, Stacking) and classifiers

(ANN, GBN, SVM). Table XI displays the accuracy of the

classical methods using the 80%-20% global sampling strat-

egy. There is no need to train classical models, but for direct

comparisons with Table II, the same testing data samples have

been used for machine learning and classical methods.

TABLE XI
COMPARISON WITH CLASSICAL METHODS.

Dataset Method
Overall Thermal PD Arc Normal

â sdâ â sdâ â sdâ â sdâ â sdâ

TC 10

Rogers 42.1 7.7 58.9 18.6 0 0 66 11.6 4 5.7

Doern. 55.6 7.7 79.4 15.3 46.7 37.6 83.6 9.2 0 0

Duval 67.8 7.2 88.4 12.2 100 0 100 0 0 0

Extend.

Rogers 47.7 5.8 74.9 8.5 0 0 54.2 9.2 4.3 5.2

Doern. 59.4 5.7 89.2 6.3 47.7 35 69.5 8.6 0 0

Duval 70.9 5.2 94 5 90.5 21.3 90.1 5.6 0 0

The overall accuracy results of the proposed approach (cf.

Table II) are better compared with the classical methods for

both datasets. This is mainly caused by the detection of nor-

mally degrading transformers. Duval has an excellent accuracy

for PD and Arc faults tested on the IEC TC 10 dataset.

However, the overall accuracy is negatively affected because

it is not able to diagnose normally degrading transformers.

When testing the Extended dataset, the accuracy of the Duval’s

triangle for PD and Arc faults decreases and for the Thermal

fault increases. This occurs because the boundaries between

diagnostic regions of the triangle are fixed, as opposed to

statistical learning strategies which can adapt to training data.

The performance of Rogers and Doernenburg models is lower

for both datasets compared with the Duval’s triangle.

V. CONCLUSIONS

Transformers are key assets for the reliable and cost-

effective operation of the power grid and DGA is an industry-

accepted standard method used to monitor transformers. How-

ever, the use of classical DGA models or black-box classifiers

may generate conflicting diagnostics outputs which are dif-

ficult to resolve due to the lack of uncertainty information

generated by these models. This situation complicates the

decision-making process for engineers.

In order to increase the confidence of the engineer in the

decision-making process this paper presents a novel method

which takes into account uncertainty information when inte-

grating the output of different classifiers. Using the proposed

method for DGA, the accuracy with respect to other fusion

methods has improved and the model shows that it is effective

for correcting conflictive samples when the prior information

inferred from probability density functions is informative.

The results obtained in this paper can be used as a bench-

mark to other techniques because the used datasets are publicly

available. So as to extract general accuracy statistics the mod-

els were cross-validated using Monte Carlo cross validation

and different proportions and sampling strategies for dividing

training and testing strategies have been tested.

Future work can address the integration of other white-box

methods or the extension of the approach to combine prior

information from multiple sources. This extension may be able

to create a more informative prior distribution by combining,

e.g. uncertainty information with different fault gas indicators.

Ultimately, this enhanced model may open the way for the

identification of multiple simultaneous fault conditions.

REFERENCES

[1] M. J. Heathcote, J & P Transformer Book, 13rd ed. Oxford: Newnes,
2007.

[2] D. Codetta-Raiteri and L. Portinale, “Dynamic bayesian networks for
fault detection, identification, and recovery in autonomous spacecraft,”
IEEE Trans. Syst., Man, and Cybern., Syst., vol. 45, no. 1, pp. 13–24,
Jan 2015.

[3] L. Jiao, T. Denoeux, and Q. Pan, “A hybrid belief rule-based classifi-
cation system based on uncertain training data and expert knowledge,”
IEEE Trans. Syst., Man, and Cybern., Syst., vol. 46, no. 12, pp. 1711–
1723, Dec 2016.

[4] N. Daroogheh, A. Baniamerian, N. Meskin, and K. Khorasani, “Progno-
sis and health monitoring of nonlinear systems using a hybrid scheme
through integration of PFs and neural networks,” IEEE Trans. Syst.,

Man, and Cybern., Syst., vol. 47, no. 8, pp. 1990–2004, Aug 2017.

[5] Y. Han and Y. H. Song, “Condition monitoring techniques for electrical
equipment-a literature survey,” IEEE Trans. Pow. Del., vol. 18, no. 1,
pp. 4–13, Jan 2003.

[6] IEEE Power and Energy Society, “IEEE Guide for the Interpretation of
Gases Generated in Oil-Immersed Transformers,” IEEE Std C57.104-

2008, pp. 1–36, 2009.

[7] J. I. Aizpurua, V. M. Catterson, B. G. Stewart, S. D. J. McArthur,
B. Lambert, A. Bismark, G. Pereira, and J. Cross, “Improving the
accuracy of transformer DGA diagnosis in the presence of conflicting
evidence,” in Proc. of IEEE Electr. Ins. Conf., Baltimore, USA, 2017.

[8] M. Duval and A. dePablo, “Interpretation of gas-in-oil analysis using
new IEC publication 60599 and IEC TC 10 databases,” IEEE Electr.

Ins. Mag., vol. 17, no. 2, pp. 31–41, March 2001.

[9] P. Mirowski and Y. LeCun, “Statistical machine learning and dissolved
gas analysis: A review,” IEEE Trans. Pow. Del., vol. 27, no. 4, pp.
1791–1799, Oct 2012.

[10] L. Wang, X. Zhao, J. Pei, and G. Tang, “Transformer fault diagnosis
using continuous sparse autoencoder,” SpringerPlus, vol. 5, no. 1, 2016.

[11] A. Shintemirov, W. Tang, and Q. H. Wu, “Power transformer fault
classification based on dissolved gas analysis by implementing bootstrap
and genetic programming,” IEEE Trans. Systems, Man, and Cybern. C,
vol. 39, no. 1, pp. 69–79, Jan 2009.

[12] J. Li, Q. Zhang, K. Wang, J. Wang, T. Zhou, and Y. Zhang, “Optimal
dissolved gas ratios selected by genetic algorithm for power transformer
fault diagnosis based on support vector machine,” IEEE Trans. Dielectr.

Electr. Insul., vol. 23, no. 2, pp. 1198–1206, April 2016.

[13] Q. Su, L. L. Lai, and P. Austin, “A fuzzy dissolved gas analysis method
for the diagnosis of multiple incipient faults in a transformer,” IEEE

Trans. Pow. Sys., vol. 15, no. 2, pp. 593–598, May 2000.

[14] S. A. Khan, M. D. Equbal, and T. Islam, “A comprehensive comparative
study of DGA based transformer fault diagnosis using fuzzy logic and
ANFIS models,” IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 1, pp.
590–596, Feb 2015.

[15] H. Ma, T. K. Saha, C. Ekanayake, and D. Martin, “Smart transformer for
smart grid - intelligent framework and techniques for power transformer
asset management,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 1026–
1034, March 2015.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 12

[16] S. Li, G. Wu, B. Gao, C. Hao, D. Xin, and X. Yin, “Interpretation of
DGA for transformer fault diagnosis with complementary SaE-ELM and
arctangent transform,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1,
pp. 586–595, February 2016.

[17] J. Fan, F. Wang, Q. Sun, F. Bin, F. Liang, and X. Xiao, “Hybrid RVM-
ANFIS algorithm for transformer fault diagnosis,” IET Generation,

Transmission & Distrib., vol. 11, pp. 3637–3643(6), September 2017.
[18] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting

for classification of imbalanced data,” Pattern Recognition, vol. 40,
no. 12, pp. 3358 – 3378, 2007.

[19] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, 1st ed.
Chapman & Hall/CRC, 2012.

[20] M. Allahbakhshi and A. Akbari, “Novel fusion approaches for the
dissolved gas analysis of insulating oil,” IJST Transactions of Electrical

Engineering, vol. 35, no. E1, p. 13, 2011.
[21] D. Bhalla, R. K. Bansal, and H. O. Gupta, “Integrating AI based

DGA fault diagnosis using Dempster Shafer theory,” Electrical Power

& Energy Systems, vol. 48, pp. 31 – 38, 2013.
[22] S. S. M. Ghoneim, I. B. M. Taha, and N. I. Elkalashy, “Integrated ANN-

based proactive fault diagnostic scheme for power transformers using
dissolved gas analysis,” IEEE Trans. Dielectr. Electr. Insul., vol. 23,
no. 3, pp. 1838–1845, June 2016.

[23] H. Malik and S. Mishra, “Application of gene expression programming
(GEP) in power transformers fault diagnosis using DGA,” IEEE Trans.

Industry Applications, vol. 52, no. 6, pp. 4556–4565, Nov 2016.
[24] S. Shankaraman and K. Goebel, “Uncertainty in prognostics and systems

health management,” International Journal Prognostics and Health

Management, vol. 6, no. 10, p. 14, 2015.
[25] L. Ganyun, C. Haozhong, Z. Haibao, and D. Lixin, “Fault diagnosis of

power transformer based on multi-layer SVM classifier,” Electric Power

Systems Research, vol. 74, no. 1, pp. 1 – 7, 2005.
[26] X. Z. Wang, M. Z. Lu, and J. B. Huo, “Fault diagnosis of power

transformer based on large margin learning classifier,” in IEEE Int. Conf.

on Machine Learning and Cybernetics, Aug 2006, pp. 2886–2891.
[27] S. Seifeddine, B. Khmais, and C. Abdelkader, “Power transformer fault

diagnosis based on dissolved gas analysis by artificial neural network,” in
IEEE Int. Conf. Renewable Energies and Vehicular Technology, March
2012, pp. 230–236.

[28] Q.-S. Xu and Y.-Z. Liang, “Monte carlo cross validation,” Chemometrics

and Intelligent Laboratory Systems, vol. 56, no. 1, pp. 1–11, 2001.
[29] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2004.
[30] M. R. G. Meireles, P. E. M. Almeida, and M. G. Simoes, “A compre-

hensive review for industrial applicability of artificial neural networks,”
IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 585–601, June 2003.

[31] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S,
4th ed. New York: Springer, 2002, iSBN 0-387-95457-0.

[32] C. J. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Min. Knowl. Discov, vol. 2, no. 2, pp. 121–167, 1998.

[33] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information

processing systems, 2012, pp. 2951–2959.
[34] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel,

“e1071: Misc Functions of the Department of Statistics (e1071), TU
Wien. R package version 1.5-25.” 2011.

[35] J. Kim and C. Scott, “Robust kernel density estimation,” in 2008 IEEE

Int. Conf. Acoustics, Speech and Signal Process., 2008, pp. 3381–3384.
[36] M. Scutari, “Learning bayesian networks with the bnlearn R package,”

Journal of Statistical Software, vol. 35, no. 3, pp. 1–22, 2010.
[37] D. Fixsen and R. P. S. Mahler, “The modified Dempster-Shafer approach

to classification,” IEEE Trans. Syst. Man, Cybern. A: Syst., Humans,
vol. 27, no. 1, pp. 96–104, Jan 1997.

Jose Ignacio Aizpurua (M’17) is a Research As-
sociate within the Institute for Energy and Envi-
ronment at the University of Strathclyde, Glasgow,
Scotland. He received his Eng., M.Sc., and Ph.D.
degrees from Mondragon University (Basque Coun-
try, Spain) in 2010, 2012, and 2015 respectively. He
was a visiting researcher in the Dependable Systems
Research group at the University of Hull (UK) in
2014. His research interests include prognostics and
health management, reliability, availability, main-
tenance and safety (RAMS) analysis and systems

engineering for power engineering applications.

Victoria M. Catterson (M’06-M’12) was a Senior
Lecturer within the Institute for Energy and Environ-
ment at the University of Strathclyde, Scotland, UK.
She received her B.Eng. (Hons) and Ph.D. degrees
from the University of Strathclyde in 2003 and 2007
respectively. Her research interests include condition
monitoring, diagnostics, and prognostics for power
engineering applications

Brian G. Stewart (M’08) is is Professor within
the Institute of Energy and Environment at the
University of Strathclyde, Glasgow, Scotland. He
graduated with a BSc (Hons) and PhD from the Uni-
versity of Glasgow in 1981 and 1985 respectively.
He also graduated with a BD (Hons) in 1994 from
the University of Aberdeen, Scotland. His research
interests are focused on high voltage engineering,
electrical condition monitoring, insulation diagnos-
tics and communication systems. He is currently an
AdCom Member within the IEEE Dielectrics and

Electrical Insulation Society.

Stephen D. J. McArthur (M’93-SM’07-F’15) re-
ceived the B.Eng. (Hons.) and Ph.D. degrees from
the University of Strathclyde, Glasgow, U.K., in
1992 and 1996, respectively. He is a Professor and
co-Director of the Institute for Energy and Environ-
ment at the University of Strathclyde. His research
interests include intelligent system applications in
power engineering, covering condition monitoring,
diagnostics and prognostics, active network manage-
ment and wider smart grid applications.

Brandon Lambert is a Design Engineering Man-
ager within Bruce Power. He received his B.Eng.
degree from Lakehead University, Thunder Bay,
Canada in 2012 and his P.Eng. from the Professional
Engineers of Ontario in 2015. His design interests
include large power transformers, high voltage trans-
mission systems, as well as dielectric and insulating
materials.

James Cross (M ’79) is currently Director of
Transformer Services at Kinectrics, In. in Toronto,
Canada. After graduating from the University of
Manitoba with a B.Sc. in Electrical Engineering,
he worked for 18 years at Carte International, a
transformer manufacturer in Winnipeg, Canada as
Vice-President, Technology. He then worked as a
Project Engineer at Pauwels Canada, a manufacturer
of large power transformers up to 500 kV class.
Most recently, he worked for 18 years at Weidmann
Electrical Technology in St. Johnsbury, Vermont

serving as Manager of R&D/Innovation and Manager of Technical Services.
He has co-authored several papers in the area of electrical insulating materials
and testing, and transformer diagnostics. He is a former Chairperson of the
IEEE Winnipeg Section.


