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Abstract: Despite the increasing volume of available data,

the proportion of experimentally measured data remains

small compared to the virtual chemical space of possible

chemical structures. Therefore, there is a strong interest in

simultaneously predicting different ADMET and biological

properties of molecules, which are frequently strongly

correlated with one another. Such joint data analyses can

increase the accuracy of models by exploiting their

common representation and identifying common features

between individual properties. In this work we review the

recent developments in multi-learning approaches as well

as cover the freely available tools and packages that can be

used to perform such studies.

Keywords: Multi-task learning · transfer learning · neural networks

1 Introduction

Nowadays, the volume of data that can be generated and

processed when modelling tasks has increased dramati-

cally.[1] Machine Learning (ML) techniques, notably Deep

Neural Networks (DNNs)[2] are becoming indispensable as a

tool for managing and using these vast amounts of

generated and measured data effectively. However, data

measurement is still a difficult and time-consuming task,

and there is a strong interest in how to make the best use

of all available data. Biological data, such as ADMETox

properties, are highly interrelated. For example, the lip-

ophilicity of compounds is, in one way or another, very

important for the majority of these properties. Thus learning

several ADMETox properties simultaneously can result in

better models. Moreover, some types of data produced with

different methods can have different experimental accuracy

and/or refer to related but not identical properties. For

example, kinetic water solubility is the concentration of a

compound in solution at the time when an induced

precipitate first appears. This type of solubility can be easily

automatized for use in High Throughput Screening (HTS)

settings and is actively used in industry due to this. The

more biologically relevant solubility is thermodynamic

solubility, which is the concentration of a compound in a

saturated solution when excess solid is present, and

solution and solid are at equilibrium.[3] The co-modelling of

both types of solubility simultaneously could potentially

develop better models for each of them. This can be

achieved with the help of multi-task learning,[4] which can

be applied to an arbitrary combination of regression and

classification tasks (so called heterogeneous multi-tasks).

These multi-learning approaches belong to so-called

transfer learning,[5] a technique where knowledge gained in

one or several (source) tasks is used to improve the target

task. The transfer learning approaches differ with respect to

whether the source and/or target tasks have labelled data.

Thus, they can be classified as semi-supervised or “self-

taught” learning (no labelled data in the source domain),

transductive learning (labelled data are only in the source

domain), unsupervised transfer learning (no labelled data

are available)[5] as well as methods which use labelled data

for both source and target tasks, which include multi-

learning approaches.

The ability to infer relevant knowledge is very important

for intelligence. For example, humans, who can draw on

vast amounts of previously-learned information, can be

trained on a new task with a relatively tiny number of

examples. In contrast, traditional machine learning algo-

rithms, which usually learn from scratch, and require large

example sets to do so. Therefore, there is active develop-

ment and interest in machine learning to design new

methods having the same speed and accuracy as humans.

Early examples of such types of learning have been

successfully reported since the mid-1990s, e.g. the use of

neural network weights trained with one task as a starting

point for new ones to increase the development speed and

the accuracy of models.[4] A Library model of Associative

Neural Networks[6] is another example, which applied on-the

fly correction of predictions for new data by using the errors

of the nearest neighbours of the target sample.[7] Transfer of

information was also done by developing models for
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individual properties, and then using those model predic-

tions as additional descriptors for the target property,

known as the feature net approach.[8] In the case that the

target and source properties are very similar or identical

(e.g., measured for different species or at different con-

ditions), one can encode different targets by using addi-

tional descriptors (e.g., conditions of experiments) and

model all properties simultaneously. Figure 1 schematically

illustrates single task as well as several multitask modelling

approaches using an example of neural networks. Some of

these approaches, such as the feature net, use sequentially-

ordered learning.

In our review we will cover new developments in the

field, which have appeared during the recent years. Also,

we will mainly focus on the methods where the analysed

properties are simultaneously modelled within a single

model, which corresponds to Figure 1b.

Multi-task Learning (MTL) is a technique which aims

improve ML efficacy by simultaneously co-modelling multi-

ple properties within a single model. A lot of developments

in this field were done in in 1990s by Rich Caruana,[4] who

investigated how to improve related task performance by

leveraging domain-specific information, and inductively

transferring it between the tasks. In comparison to the

other transfer learning approaches, which use labelled data

for both source and target tasks, the aim of MTL is to

improve the performance of all tasks with no task

prioritised.

MTL trains tasks in parallel, sharing their representation

internally. As a result, the training data from the extra tasks

serve as an inductive bias, acting in effect as constraints for

the others, improving general accuracy and the speed of

learning. Caruana noted mechanisms by which MTL may

show improvement over Single Task Learning (STL) to be a)

amplification of statistical data; b) attention focusing

(finding a better signal in noisy data); c) eavesdropping

(learning “hints” from simpler tasks); d) representation bias

and feature selection and e) regularisation (less over-

fitting).[4]

As MTL implies sharing information between all tasks, it

is possible to define three main types of MTL based on the

type of data sharing: feature, instance and parameter-

based.[9] Feature-based MTL models learn a common feature

representation among all the tasks by assuming that such a

representation can increase the performance of the algo-

rithm vs. single-tasks. Parameter-based approaches explore

the similarity between target properties and include task

clustering, learning of task relationships, as well as multi-

level hierarchical approaches. Instance-based MTL identifies

individual data within a task, which can be effectively used

in other tasks for information sharing.[10] However, we did

not find applications for the latter in chemoinformatics and

thus will not cover them in our review. Let us consider

some examples of the other two MTL approaches and their

combination.

2 Feature Based Approaches

Neural networks are the primary platform for multi-learning.

Rich Caruana was one of the first to develop multi-task

learning using backpropagated neural networks. He found

out that four separate neural networks performing only one

task can be reduced to one network with multiple outputs

that performs the tasks simultaneously. As a result, he

created a multi-task neural network able to perform parallel

learning. One should also mention the earlier work of

Suddarth and Kergosien,[11] who used an additional layer to

inject rule hints and to guide the neural network as to what

should be learned.

The network forms a set of features on the hidden layer

(s), which can fit several tasks simultaneously. Moreover, the

activation patterns of neurons in neural networks with

several hidden layers contribute to the formation of

Figure 1. a) Single Task learning; b) Multi-task learning; c) Multi-task learning by property encoding as descriptors; d) Feature net. Adapted

with permission from ref. [8]. Copyright (2009) American Chemical Society.
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features, which are known to be important for the analysed

type of properties, e.g. toxicophores for the prediction of

toxicological end-points.[12]

One of the first successful applications of MTL in

chemoinformatics was done by Varnek et al.,[8] who demon-

strated that learning several tissue/air partitioning coeffi-

cients by using Associative Neural Networks provided

models with statistically-significantly higher accuracy com-

pared to the respective single task models. The neural

network models analysed by Varnek et al. were examples of

so-called “shallow” neural networks since they included only

one hidden layer. The appearance of new training algo-

rithms and in particular GPU-accelerated computing has

brought about the rise of Deep Neural Networks,[2] which

incorporate multiple hidden layers with much larger

numbers of neurons. This greater flexibility of DNN net-

works allows them to learn more complex relationships and

patterns in the data.

Regarding multi-learning one can distinguish two

primary architectures with respect to the sharing of

parameters: hard and soft. “Hard” parameter sharing is

similar to that of shallow neural networks and implies the

sharing of hidden layers between all tasks, except some

task-specific output layers. “Soft” parameter sharing gives

each task its own model with its own parameters, where

these model parameters have a regularized distance to

facilitate the sharing of learning.[13] Soft parameter sharing

has not yet received sufficient attention in chemoinfor-

matics and will be briefly outlined in the section “Simulta-

neous Feature and Task similarity learning”.

J. Ma et al.[14] performed several experiments on STL and

MTL neural networks. They found out that in some cases

multi-task learning deep neural networks (MTL DNN) are

better than single task learning deep neural networks (STL

DNNs). The authors suggested that better performance of

MTL DNN is based mainly on the size of data sets: MTL

DNNs are useful for small and mixed (small and large)

datasets and STL DNNs are good for large data sets.

Multi-task learning provided the best model according

to the ROC AUC (Receiver Operator Characteristic Area

Under Curve) metric for the Tox21 challenge.[12] The authors

showed that such networks learned on their hidden layers

chemical features resembling toxicophores identified by

human experts. The networks used these features to classify

active and inactive (toxic and nontoxic) compounds. It is

also of note that the second best approach was based on

“shallow” STL associative neural networks.[15]

In another comprehensive study the authors compared

the performance of MTL and STL approaches in predicting

the toxicity of chemical compounds from the Registry of

Toxic Effects of Chemical Substances (RTECT) database

totalling 29 toxicity end-points and more than 120 k

measurements.[16] MTL significantly outperformed STL thus

showing the utility of this approach to model complex

in vivo endpoints.

Xu et al.[17] investigated why an MTL DNN can outper-

form separate STL DNNs and under what scenarios the

multi-task approach is advantageous. The result of this

study lead to two main findings regarding the efficacy of

multi-task deep neural networks:
* Similar molecules modelling correlated properties will

boost the predictive performance of the DNN, and

likewise uncorrelated properties will degrade perform-

ance.
* Structurally dissimilar molecules have no influence on the

predictive performance of the MTL DNN, regardless of

whether or not tasks are correlated.

Their conclusions are important for the identification of

strategies for designing datasets for MTL learning.

MTL can be used to simultaneously learn both regres-

sion and classification in one model, as was demonstrated

by Xu et al.[18] for the prediction of acute oral toxicity. The

authors used convolutional neural networks and reported

that their model provided higher accuracy compared to

conventional methods.

Human cytochrome P450 inhibition for 5 kinases were

predicted using a pre-trained autoencoder-based DNN.[19]

On the pre-training stage, the first layers were trained to

reconstruct the original input layer on the whole database.

The authors proved that an autoencoder-based DNN can

achieve better quality than other popular methods of

machine learning for cytochrome P450 inhibition prediction,

and a multi-target DNN approach can significantly outper-

form single-target DNNs. The flexibility of neural networks

makes it possible to use them not only with descriptors

derived from chemical structures in the traditional way, but

also apply them to directly analyse chemical structures

represented as SMILES or chemical graphs. We will review

several approaches in the “Implementations of multi-

learning approaches” section below.

Multi-task feature learning for sparse data using other

methods. The problem of feature-selection has an exact

mathematical formulation and an analytical solution for

linear methods. For example, Varnek et al.[8] compared the

performance of neural networks with Partial Least Squares

(PLS). PLS could also provide multi-task learning by

identifying common internal representations, so called

latent variables, for several analysed properties simultane-

ously. In addition to the PLS method, there are other

approaches for identifying sparse features or to perform

multi-feature selection as comprehensively analysed in a

recent review.[9] These methods can be used directly with

linear or kernel methods, or to provide features for training

other methods.

One such method is Macau.[20] It is based on Bayesian

Probabilistic Matrix Factorisation (BPMF). After BPMF was

used to win the Netflix prize for predicting film recommen-

dation, the interest in this method notably increased. One

of the problems during multi-learning are missing values;

frequently not all measurements are available for all targets.

For some other tasks the matrix of responses can be
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extremely sparse, e.g. only 1.2% of all users-combinations

were available for the Netflix competition. Some methods,

such as neural networks, can naturally work with missing

values by ignoring the error contribution from missing

values when calculating the loss for backpropagation. The

BPMF allows imputing missing values in the matrix thus

enabling the application of standard techniques, such as

singular value decomposition and principal component

analysis. In contrast to classical algorithms of matrix

factorization, Macau is able to handle side relations i. e.

fingerprints of chemical compounds or phylogenetic dis-

tance between protein targets. Another useful feature of

Macau is the ability to work with multi-dimensional data

and perform tensor decomposition. The capacity to deal

with multi-dimensional biological sparse data was studied

by de Vega et al.,[21] who applied this technique to inhibition

activities of 15073 compounds for 346 targets extracted

from ChEMBL. The authors showed that Macau provided

performance similar to that of neural networks methods but

did not require GPU-accelerated computing.

3 Task Learning Approaches

Task learning explores task relationships to better learn

common parameters of models as overviewed below.

Metric-learning algorithms. k-Nearest Neighbour ap-

proaches provide predictions for new samples based on

their nearest neighbours. Usually, it uses a Mahalanobis

distance, which is defined as:

dM xi; xj
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �

T
M xi � xj
� �

q

ð1Þ

where and xi and xj are two samples and M is a matrix,

which acts as a global linear transformation of the input

space. The M matrix is thus an optimizable parameter of the

method. The most straightforward way is to use the same

metric to model all tasks simultaneously. However, better

performance can be expected by using different matrices,

which are optimised to each individual class. If tasks are

correlated, the matrix M can be decomposed into a

common M0 and individual task-specific Mt parts, as

dt xi; xj
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �

T
M0 þMtð Þ xi � xj

� �

q

ð2Þ

where M0 and M1; ;MT are the global matrix and task-

specific additional matrices respectively. The larger the

similarity is between the tasks, the larger the determinant of

matrix M0 relative to those of individual tasks Mt . This idea

was first applied to multi kNN by Parameswaran et al.[22]

Since that time many different algorithms have been

developed for metric learning, as overviewed by Yang

et al.[23]

Similarity learning. Metric learning, in contrast to

feature selection, directly optimises the parameters of the

method itself. The main idea is that similar tasks can provide

better generalization by using similar parameters. For

example, when classifying several related properties one

can identify a common separation hyperplane given by a

vector w0, which will be only slightly different for separation

hyperplanes wi for individual properties

wi ¼ w0 þ vi ð3Þ

where vi accounts for features specific for property i. This

separation is thus similar to that used for global and task-

specific matrices in eq. (2) where w0 and vi correspond to

matrices M0 and Mt respectively. Figure 2 exemplifies the

intuition underlying this idea used to develop the Multi-Task

Least Square Support Vector Regression (MLS-SVR) ap-

proach.[24]

One of the promising current approaches in the field is

based on MTL networks with “soft” parameter sharing (see

Figure 3). The network facilitates multi-task learning by

regularising weights as well as features (which are defined

as neural network activation patterns at the last layers)

across the networks.[25] The regularisation of weights

corresponds to the sharing of model parameters while the

regularisation of learning features across the last networks’

layers corresponds to feature regularisation. The algorithm

can also be applied if no measurements are available for

one of the tasks.

The information about task dependency can be used as

a priori information and an example of multi-task learning

with the integration of taxonomy information has been

presented by Rosenbaum et.[26] The authors used a dataset

of 112 human kinases extracted from ChEMBL. The Graph-

Figure 2. Multi-task learning in Least Square Support Vector

Regression (MLS-SVR) identifies a common hyperplane w0, which

carries the information of the commonality and wi ¼ w0 þ vi , where

the vector vi carries the information of the specialty. (Reprinted

from Pattern Recognition Letters, vol. 34, Xu, S.; An, X.; Qiao, X.; Zhu,

L.; Li, L., Multi-output least-squares support vector regression

machines, Copyright (2013), with permission from Elsevier).
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regularized multi-task (GRMT) Support Vector Machine

Regression and Top-Down Multi-task SVR were used to

consider the relationship between these targets during

modelling. The authors showed that hierarchical learning

provided significantly better results compared to base

models, as developed using STL approaches such as STL, or

a model, which combined all data and ignored the kinases’

types.

Similarity learning is also a feature of Generative Topo-

graphic Mapping (GTM),[27] which can be used both for

visualization and molecular property prediction.[28] GTM

constructs a projection from a high-dimensional descriptor

space into a latent (usually 2D) space. Probabilities of the

latent representations of molecules can be regarded as GTM

descriptors and be used to build classification or regression

models. Gaspar et al.[29] proposed the Stargate GTM method,

which projects both descriptors and multi-target activity

spaces into corresponding latent spaces and iteratively

optimizes the joint probability distribution between the two

mappings. The authors compared the method on data

extracted from ChEMBL and showed that the Stargate GTM

slightly outperformed conventional GTM but had a lower

accuracy than Random Forest. It was also stressed that the

model can act as a “gate”, which both predicts the activity

profiles for a compound and finds areas in a descriptor

space that are likely to have the desired activity profile. The

latest feature is a particular advantage of Stargate GTM.

In machine learning there are a number of other

approaches that can explore task similarity, including task

clustering or multi-level approaches as reviewed else-

where.[9]

4 Simultaneous Feature and Task Similarity
Learning

As it was aforementioned, networks with soft parameter

sharing can provide a richer variety of network architectures

(for review see[13]). Such networks can be used to simulta-

neously provide feature selection and task similarity learn-

ing. Let us show how this method could potentially be used

to address domain adaptation. This problem is well known

in the chemical industry and has been deeply studied by

Sheridan,[30] who demonstrated a loss of prediction accuracy

in models for prospective validation of compounds, due to

a time shift in chemical diversity. The problem of prospec-

tive validation can be easily cast to the multi-learning

domain by considering two tasks (prediction of past and

new data, for which one may have just a few measure-

ments) as two separate tasks.

5 Implementations of Multi-Task Learning
Approaches

Multiple software packages exist and are available in the

computer science field, which provide tools for multi-

learning. As a rule, many articles are published by the

authors together with their source code, which is frequently

deposited on online repositories such as GitHub, allowing

wide and immediate dissemination of information. The use

of these software tools in chemoinformatics is not necessa-

rily straightforward due to the need to make an interface

with chemical structures. However, several efforts to port

these packages to chemoinformatics are currently on-going.

In Table 1 we review several complete packages, which

were developed to bring multi-learning approaches to

analyse chemical structures.

Chainer Chemistry (ChemChainer) ports several neural

network architectures, which were recently introduced to

work with graphs, to chemical structures. DeepChem

supports the majority of ChemChainer methods as well as

providing several other approaches, some of which were

Figure 3. An example of neural network model using “soft parame-

ter” sharing. Two networks are trained in parallel for each individual

task. The soft parameter sharing is done by introducing a penalty

function, which prevents neural network weights in both models

from differing greatly, as well as by regularising neural network

features at the last layer. Reprinted from ref. [25] under the Creative

Commons license CC-BY 4.0.

Table 1. “Chemistry aware” multi-task learning approaches.

Package Examples of supported

algorithms

Availability

Chainer

Chemistry

NFP, GGNN, RSGCN,

WeaveNet, SchNet

https://github.com/

pfnet-research

DeepChem DAG, NNF, MPNN,

TEXTCNN, WEAVE,

IRV

https://github.com/

deepchem

OCHEM The methods from Chainer

Chemistry, DEEPCHEM,

DNN, MLS-SVM as well

as MTL by property

encoding as descriptors

and feature net

http://ochem.eu
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originally developed by the authors of the toolbox. Deep-

Chem also provides a port of machine learning methods

from the Scikit-learn python package. Since the latter

methods support only single-task learning, DeepChem uses

an embedded wrapper to calculate models for each task,

and provides a combined result of STL models in way

similar to that of MTL, thus allowing an easy comparison of

STL and MTL models. Thus, the user can apply both types of

methods to datasets containing several properties using a

similar interface. ChemChainer and DeepChem are based on

Python and are built around Chainer and TensorFlow

frameworks, respectively. Both packages use the RDkit

library,[31] which provides a framework to translate chemical

structures to graphs and the required representation for

both packages.

OCHEM provides[32] a uniform interface to methods from

both of these packages as well as several other methods

supporting multi-task learning, such as Associative Neural

Networks, an implementation of Deep Neural Networks, a

GPU implementation of Least Squares Support Vector

Machines[33] and several other approaches. An example of

simultaneous prediction of tissue/air partitioning coeffi-

cients from Varnek et al.[8] by different methods is shown in

Figure 4.

Below we overview several methods implemented in

these packages. The majority of these methods are neural

networks that operate on chemical graphs. Thus, these

approaches are different from traditional ones that analyse

molecules by converting them to a set of descriptors. The

first publication about the direct application of neural

networks to graphs was proposed as an extension of

recurrent neural networks in 2005.[34] Interestingly, the first

models based on chemical graphs were presented in the

Figure 4. Example of MTL and STL using the comprehensive-modelling view of the OCHEM platform. The RMSE of models on the left-side

columns (MTL) provide a higher squared correlation coefficient, R2, than models developed for each analysed property regardless of the

descriptor set or method used. The models developed using DEEPCHEM and ChemChainer are based on chemical graphs. The values in

parentheses indicate the average value or R2 for each analysis. ASNN – Associative Neural Networks;[6] DNN – Deep Neural Network;[16] DAG –

Directed Acyclic Graphs;[43] TEXTCNN – Text Convolutional Neural Network;[45] NFP – Neural Network Fingerprint;[36] GGCN – Gated Graph

Neural Network.[41]
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field of chemoinformatics about eight years earlier by

Baskin et al.[35]

Neural Network Fingerprints (NNF). The method shows

that the representation of chemical structures as circular

fingerprints (e.g. Morgan fingerprints or Extended Connec-

tivity Circular Fingerprints (ECFP)) can be extended with a

more advanced method based on neural networks.[36]

Weave network.[37] This network was developed as an

inspiration of convolutional neural networks. This network

recreates atom and pair features on each layer based on the

information in the previous layer, which resembles a

weaving propagation of information through the network.

The multiple layers (“weaves”) can be stacked to produce

networks with more complex architectures.

Renormalized Spectral Graph Convolutional Network

(RSGCN).[38] This network was developed to learn large

graph-structured networks, where the classification informa-

tion is only available for a small number of samples but

valuable additional information can be derived from the

data graph structure of a much large number of unlabeled

data points.

A continuous-filter convolutional neural network for

modeling quantum interactions (SchNet)[39] was devel-

oped to overcome the limitations of using grid-based

approaches, which work with discretized signals such as

image pixels. The Comparative molecular field analysis

(CoMFA)[40] represents another example of a similar grid-

based approach coupled with PLS.

Gated Graph Neural Network (GGNN). This network

was specifically developed to predict sequences of outputs,

allowing better predictions of their relationships.[41] This

algorithm was introduced by testing its performance on the

bAbI suite tasks where it demonstrated a remarkable

performance over existing algorithms. The bAbI tasks were

specifically developed to test the reasoning capabilities of

artificial intelligence systems, such as Path Finding and

Shortest Path Finding, or automatic program verification.

Message Passing Neural Networks (MPNN)[42] are a

generalisation of neural network architectures, which oper-

ate on graphs and update their node states using message

passing. Examples of such networks are the NNF, GGNN,

Weave and RSGCN networks considered above. The

developed network was based on the GGNN architecture

and had several improvements to decrease the computa-

tional cost and increase performance, e.g. optimisation of

the final layers of the network (readout function which

maps the whole graph to a feature vector), improvement of

the scalability of training, etc. This allowed the authors to

achieve superior results for 13 targets when co-modelling

electronic and energetic properties of molecules.

Directed Acyclic Graphs (DAG)[43] (or DAG Recursive

Neural Network) consider molecules as directed graphs by

iteratively taking each atom as a central one and defining

the directions of all other bonds as outgoing from the

central atom. The algorithm uses the atoms and their

atomic features to propagate information through the

graph to calculate properties. This operation is repeated for

all atoms in a molecule and the result is used to train a

neural network.

Influence Relevance Voters (IRV)[44] is a variation of a

metric-learning algorithm applied to molecular graphs. The

motivation of this algorithm was to simulate the ability of

humans to learn using just few examples or in a limit with a

single example.

Text Convolutional Neural Networks (TEXTCNN)[45]

uses neural network vectors trained on billions of words

from Google News. These pre-trained vectors serve as

“universal” feature extractors that can be used to achieve

excellent results for various problems. The method was

adapted to work with SMILES by the developers of DEEP-

CHEM.

The variety of powerful and freely accessible methods

will enable their wide use to address various multi-learning

tasks.

6 Open Issues

Despite the promising performance of MTL there are several

issues, which either have not been properly addressed or

remain open. Surprisingly, there is no good understanding

as to which tasks are considered similar and could thus

profit from multi-learning.[13,46–48] The main outstanding issue

being that some tasks help each other and some do not;

some compete for network capacity so that training them

together actually worsens performance. Chen et al.[47]

stressed that, in general, multi-learning neural networks can

be rather hard to train because different tasks bring

imbalances in the gradient calculations. The authors

proposed an adaptive algorithm to estimate the weights of

tasks dynamically during the training to improve prediction

accuracy. Much remains to be explored in the design of

neural network architectures, especially in the area of DNNs.

A recent publication by Sturm et al.[49] analysing the

performance of DNNs on the ExCAPE-DB of 70 million SAR

datapoints, demonstrated a large dependency of the

performance upon the hyperparameter choices. Optimising

such parameters can be a costly operation, so determining

general guidelines for estimating initial settings should be a

point of future investigation. However, one can also

formulate an even broader question: “Can we derive non-

linear dependences between tasks from data and use them

to improve multi-task learning?” Zamir et al. (a best paper

award at the CVPR2018 conference)[48] provided a method

for automatic creation of taxonomy graphs for tasks. This

approach has great prospects in chemoinformatics, e.g., for

deriving and using the taxonomy of protein targets, viruses,

toxicity endpoints, etc. in a fully data-driven mode.
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7 Summary

The multi-task learning approaches are gaining popularity

in various fields of science, including chemoinformatics.

Successful use of these methods can result in models with

higher prediction accuracies compared to the development

of models for each individual property. The conditions

when MTL can provide better results over STL are clearly

formulated by Xu et al.[17] As concluded by the authors MTL

should be used for modelling correlated properties, but will

degrade performance for uncorrelated properties. Structur-

ally dissimilar molecules have no influence on the predictive

performance of MTL, regardless of whether or not tasks are

correlated. While these recommendations were for deep

neural networks, they are likely to be valid for other multi-

learning approaches too and should be considered before

deciding whether an MTL method can be employed. Finally,

the development of a single MTL model is much faster and

such a model occupies less memory and disk space

compared to multiple single task models. This feature

becomes important when increasing the number of simulta-

neously analysed properties. Examples of data sets that

could potentially benefit from transfer learning and MTL

with regards to QSAR modelling are given by Simoes

et al.[50] and include a) similar compounds measured under

different experimental conditions; b) antimicrobial activities

against genetically similar microorganisms; c) compounds

with the same mechanism of action in homologous targets

and high degrees of similarity in the binding pocket; d)

non-specific endpoints such as toxicity. When the endpoint

has been measured exactly, but under different conditions

or on e.g. different but correlated target organisms, one

can also encode conditions as input descriptors. The

availability of tools to perform multi-learning is important

for the widespread adoption and use of these methods by

the scientific community.

8 Outlook

Both industrial and academic partners share high expect-

ations from “Big Data” in chemistry, which is a new

emerging area of research on the borders of several

disciplines.[1] Transductive learning in general, as well as

multi-learning approaches, will help to fully exploit the

potential of such data by contributing models with higher

prediction ability and coverage. These approaches will be

important within the new federated learning project, a call

for which was recently launched by the IMI. The future

developments in this area should accommodate different

data precision and accuracy from different sources, unbal-

anced datasets as well as sound calculation of the

applicability domain and accuracy of predictions of multi-

models, which will be important for the use of these

methods. Moreover, MTL can be combined with other types

of networks, such as Recurrent Neural Networks (RNNs), to

automatically design new chemicals with desired predicted

properties.[51]
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