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Is there a difference of temperature sensitivity between marine
phytoplankton and heterotrophs?

Bingzhang Chen,1* Edward A. Laws2
1Ecosystem Dynamics Research Group, Research and Development Center for Global Change, Japan Agency for Marine-Earth
Science and Technology, Yokohama, Japan

2Department of Environmental Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge,
Louisiana

Abstract

The temperature sensitivity of phytoplankton growth rates, parameterized as the activation energy (Ea) in

the Boltzmann-Arrhenius equation, is critical to determining how global warming will affect marine ecosys-

tems and the efficiency of the biological pump in the ocean. We applied both linear and nonlinear regression

models to two laboratory temperature-growth experimental datasets to estimate the Ea of each taxon of phy-

toplankton and heterotrophic protists. We found that phytoplankton Ea and normalized growth rates

depended strongly on community composition. Diatoms grew more rapidly and had lower Ea values, whereas

cyanobacteria grew more slowly and had higher Ea values. The phytoplankton Ea was underestimated by a

single OLS regression on the pooled dataset because slowly growing cyanobacteria dominated in warm, oligo-

trophic ocean gyres, and rapidly growing diatoms dominated in cold, nutrient-rich waters. By contrast, the

median Ea values estimated from individual experiments did not differ between phytoplankton and hetero-

trophic protists. Our results suggest that phytoplankton community composition needs to be considered

when trying to predict the effects of ocean warming on ecosystem productivity and metabolism.

Temperature sensitivity of phytoplankton growth rate

plays a critical role in determining the response of primary

production to ocean warming in global-scale ocean models

(Sarmiento et al. 2004; Taucher and Oschlies 2011) as well as

the response to seasonal and other temperature changes. The

Metabolic Theory of Ecology (MTE) predicts that the mean

activation energy (Ea) of metabolism should be around 0.65

eV (Gillooly et al. 2001; Brown et al. 2004). The Ea for pho-

tosynthesis, however, is thought to be significantly lower

than the value (! 0.65 eV) for heterotrophic activities such

as community respiration and zooplankton grazing (Allen

et al. 2005; L!opez-Urrutia et al. 2006; Rose and Caron 2007;

Regaudie-de-Gioux and Duarte 2012). This difference has

profound implications, in that rising temperature would

tend to preferentially enhance heterotrophy, and with it the

release of CO2, potentially leading to a positive feedback to

climatic warming (L!opez-Urrutia et al. 2006). This difference

of temperature sensitivity might also be the critical factor

causing low carbon export efficiency in low latitude, warm

oceans compared to high latitude regions (Laws et al. 2000).

In the literature, estimates of Ea differ as a function of

methodologies and datasets. One of the earliest and most

widely used temperature coefficients (Q1051.88, correspond-

ing to an Ea of 0.41 eV) given by Eppley (1972) and later con-

firmed by Rose and Caron (2007) and Bissinger et al. (2008),

was estimated by fitting the upper envelope of phytoplank-

ton growth rate vs. temperature in a pooled laboratory data-

set. Some studies have argued that fitting the upper envelope

is inappropriate and have instead used ordinary least squares

(OLS) regression to fit mean growth rates under optimal con-

ditions, the result being a slightly lower estimate (! 0.3 eV)

of Ea (Sal and L!opez-Urrutia 2011). An Ea of 0.3 eV is more

consistent with the results from terrestrial ecosystems (Allen

et al. 2005) and is also more consistent with photosynthesis

being less sensitive to temperature than respiration.

While the above estimates of phytoplankton Ea were

based on laboratory data, other studies have estimated Ea
using field data, which is arguably more representative of in

situ plankton communities. Based on changes of oxygen

concentrations during light-dark bottle incubations,
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Regaudie-de-Gioux and Duarte (2012) found an Ea of 0.32

eV, similar to the value reported by L!opez-Urrutia et al.

(2006). Chen et al. (2012) estimated a similar Ea (0.36 eV) for

phytoplankton growth rates based on the dilution technique

(Landry and Hassett 1982).

Although the evidence for the lower temperature sensitivi-

ty of photosynthesis seems pervasive, there is reason to be

concerned about several statistical methods used in previous

studies. The approach for calculating Ea has been a regression

with temperature as the predictor (X) and the biological rate

as the response variable (Y). One important assumption in

OLS is residual independence (Faraway 2004). Growth rates of

one taxon measured at different temperatures should be more

correlated with each other than with the growth rates of dif-

ferent taxa. Thus in a pooled dataset that includes the growth

rates of the same taxon at different temperatures and the

growth rates of different taxa at different temperatures, the

assumption of residual independence is violated. This concern

also applies to field datasets that include uneven spatial and

temporal distributions of experimental data. For laboratory

datasets that consist of a number of independent experimen-

tal results, an apparent solution is NOT to pool the data

together as in Eppley (1972), L!opez-Urrutia et al. (2006), and

Rose and Caron (2007), but instead to run regressions for

each taxon separately, as in Dell et al. (2011).

Another well-known problem for OLS regression is the

errors in X. When the values of X are controlled by the inves-

tigator, OLS can give an unbiased estimate of the regression

slope even if the predictor is subject to error. However, when

the predictor is merely observed without control by the inves-

tigator, the OLS estimate tends to underestimate the regres-

sion slope (Ricker 1973). It is noteworthy that the errors

associated with X include not only measurement errors but

also natural variability, with the later accounting for most of

the errors in biological samples (Ricker 1973). The natural var-

iability typically includes the uncertainties caused by various

unknown variables, which co-vary with the predictor. Type II

regressions such as the geometric mean (GM) regression or

ranged major axis (RMA) regression have been recommended

for such situations (Ricker 1973; Laws and Archie 1981;

Legendre and Legendre 1998).

In laboratory experiments with a single taxon, the tem-

peratures are predetermined by the investigator, so that

there is no problem in applying OLS regression. However, in

a pooled laboratory dataset, the investigator loses control

over the temperatures because the experimental tempera-

tures used for growing the phytoplankters depend on the

thermal tolerance of the organisms, which is not under the

control of the investigator. Hence it is important to apply

OLS regressions to each taxon separately.

Another problem with the estimates of Ea is that most

previous studies have used linear regressions, although the

temperature response curves are often unimodal (Dell et al.

2011; Thomas et al. 2012; Chen 2015). Pawar et al. (2016)

have shown that deviations from the linear Boltzmann-

Arrhenius model can bias estimates of Ea. When the experi-

mental temperatures are biased toward the suboptimal tem-

perature range, Ea tends to be overestimated. And Ea will be

underestimated if the experimental temperatures are close to

the optimal growth temperature. Although nonlinear models

have been applied to analysis of marine phytoplankton data

(Thomas et al. 2012), it is unclear whether testing the null

hypothesis that the temperature sensitivity of autotrophs

and heterotrophs is the same will be unbiased if nonlinear

models are used.

Given the above concerns, we used both OLS and nonlinear

regression methods to analyze data for each individual taxon

in an extensive laboratory phytoplankton dataset and a smaller

microzooplankton dataset. We then compared the average Ea
with the Ea estimated from a single OLS regression analysis of

the pooled datasets. We also tried GM and RMA regressions on

the pooled laboratory and field datasets to see whether these

Type II regression methods could alleviate the problem in OLS.

Our null hypothesis was that the choice of regression methods

would not affect estimates of Ea and the relative temperature

sensitivity of autotrophic and heterotrophic rates.

Methods

Laboratory phytoplankton dataset and analysis

Two phytoplankton growth rate datasets were analyzed in

this study (Fig. S1 in the Supporting Information). The first

dataset consisted of marine phytoplankton specific growth

rates (d21) measured at different temperatures in the labora-

tory (Supporting Information Fig. S2). This dataset was built

upon four published datasets (L!opez-Urrutia et al. 2006; Rose

and Caron 2007; Bissinger et al. 2008; Thomas et al. 2012).

The measurements were conducted under light- and

nutrient-saturated conditions. Only experiments that includ-

ed at least four temperatures that spanned at least 58C were

included. The cell size in terms of biovolume (lm3) and the

coordinates of the locations where the taxa were isolated

were recorded (Supporting Information Fig. S1). The annual

mean temperatures of these locations were interpolated from

the World Ocean Atlas 2009 (http://www.nodc.noaa.gov/

OC5/WOA09/pr_woa09.html) using the method k-nearest

neighbor classification in the R package “class” (Venables

and Ripley 2002). All phytoplankton taxa were classified into

five functional types: diatoms, dinoflagellates, green algae,

cyanobacteria, and haptophytes. For the OLS regression anal-

ysis, we removed data points at temperatures above the opti-

mal growth temperature (Topt) to focus on the “physiological

temperature range” of phytoplankton (Pawar et al. 2016).

We fit the data from each experiment to a log-transformed

linear Boltzmann-Arrhenius model:

ln lð Þ5ln l0ð Þ1Ea $ Tb (1)

in which l is the growth rate of the plankton at Boltzmann

temperature Tb5
1
k

1
T0
2

1
T

! "

. The parameter k is the Boltzmann
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constant (8.62 3 1025 eV K21), T0 is the reference tempera-

ture (288 K), T is the experimental temperature (K) and l0 is

the growth rate constant at temperature T0. The OLS regres-

sion was performed with the function “lm” in R. We used the

function “lmodel2” in the R package “lmodel2” to perform GM

and RMA regressions (Legendre 2014), which can only be

applied to bivariate situations such as Eq. 1 (Legendre and

Legendre 1998).

For the nonlinear regression analysis, we included only

datasets with five or more experimental temperatures, at

least two of which were lower than Topt, and at least one of

which was higher than Topt. We used a nonlinear model to

fit the phytoplankton growth rate vs. temperature data

(Johnson and Lewin 1946; Dell et al. 2011):

l5l0

e
Ea
kb

1
T0
2

1
T

! "

11 Ea
Eh2Ea

e
Eh
kb

1
Topt

2
1
T

! " (2)

where Ea (eV) is the activation energy of the growth rate

without temperature inactivation, Eh (eV) is the parameter

indicating how fast the growth rate decreases with increasing

temperature due to high temperature inactivation, and Topt

(K) is the optimal growth temperature. Although the param-

eter Ea has a similar meaning in Eqs. 1 and 2, the value

should be higher in Eq. 2 because the effect of high tempera-

ture inactivation is not taken into account in Eq. 1. Other

symbols have the same meaning as in Eq. 1. The nonlinear

least squares regression was implemented using the R func-

tion “nls.”

Dilution dataset and analysis

The second dataset was a global dataset of results of dilu-

tion experiments expanded from Chen et al. (2012). The

dilution technique, which was first used by Landry and

Hassett (1982) to measure phytoplankton specific growth

rates (d21) and mortality rates (d21) due to microzooplank-

ton grazing, is the most widely used method to directly

measure phytoplankton specific growth rates in the ocean

(Laws 2013). The dilution technique can also give nutrient-

replete phytoplankton growth rates (ln), and thereby pro-

vide an estimate of the extent of nutrient limitation

(Mara~n!on et al. 2015). We selected experiments conducted

only in surface waters with irradiance levels at least 10% of

surface irradiance to minimize the problem of light limita-

tion. The experimental temperature, nitrate concentration,

and light level were also recorded from the literature when

possible.

The Ea of microzooplankton grazing rates (m, d21) was

also estimated from the dilution dataset. Following

Regaudie-de-Gioux and Duarte (2012), we normalized m to

the chlorophyll a (Chl a) concentration to obtain a simple

estimate of the biomass specific grazing rate.

Laboratory dataset of growth rates of heterotrophic

protists (H-Protists)

We also compiled a dataset of growth rates of H-Protists

at different temperatures (Supporting Information Fig. S3).

Cell volume (lm3) was also recorded for each taxon. The

protists were classified into four groups: ciliates, amoebea,

heterotrophic nanoflagellates, and heterotrophic dinoflagel-

lates. Note that there was only one experiment with hetero-

trophic dinoflagellates (Kimmance et al. 2006). The

coordinates of the isolation sites were not recorded due to

lack of data.

Results

Laboratory dataset of phytoplankton growth rates

For the pooled laboratory dataset of phytoplankton

growth rates, an OLS regression between ln growth rate and

temperature gave an Ea of 0.2360.02 eV (Mean6 SE, the

same below), whereas the GM and RMA regressions gave Ea
values of 0.8660.02 eV and 0.4260.04 eV, respectively

(Table 1; Fig. 1). Including the effect of cell size in the OLS

regression, with either a linear or unimodal model (Chen

and Liu 2011; Mara~n!on et al. 2013), did not significantly

affect Ea.

The OLS and nonlinear regressions applied to each indi-

vidual experiment are shown in Supporting Information Fig.

S2. In contrast to the Ea of 0.23 eV estimated from the OLS

regression on the pooled dataset, the median Ea of the indi-

vidual OLS regressions was 0.66 eV, close to the canonical

value of 0.65 eV (Brown et al. 2004). This difference may be

explained by the significant changes of community composi-

tion along the temperature gradient (Fig. 1). The phyto-

plankton isolated from warm and offshore waters were

mostly cyanobacteria, whereas other taxa, particularly dia-

toms, were mostly isolated from coastal environments from

tropical to polar regions (Fig. 2). When rates were normal-

ized to the same temperature, cyanobacteria dinoflagellates

had significantly lower l0 values than diatoms, green algae,

and haptophytes (Wilcoxon tests, p<0.001; Fig. 3a,b). For

example, the median l0 normalized to 158C was 0.75 d21 for

diatoms, nearly 3.6 times that of cyanobacteria (0.21 d21).

Thus, the slope of the OLS regression applied to the pooled

dataset underestimated the true temperature sensitivity of

phytoplankton growth rates because the slowly growing cya-

nobacteria that dominated the warm environments reduced

the magnitude of the regression slope.

The effect of phytoplankton functional types (PFTs) on l0

seemed much stronger than that of cell size (Fig. 3c,d). Even

at the same size, the l0 values of diatoms were significantly

higher than those of cyanobacteria and dinoflagellates.

Although in general a unimodal relationship existed

between l0 and size and a weak decreasing trend of l0 with

size existed within diatoms and dinoflagellates, the

Chen and Laws Temperature sensitivity of plankton
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variations between PFTs were so large that a size scaling

equation seemed meaningless.

There was no universal value of Ea among PFTs (Fig. 3e,f).

Based on the linear model, cyanobacteria had significantly

higher Ea values (median51.0 eV) than diatoms

(median50.47 eV), green algae (median50.63 eV), and hapto-

phytes (median50.69 eV) (Wilcoxon tests, p<0.01). This

result suggests that at higher temperatures (e.g., 308C), the

difference of growth rates between cyanobacteria and rapidly

growing diatoms and green algae is smaller than at 158C (Sup-

porting Information Fig. S4; Sal et al. 2015). For example, the

median l0 normalized to 308C was 1.25 d21 for cyanobacteria

and only 1.94 d21 for diatoms, although the difference was still

significant. This pattern, combined with the fact that the opti-

mal temperature tends to be higher for cyanobacteria than for

other phytoplankton (Chen 2015), implies that cyanobacteria

have a preference for high temperature, and the dominance of

cyanobacteria in warm, oligotrophic oceans can be partially

attributed to a temperature effect (L!opez-Urrutia and Mor!an

2015). Interestingly, the median Ea of diatoms is close to the esti-

mate of 0.42 eV from both the RMA regression (Fig. 1) and the

Eppley curve, the suggestion being that these two are actually

estimating the Ea of diatoms. This suggestion is understandable,

because diatoms dominate the pooled dataset and usually have

the highest growth rates among all phytoplankton.

We checked whether the use of the nonlinear model affect-

ed the above results (Figs. 3, 4). As expected, the Ea values esti-

mated with the nonlinear model, with a median value 0.78 eV,

tended to be larger than those from the linear model (Fig. 4a).

The differences in l0 estimates were less pronounced (Fig. 4b).

As a result, the differences of Ea values between cyanobacteria

and green algae or haptophytes became insignificant with

using the nonlinear model. The difference of Ea values between

cyanobacteria and diatoms, however, still persisted.

Dilution dataset

In the dilution dataset, an OLS regression between ln(ln)

and temperature yielded an Ea of 0.4060.02 eV, while the

GM and RMA regressions yielded Ea values of 0.7360.02 eV

and 0.5360.02 eV, respectively (Fig. 5a). Including the effect

of light or nitrate in the OLS regression did not improve the

goodness of fit or affect the estimation of Ea. The analysis of

l0 yielded similar results. The Ea of microzooplankton graz-

ing rate normalized to Chl a concentration (m : Chl) estimat-

ed by the OLS, GM, and RMA regressions were 0.5060.04

eV, 1.3960.04 eV, and 0.6860.05 eV, respectively (Table 1;

Fig. 5b).

Fig. 1. Regression lines of phytoplankton specific growth rates vs. temper-

ature in the pooled laboratory dataset. OLS: ordinary linear regression

(y50.24$x2 0.79). RMA: ranged major axis regression (y50.41$x2 0.82).

GM: geometric mean regression (y50.83$x 2 0.90). Dino: dinoflagellates.

Hapto: haptophytes. Green: green algae. Cyan: cyanobacteria.

Table 1. A summary of estimated Ea (eV; Mean61 SE) of phytoplankton growth rate (l, d21), heterotrophic protist growth rate (l,
d21), and microzooplankton grazing rate (m, d21) derived from OLS, GM, and RMA regressions on three datasets. Phyto: phytoplank-
ton. ln: nutrient-enriched phytoplankton growth rate (d21). m: microzooplankton grazing rate (d21). Chl: Chl a concentration (lg
L21). N: number of observations. The median Ea values estimated from linear and nonlinear (NLS) regressions applied on individual
experiments are also shown. The numbers in the parentheses are the number of experiments involved.

OLS GM RMA N Linear NLS

Phyto lab data (l) 0.2460.02 0.8360.02 0.4160.04 1387 0.66 (234) 0.78 (178)

Protist lab data (l) 0.4260.05*

0.5360.05†
0.7760.05 0.7260.04 173

172

0.66 (41) 1.06 (17)

Dilution data (ln) 0.4060.02 0.7360.02 0.5360.02 1291

Dilution data (m:Chl) 0.5060.04 1.3960.04 0.6860.05 1291

*The effect of cell size not considered.
†The effect of cell size has been taken into account.
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Laboratory dataset of H-Protists

For the pooled dataset of growth rates of H-Protists, the

OLS regression gave an Ea of 0.4260.05 eV, whereas the GM

and RMA regression gave Ea values of 0.7760.05 eV and

0.7260.04 eV, respectively (Table 1; Fig. 6). After taking

into account the effect of cell size, the Ea estimated with the

OLS regression increased to 0.5360.05 eV, with an estimat-

ed allometric exponent of 20.0960.02 (Fig. 6).

The median Ea of the individual OLS regressions applied to

each experiment was 0.66 eV, identical to the median phyto-

plankton Ea. Heterotrophic nanoflagellates had significantly

higher l0 values than other organisms (Fig. 7a; Supporting

Information Fig. S4). The differences of the l0 values between

nanoflagellates and ciliates can be accounted for by cell size,

but the differences of l0 values between nanoflagellates and

amoebae were not due to size (Fig. 7b). The effects of cell size

were also evident within groups. The Ea values were not

affected by PFT or cell size, and the universal value was about

0.65 eV (Fig. 7c,d). A comparison of the mean Ea value from

the pooled dataset and the median value from the individual

regressions revealed that the smaller differences among het-

erotrophic protists compared to phytoplankton may reflect

the fact that there were no apparent changes of community

structure along temperature gradients for heterotrophic pro-

tists (Fig. 6). The median Ea estimated from the nonlinear

regressions was 1.06 eV. This value, however, is less robust

than that of phytoplankton because only 17 experiments sat-

isfied the conditions for a nonlinear regression.

Phytoplankton Ea vs. H-Protists

A comparison between the Ea histograms of phytoplankton

and H-Protists suggests that the differences of Ea values

depended on species composition (Fig. 8). The most notable

difference was the fact that the Ea values of some diatoms with-

in the Class Bacillariophyceae and Coscinodiscophyceae were clos-

er to 0.4 eV than 0.65 eV (Supporting Information Fig. S5).

Discussion

Bias in the OLS regression for a pooled dataset

We have shown that a single OLS regression on a pooled

dataset of laboratory phytoplankton growth rates, which has

been widely used in the literature, generates a much lower

Ea (! 0.3 eV) than the median Ea from individual OLS regres-

sions for each experiment (Allen et al. 2005; L!opez-Urrutia

et al. 2006). This bias can be attributed to changes of the

phytoplankton community composition along a temperature

gradient (i.e., slowly growing cyanobacteria tend to domi-

nate at high temperatures). If we simply compare the medi-

an Ea values between phytoplankton and H-Protists, there is

no apparent difference. Although we only investigated the

Ea of H-Protists in this study, the Ea values of other hetero-

trophic plankton such as mesozooplankton and heterotro-

phic bacteria are not expected to deviate substantially from

the canonical value 0.65 eV predicted by MTE (Huntley and

Lopez 1992; L!opez-Urrutia and Mor!an 2007). The major

cause of the difference of Ea values between autotrophs and

heterotrophs has been long believed to be the abnormally

low Ea of autotrophs (Allen et al. 2005). Since we believe

that the previously reported Ea values of phytoplankton are

likely underestimates, previous reasoning that warming will

drive the plankton ecosystem toward heterotrophy due to

the lower Ea of phytoplankton, may be problematic (L!opez-

Urrutia et al. 2006; Rose and Caron 2007). With increasing

temperature, the marine plankton ecosystem might still be

more heterotrophic, not because of the lower Ea of phyto-

plankton, but because of the changes in phytoplankton

Fig. 2. Box-and-whisker plots showing the relationships of phytoplank-

ton functional types with (a) the bottom depth, (b) annual mean tem-

peratures of the isolation locations, and (c) the log10 cellular volumes.
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community composition (i.e., the slow-growing cyanobacte-

ria will have a tendency to dominate the community).

Type II regressions may partially alleviate the problem of

OLS regression bias by taking into account the errors in the

predictors. However, because of the uncertainties in the error

structures of both predictors and response variables, Type II

regressions may also bias the regression slopes of the pooled

dataset, and different variants of the Type II regression mod-

els yield inconsistent results (Table 1; Legendre and Legendre

1998).

This problem becomes intractable when dealing with field

datasets for which only a pooled dataset is available. Although

there have been many attempts to estimate Ea from field data-

sets (Chen et al. 2012; Regaudie-de-Gioux and Duarte 2012;

Fig. 3. Relationships of growth rates normalized to 158C with (a, b) phytoplankton functional type and (c, d) cell size. (e) and (f) show the relation-

ships between activation energies and phytoplankton functional type. (g) and (h) represent the relationships between activation energies and cell

size. (a), (c), (e) and (g) are the results from the linear model. (b), (d), (f), and (h) are the results from the nonlinear model.
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Mara~n!on et al. 2014), we do not recommend estimating Ea
from field data because of the confounding effects of covariates

such as community structure, thermal acclimation, and nutri-

ent and light levels that potentially bias the estimation of the

true temperature sensitivity. Here, it is important to reiterate

that temperature sensitivity reflects the direct effect of tempera-

ture on biological rates, excluding indirect effects of tempera-

ture such as temperature–induced water column stratification.

The direct effect of temperature deserves investigation because,

in ecosystem models, the effects of each environmental factor

on phytoplankton growth need to be treated explicitly and sep-

arately. In this context, the best estimates of Ea values come

from laboratory experiments in which factors other than tem-

perature are optimal.

Limitations of the laboratory data

Conversely, it might be argued that laboratory cultures

may not provide a good representation of the behavior of

real communities in the ocean. Laboratory experiments are

biased toward those species that can be easily isolated and

cultured, a fact that is particularly evident from the domi-

nance of coastal taxa in the experiments with diatoms,

dinoflagellates, and H-Protists (Fig. 2). It is well known

Fig. 4. Comparisons of estimates of (a) growth rates normalized to 158C

and (b) activation energies between the linear and nonlinear models.

Fig. 5. Data from dilution experiments. (a) Nutrient-enriched growth

rates (ln) and (b) microzooplankton grazing rates normalized to Chl a

concentrations (m : Chl) vs. temperature with three linear regression

lines shown. OLS regression equation for ln: y50.41$x – 0.61. GM for

ln: y50.74$x – 0.59. RMA for ln: y50.53$x – 0.60. OLS regression for

m : Chl: y50.50$x – 1.41. GM for m : Chl: y51.39$x – 1.36. RMA for

m : Chl: y50.68$x – 1.40.
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that it is difficult to culture many marine planktonic protists,

and for this reason we did not attempt to analyze the temper-

ature sensitivity of marine bacteria cultured in the lab.

Another problem is the large variability of Ea (Fig. 8).

Applying the median Ea as a universal constant in a global

model can certainly be expected to cause errors in localized

areas where the plankton community composition differs

from the species pool in the compiled laboratory dataset. A

better approach might be to apply one Ea value for each PFT

and also take into account the random variations of Ea with-

in each PFT. An alternative approach to this problem might

be to conduct in situ temperature-modulated experiments to

estimate Ea (Vaquer-Sunyer and Duarte 2013; Chen and Liu

2015). A criticism of such short-term experiments is their

inability to simulate the effect of temperature acclimation

(H. Liu pers. comm.). The dilemma is that neither laboratory

nor field data are perfect. Considering the fact that tempera-

ture–growth rate relationships have probably been most

extensively studied for plankton, similar problems undoubtedly

exist in the estimation of other temperature-rate relationships.

Size vs. PFT effects on plankton traits

There are two main approaches to reducing biological

complexity and computational demands while simulating

the effects of phytoplankton diversity. One strategy is to

aggregate species into a few functional types (Le Qu!er!e et al.

2005). Another strategy is to treat size as a master variable

and apply a size-scaling allometric equation to model the

effect of the distribution of sizes, with the hope that most of

the differences of traits among PFTs can be explained by size

(Moloney and Field 1991; Smith et al. 2015). Some studies

have combined both approaches, but have suffered from

greater computational demands (Ward et al. 2012). We

expect that the results of this study will facilitate selection of

the right strategy. The phytoplankton l0, which is the maxi-

mum growth rate at a reference temperature in the model,

seems more dependent on PFTs than on size (Fig. 3a). The

large amount of scatter in the plot of l0 vs. cell size (Fig.

3c,d) means that obtaining a simple size scaling equation,

either linear or unimodal, to account for the variations of l0
is problematic (L!opez-Urrutia et al. 2006; Chen and Liu

2011). Given the large impact of PFTs on l0 values, inclusion

of PFTs in phytoplankton models seems necessary (Irwin

et al. 2006; Ward et al. 2012). This conclusion also applies to

Ea, for which significant differences have been found among

PFTs, but no size effect. It should also be noted that obtain-

ing a size-scaling equation requires appropriate approaches

to correct for temperature effects because there are substan-

tial variations of Ea among taxa (Mara~n!on et al. 2013; Sal

et al. 2015).

The idea of simplifying simulation of the planktonic sys-

tem by using a general size-scaling equation is similar to

MTE, which attempts to model the metabolism of most

organisms based on a simple model. Although this idea

sounds appealing, the complex biochemical cycles and

feedbacks within the seemingly simple unicellular phyto-

plankton cannot be overlooked; a diversity of growth

responses to temperature is very likely (Mackey et al. 2013;

Pittera et al. 2014). Any modeler should bear in mind that

the simple models commonly used are just emulators of the

much more complicated biological systems within plankton

cells.

Physiological mechanism responsible for

phytoplankton Ea

To ascertain the correct value of the Ea for phytoplank-

ton growth, it is essential to understand the physiological

mechanisms underpinning the growth response to tempera-

ture. To our knowledge, the first quantitative hypothesis

aimed at explaining the abnormally low Ea of photosynthe-

sis was proposed by Allen et al. (2005). Based on the data

for a transgenic tobacco, Allen et al. (2005) have estimated

an Ea of 0.32 eV for terrestrial plants and have proposed

Fig. 6. Regression lines of specific growth rates of heterotrophic protists

vs. temperature in the pooled laboratory dataset. OLS: ordinary linear

regression (y50.42$x 2 0.23 without size; y50.53$x10.54 2 0.09$lnV
with size, where lnV is the log-transformed cell volume). RMA: ranged

major axis regression (y50.72$x 2 0.26). GM: geometric mean regres-

sion (y50.76$x 2 0.26).
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that the increasing role of Rubisco oxygenation with

increasing temperature reduces the overall temperature sen-

sitivity of net photosynthesis. However, one important dis-

tinction between marine phytoplankton and terrestrial

plants is the widespread CO2 concentrating mechanisms

(CCMs) in cyanobacteria and eukaryotic algae (Giordano

et al. 2005; Yvon-Durocher et al. 2010; Raven et al. 2011).

CCMs allow phytoplankton to elevate the internal CO2

concentration within the plastid to levels orders of magni-

tude higher than in the external medium. The CCM there-

by attenuates the antagonistic effect of O2 against CO2 at

the binding site of Rubisco (i.e., photorespiration) and

causes the temperature sensitivity of net photosynthesis to

approach that of the maximal rate of Rubisco carboxyla-

tion, which is close to 0.65 eV (Bernacchi et al. 2001; Tcher-

kez et al. 2006). Thus, the temperature sensitivity of marine

phytoplankton can be affected, inter alia, by the capacity of

the CCM as well as by the temperature sensitivity of

Rubisco carboxylation (Tcherkez et al. 2006).

It is also worth noting that some studies (e.g., Mara~n!on

et al. 2013) seem to suggest that the balance between nutri-

ent uptake and growth requirements, instead of Rubisco

carboxylation rate, may be the key factor that ultimately

determines the growth rate of phytoplankton even under

nutrient-replete conditions. This scenario would imply that

understanding the Ea of phytoplankton growth requires a

focus on nutrient acquisition instead of photosynthesis.

The difference of the temperature sensitivity between

phytoplankton and heterotrophs depends on community

composition

Given the significant differences of Ea values among phy-

toplankton PFTs, any discrepancy between the temperature

dependence of autotrophic and heterotrophic rates will

depend at least partially on phytoplankton community com-

position. In areas such as the subtropical and tropical

oceans, where cyanobacteria dominate, the difference

between the temperature sensitivity of autotrophic and

Fig. 7. Growth rates normalized to 158C vs. (a) functional groups and (b) cell size of heterotrophic protists. (c) Activation energies vs. functional

groups. (d) Activation energies vs. cell size. Amo: amoebae. Cil: ciliates. Dino: heterotrophic dinoflagellates. Flag: heterotrophic flagellates.
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heterotrophic activities is expected to be smaller than in

areas where diatoms dominate, at least if indirect effects

such as stratification are small.

Conclusion

Our results provide important information about the tem-

perature sensitivity of marine plankton, information that is

essential for modeling how marine plankton may respond to

climate change (Sarmiento et al. 2004; Taucher and Oschlies

2011). In particular, our analysis questions the widespread

belief that the temperature sensitivity of phytoplankton is

lower than that of heterotrophs. Given the significant varia-

tions of l0 and Ea among phytoplankton PFTs, an important

implication of our results is that it would be preferable to

have key PFTs explicitly represented in Earth system models

(Le Qu!er!e et al. 2005). Whereas temperature traits are among

the most extensively measured characteristics of phytoplank-

ton (Thomas et al. 2012; Chen 2015), careful statistical anal-

yses and a mechanistic understanding are still needed to

provide useful guidance for modeling and predicting how

marine ecosystems will respond to climate change.
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