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Using computer simulation we explore how two-dimensional systems of colloids with a combination of short-

range attractive and long-range repulsive interactions generate complex structures and kinetics. Cooperative

effects mean the attractive potential, despite being very short-ranged compared to the repulsion, can have

significant effects on large-scale structure. By considering the number of particles occupying a notional

“repulsion zone” defined by the repulsion length scale, we classify different characteristic structural regimes

in which the combination of attraction and repulsion leads to different structural and kinetic outcomes, such

as compact clustering, chain labyrinths, and coexisting clusters and chains. In some regimes small changes in

repulsion range and/or area fraction can change timescales of structural evolution by many orders of magnitude.

DOI: 10.1103/PhysRevE.99.012603

I. INTRODUCTION

Even simple interactions between colloidal particles can

create surprisingly complex structures and kinetics, which is

one reason for colloids’ ubiquity and versatility in applica-

tions and their importance in generating new fundamental

scientific insight, for example, in the physics of biological sys-

tems [1]. Colloidal structures and how they evolve over time

are key to functionality in products such as foods, cosmetics,

paints, coatings, lubricants, porous media, membranes, and

filters. Structure and heterogeneity also determine materials’

response to external forces in flow or under mechanical stress

such as gravity. Hence such basic features of a product as the

“shelf life” of a processed food or paint or the capture effi-

ciency and selectivity of a porous filter are controlled funda-

mentally by the interaction potential between the constituent

particles. Moreover while the equilibrium state is related

to the interaction potential through thermodynamics, many

useful systems are not at equilibrium, for example, metastable

mixtures of oils and water in foods and personal care products:

thus the structures created on the system’s “journey” toward

equilibrium, often different to those found at equilibrium, and

how that journey can be interrupted, sometimes on very long

timescales, i.e., the kinetics of structural change, are important

factors. These kinetic aspects are even less straightforward to

predict from the interaction potential.

It is well established that colloidal particles with purely

attractive interactions can, depending on particle concentra-

tion, attraction strength, and attraction range, follow a range

of “routes to equilibrium” involving liquid-gas phase sepa-

ration, growth of compact clusters, and formation of fractal

aggregates and space-filling gels [2,3]. In many practical

examples of colloidal systems there is a more complex par-

ticle interaction composed of both attractive and repulsive

contributions, at different length scales, and it remains less
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clear how this combination of interactions controls structure

and the kinetics of transit to equilibrium [4–10]. Generally,

potentials featuring two length scales lead to complex mi-

crophase (equilibrium) separation and structural “crossovers”

(see Ref. [11] for a recent study and related references). For

two-dimensional (2D) systems, much previous simulation and

theoretical work has shown how short-range attraction com-

bined with longer-range repulsion, and even pure repulsion

exhibiting multiscale features such as a “shoulder” at short

length scale, can generate a complex plethora of structures

in and out of equilibrium, including stripes, chains, clusters,

and ordered crystals [12–14]. Similar patterns are seen in

experimental systems such as magnetic particles and biolog-

ical membranes [6,15–17] and have been discussed in the

general context of geometrically frustrated materials [18]. 2D

systems are particularly interesting for applications such as

structured membranes, filters, films, coatings, and biological

materials.

In this paper we focus on how short-range attraction and

long-range repulsion in a simple colloidal model combine to

determine structure and kinetic evolution on a range of length

scales and timescales. We show that repulsion determines

large-scale structure (the arrangement of structural “units”

such as monomers, chains, chain labyrinths, ordered droplets

and stripes, and lamellar-like polycrystals) by driving sep-

aration of the suspension into “structural units” of various

types at the length scale defined by the repulsion range.

Meanwhile the attraction can play a role at both short length

scales (small-scale structural details) and length scales much

larger than the attraction range, depending on the combination

of attraction and repulsion. Under some conditions small

changes in repulsion range and attraction strength can change

kinetic timescales by many orders of magnitude. We show that

a parameter combining the repulsion range and area fraction

is useful to categorize regimes of different “structural units”

in which the attractive interaction has qualitatively different

effects on structure and kinetics. Thus a range of different

structures can be realized and “captured” using repulsion
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FIG. 1. Particle interaction potential as a function of the sepa-

ration between particle centers, r , showing attraction and repulsion

energies EA and ER , respectively, and hardcore repulsion at center

separation r = 2a where a is the particle radius. Attraction range δA

and repulsion range δR are measured from the surface of the particle

so that two particles begin to repel when their center separation is

r = δR + 2a.

and attraction between particles to change the structural path

followed toward minimum energy.

II. METHODS

We use Monte Carlo simulations where a fixed area frac-

tion � of monodisperse circular disk particles of radius a,

interacting through a potential U (r ) (where r is the inter-

particle center separation), diffuse in a square 2D box with

periodic boundary conditions. For versatility of understanding

the roles of attraction and repulsion, we employ a triangular

piecewise potential. The particles have a hard-core repulsion

for r < 2a to prevent overlap, a triangular attractive potential

with range δA and depth EA (EA is the potential at center

separation r = 2a), and a longer-range triangular repulsive

potential with range δR . For convenience in the description of

parameters here, we quantify the repulsion strength ER using

what would be its effective value at r = 2a in the absence of

attraction, as shown in Fig. 1. Random-walk particle moves

are selected from Gaussian distributions in dimensions x

and y and accepted with probability P = exp(−�E) where

�E is the change in potential energy of the particle due to

interactions with its neighbors associated with the proposed

move. Particles therefore execute Brownian random walks

within the interaction potential of their neighbors. We have

checked that structures observed are insensitive to the mean

step length used as long as this step length is a small fraction

of the shortest range interaction (the attraction, in this case).

Simulations are started from “fluid” configurations that are

equilibrated by running the simulation with only hard-core

repulsion (equivalent to high temperature) for a large number

of steps until the measured pair correlation function g(r ) has

reached a steady state, and thereafter immediately quenched

to the required values of the energy parameters. In most data

presented, the number of particles is N = 1000 although we

have checked for finite size effects using N = 4000 in some

cases, finding no change in results. The system box size in

units of particle radius is determined by the required area frac-

tion �. Hereafter, for conciseness all parameters and results

are quoted in appropriate reduced units: lengths (including

interaction potential length scales) are given in units of the

particle radius a, and energies are given in units of the thermal

energy scale kBT where kB is Boltzmann’s constant and T the

temperature. Since kBT is the typical scale of thermal fluctua-

tion of a particle’s kinetic energy, scaling interaction energies

in this way allows a sense of how thermal fluctuation, which

drives transit to equilibrium, competes with the interparticle

interactions. Setting the interaction energy scale is thus equiv-

alent to setting the inverse temperature. The mean step length

of the particles’ Brownian walk determines the timescale: for

the value used here and a total run time of 107 time steps

(attempted moves per particle), for example, particles diffuse

a distance (in units of a) similar to that which an isolated

1 µm diameter colloid in water at room temperature would

diffuse in 1 s, equivalent to a small multiple of the particle

radius a. While particles therefore do not diffuse far over the

reported run times, the area fractions and interaction ranges

considered here mean that characteristic structures are formed

quickly, i.e., without substantial particle diffusion. This has

implications for whether systems reach thermodynamic equi-

librium: as results will show and as discussed below, most

systems are trapped by the strong cooperative interactions in

nonequilibrium structures that evolve very slowly.

III. RESULTS

In the present work, we focus on the roles of δR , �, and

EA, maintaining a constant attraction range δA = 0.05 and a

constant repulsion energy (at zero separation) ER = 45. Thus

we focus here on strongly repulsive systems, although as we

shall see the attractive part of the interaction turns out to

have significant effects despite its short length scale. When

repulsive interactions are dominant, we expect particles to

disperse individually so as to minimize global repulsion. But

this is possible only as long as the combination of area fraction

� and repulsion range δR gives space enough for all individual

particles to separate beyond δR . The boundary of this single-

particle dispersed phase, in terms of repulsion range and area

fraction, can be estimated by assuming that repulsion drives

the suspension to separate into groups of particles occupying

“repulsion zones” of radius 1 + δR/2 (in units of particle

radius). At area fraction �, the average number of particles

contained in each such zone is nb = �(1 + δR/2)2. For nb �

1 there is space for monomers to minimize repulsion by

occupying separate zones, remaining individually dispersed.

At nb > 1 repulsion zones must contain multiple particles and

the configuration of particles that would minimize free energy

(in equilibrium) or indeed nonequilibrium configurations that

may appear and evolve as the system journeys toward equil-

brium are less clear. As we will see nb is a useful parameter to

categorize and contrast structure and the kinetics of evolution

toward equilibrium under different conditions.

In Fig. 2 we plot snapshots of the particle configurations

in a “phase diagram” of nb versus � at a fixed value of

EA = −7 and fixed number of time steps t = 106 after the

quench to the given values of the interaction parameters. As
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FIG. 2. Simulation snapshots at t = 106 time steps and EA = −7 showing dependence of structure on area fraction � and number of

particles per “repulsion zone,” nb (see text). Particles are plotted as disks with radius a.

can be seen the boundary nb ≃ 1 predicts reasonably well

the limit of the single-particle dispersed phase: typically, just

below nb = 1, snapshots show systems mostly dispersed as

single particles, with a small population of dimers and trimers.

Once nb is somewhat larger than 1, particles can no longer

minimize repulsion by individually separating to interparticle

distances greater than δR and must “choose” another structural

strategy. For example, some particles might group closer to

enable others to get further apart, to reach overall minimum

free energy. Figure 2 shows that various structural types are

observed depending on distance above the nb = 1 boundary,

including chains, intertwined “labyrinths,” mixtures of chains

and small clusters, quasiordered compact groups, and stripes.

(Results for different attraction EA show similar nb bound-

aries between characteristic structures, although as we show

later, EA has significant effect on the later time kinetic aging
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FIG. 3. (a) Pair correlation function g(r ) (with r scaled by the

particle radius a) for example simulations at t = 106 time steps, with

� = 0.35, EA = −7 and a range of δr values. (b) g(r ) vs the particle

surface separation r − 2a scaled by δR . Dashed lines show data for

nb � 1. Systems with nb � 1 feature a strong peak at (r − 2a)/δR =

1 (dotted vertical line).

of the systems.) Plotting the pair correlation function g(r )

versus the particle surface separation (r − 2) scaled by δR

[Fig. 3(b)] produces a strong peak at (r − 2)/δR = 1 for all

cases above nb ≃ 1. Hence for nb � 1 the repulsion range

δR sets the dominant “interstructural” length scale, i.e., the

separation between chains, groups, etc., while for nb < 1

particles have enough space to separate at distances greater

than the repulsion range, so that δR is less of a determining

scale.

In fact, such order characterized by δR occurs with or

without short-range attraction (at this high value of ER at

least), showing that ordered structures such as chains, groups,

and stripes do not require an attractive interaction and are

simply driven by repulsion [13]. The repulsive interaction

drives separation into characteristic structural units separated

by length scale δR . The strong repulsive interactions mean

that individual groups are relatively stable, i.e., there is only

slow “swapping” of particles between groups (see below for

further examination of the role of thermal aging). We shall see,

however, that the attractive part of the interaction can have

significant effects on the structural details at both long and

short length scales and on the time evolution of the system.

As demonstrated by Fig. 2 the type of structural unit

formed depends on how many particles must occupy the

repulsion zone, i.e., nb. First, we discuss behavior at large

nb ≫ 1. Structures here are typified by groups of particles,

groups being dispersed and roughly ordered on the δR length

scale (Fig. 4). One can think of this as an effective rescaling:

instead of dispersed, ordered single particles at nb � 1, at

large nb free energy is minimized by separation into dispersed,

ordered larger groups of particles. Locally, particles within

each group repel each other, but globally the separation from

neighboring groups means an overall reduction in free energy.

Being short-ranged, the attractive part of the potential does

not affect the intergroup length scale, but it does change

the local group structure, the way the groups “connect” to

each other, and the kinetics of structural evolution (compare

the different attraction strength examples in Fig. 4). Strong

attraction [Figs. 4(a) and 4(b)] leads to more disordered group

shapes and, at early enough times, more chainlike structure,

FIG. 4. Snapshots from simulations for � = 0.35 and δR = 8.0,

for t = 106 (left column) and t = 107 (right column) time steps,

contrasting the role of attraction energy EA: (a, b) EA = −7; (c,

d) EA = 41; (e, f) EA = 45, i.e., EA = ER implying no attractive

“well” in the interparticle potential.

which compactifies over time due to thermal fluctuations.

Weaker attraction [Figs. 4(c) and 4(d)], allowing increased

rates of thermal fluctuation, leads to better defined regular

groups. Removing attraction altogether ]Figs. 4(e) and 4(f)]

allows groups to connect and form structures similar to stripes,

although there remains strong long-range ordering (stripe

separation) and remnants of group structure along the stripes.

A measure based on the scale of void spaces opened up by

the interaction provides more quantitative information on the

roles of repulsion and attraction. We identify for each particle

the region of void space closer to it than to any other particle,

i.e., the particle’s Voronoi cell, and record for each particle

the distance from the particle surface to the most distant point

in its Voronoi cell, Rmax . Rmax identifies particles bordering

large voids compared to particles in the bulk of compact

clusters or groups [see Fig. 5(e) for an example snapshot].

The distribution of Rmax across the population of particles,

and how this changes with time, distinguishes different cases

of structure and kinetic evolution depending on repulsion

range and attraction energy [Figs. 5(a)–5(d)]. Peaks in the
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FIG. 5. Distributions of the distance to the most distant point in a

particle’s Voronoi cell, Rmax , from simulations with � = 0.35, EA =

−7 at (a) δR = 8.0 (nb = 8.75); (b) δR = 4.0 (nb = 3.15); (c) δR =

2.0 (nb = 1.4); (d) late-time (t = 107 time steps) distributions at

different δR , and, for comparison, the distribution for δR = 8.0 and

EA = 45; (e) example simulation snapshot (δR = 8.0, EA = 45, t =

107) with particles with Rmax < 1.5 in green, Rmax � 1.5 in red; (f)

time dependence of the length scale indicated by the large-distance

peak in the Rmax distribution for δR = 8.0, for both EA = −7 and

EA = 45. The dashed line illustrates a power law with exponent of

0.15.

distribution at a given size indicate significant populations of

voids of that size. The presence of multiple peaks indicates

that there is more than one characteristic “environment” for

particles in the system, in other words there are regions with

different local void geometries and interparticle structures,

such as particles inside and particles at the surface of groups.

At nb ≫ 1 [e.g., δR = 8, � = 0.35 giving nb = 8.75;

Fig. 5(a)] an early-time broad peak in the Rmax distribution

transforms into a peak traveling to larger Rmax , demonstrating

the growth of large intergroup voids of a characteristic size,

and a small peak at low Rmax , corresponding to particles

inside compact groups. Plotting the position of the large Rmax

peak over time for different values of EA [Fig. 5(f)] reveals

power law kinetics of group separation (void growth) with an

exponent (∼=0.15) independent of EA. In other words at nb ≫

1 the structure evolves toward a state of quasiordered groups

at all EA, driven by growth of voids whose characteristic

FIG. 6. (a–c) Simulation snapshots for � = 0.35 and δR =

4.0 (nb = 3.15) at t = 107 time steps. Particles with Rmax < RM

are plotted in green, particles with Rmax � RM in red, where RM is

selected to divide the Rmax distributions (see panel d) into two halves.

(a) EA = −7, RM = 1.7; (b) EA = 41, RM = 1.7; (c) EA = 45,

RM = 1.4. (d) Late-time (t = 107 time steps) Rmax distributions at

the different EA corresponding to the snapshots in panels (a) to (c).

size obeys an EA-independent growth law. At large nb phase

separation into voids and clusters is therefore dominated and

driven by repulsion (at least at the relatively strong repulsion

studied, ER = 45). Nevertheless the details of the Rmax distri-

bution and hence the finer details of structure do still depend

on EA. Interestingly, the low-Rmax peak at late time [arrows in

Fig. 5(d)] is at significantly smaller length scale for EA = 45

compared to EA = −7. At first sight this implies, perhaps

surprisingly, that local structure inside groups of particles

seems more compact at weaker attraction. Further study of

the detailed local structure will be reported elsewhere, but

for now we point out that increased regularity, rather than

compactivity, of the local structure inside a group will tend to

reduce Rmax , while particle aggregation at stronger attraction

will tend to produce a more irregular structure with larger

spaces and hence larger Rmax , since stronger attraction makes

local restructuring more difficult.

Next we turn to intermediate nb [e.g., δR = 4, � = 0.35

giving nb = 3.15, Fig. 5(b)], where phase separation structure

and kinetics are more complex and, furthermore, depend more

substantially on the attraction energy EA. At zero attraction

(EA = ER = 45) some particles form small ordered groups,

themselves arranged in layers reminiscent of lamellae; but this

phase exists in polycrystal domains within a more disordered

phase [Fig. 6(c)]. At strong attraction, by contrast, regions of

small compact groups (typically of four particles) coexist with

regions of short roughly aligned chains [Fig. 6(a)]. Particles in

the ordered units and compact groups have lower Rmax while
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FIG. 7. Time dependence of FV , the fraction of the system area

occupied by particles adjacent to “large” voids, i.e., particles with

Rmax � RM , for � = 0.35 and δR = 4.0 (nb = 3.15) at various EA.

For EA = −7, 38 and 41 we use RM = 1.7, while for EA = 45,

RM = 1.4, corresponding to the snapshots in Fig. 6. For EA = 45

we also show RM = 1.7 (the solid line) for comparison.

particles in the still disordered and short aligned chain part of

the system have higher Rmax as shown by the different colors

in Fig. 6. When the number of particles that must be fitted

into the local repulsion zone nb ≈ 3, the possible structural

responses are evidently more complex.

The kinetics of structural evolution in such a coarsening

system can be tracked over time by computing FV , the fraction

of system area occupied by particles in the large Rmax regions

i.e., particles with values of Rmax above a characteristic value

RM distinguishing the two coexisting regions. We compute

FV simply by adding the Voronoi cell areas of particles with

Rmax � RM (Fig. 7). RM is chosen to split the Rmax distri-

bution approximately evenly and most clearly separate the

system into different characteristic structures above and below

RM , as demonstrated by the snapshots in Fig. 6. As shown

for one example in Fig. 7 changing RM shifts the FV data in

absolute terms but does not change the form of the temporal

dependence. For all EA the total area of the disordered large

void phase FV initially decreases before, at similar time for all

EA, beginning to rise. However, without attraction (EA = 45)

FV subsequently decreases again and is still decreasing at the

longest run times we reach: the area occupied by crystallites

of lamellae-arranged ordered units, associated with low Rmax ,

continues to fill an increasing fraction of the system over

time. In contrast, with increased attraction strength, after the

initial decrease FV continues to increase to a maximum at an

EA-dependent value: large Rmax (void) regions form and fill

an increasing fraction of the system up to a limit that depends

on the strength of attraction. Having reached this limit the

void regions persist, the structure showing no evidence of

approaching back to the no-attraction case. At intermediate

nb it seems therefore that attraction enables generation and

freezing of larger voids into the system, leaving a long-lasting

structure different from the no-attraction case. Even a weak

attraction of EA = 41 (i.e., ER − EA = 4kBT ) is enough both

to significantly change the structure and to maintain this

change against thermal restructuring [Fig. 6(b)].

Given that the attractive interaction is very short-ranged

compared to the scale of voids it is surprising that it should

have such large-scale effects. We propose that this is due to a

cooperative effect of repulsion and attraction that evidently

becomes important for intermediate nb. Repulsion, being

long-ranged, drives the separation of the system, generating

large Rmax voids. However during this process, the particles

bordering these voids form chains. These chains, and thus

the large void regions, are stabilized by the combination of

repulsion (chains aligning approximately parallel to minimize

repulsion) and attraction (holding neighbors in the chains to-

gether against local fluctuations that would otherwise convert

short chains to small compact units) [14]. The result is a

coexistence of zones of short aligned chains and zones of

small compact groups as seen in Figs. 6(a) and 6(b). At zero

attraction (EA = ER), however, chains are not maintained by

attraction between neighbors, and thus there is no interchain

repulsion to stabilise the large-void fraction of the system.

At intermediate nb, therefore, competition between different

structural processes leads to complex long-lasting structural

differences at different attraction strength.

For 1.0 < nb � 2.0 a distinctly different characteris-

tic structure is observed, the so-called “chain labyrinth”

(Fig. 8). Here the Rmax distribution is sharply single-peaked

[Fig. 5(c)]: almost all particles are in tightly intertwined cor-

related chains and hence at the edge of large voids. Figure 8(a)

shows that effective “labyrinths” still form even at low particle

concentration: the chains of the labyrinth are shorter, even

reduced to dimers and trimers, but their mutual repulsion

still leads to an interwoven labyrinthine arrangement. For nb

between 1 and 2, ≃2 particles occupy a typical repulsion

zone and by definition will form a dimer with a defined axis.

When repulsion is long-ranged enough, a particle approaching

such an existing dimer feels minimum repulsion approaching

along the axis of the chain compared to perpendicular, so that

any growth will tend to promote chains. Meanwhile mini-

mization of repulsion between different neighboring chains

will encourage local parallel alignment of growing chains.

Hence free energy will be reduced by the formation of

chains [14].

Because chains are stabilized by interchain repulsion, at-

tractive interactions are not required for the chain labyrinth

phase to form. The details of the local structure do, however,

depend on EA. Strong attraction freezes in local structure,

e.g., the long, straight parallel chains of Fig. 8(e); reducing

attraction allows increasingly more chain “flexibility” and

curvature [Figs. 8(f) and 8(g)]. From an applications point

of view, changing EA could therefore be used to change the

shape and arrangement of holes in a quasi-2D system such

as a colloidal film or coating, perhaps useful for designing

selective filters and membranes or patterned surfaces.
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FIG. 8. Simulation snapshots showing chain labyrinth structure

at t = 106 time steps (a–d) and t = 5 × 106 time steps (e–h) for

a range of � and energy parameters as follows: (a) � = 0.1,

EA = −7, δR = 6.0 (nb = 1.6); (b) � = 0.25, EA = −7, δR =

3.0 (nb = 1.56); (c) � = 0.35, EA = −7, δR = 2.5 (nb = 1.77);

(d) � = 0.4, EA = −7, δR = 2.0 (nb = 1.6); (e) � = 0.5, EA =

−7, δR = 2.0 (nb = 2.0). (f) � = 0.5, EA = 41, δR = 2.0 (nb =

2.0); (g) � = 0.5, EA = 45, δR = 2.0 (nb = 2.0); (h) � = 0.25,

EA = −7, δR = 4.0 (nb = 2.25), showing onset of coexistence of

chains and small compact groups.

As nb is increased beyond ≃2 the chain labyrinth begins

to give way to mixtures of chains and small groups such

as triplets [Fig. 8(h)]. As more than two particles (on aver-

age) need to occupy the repulsion zone in order to achieve

separation at the δR length scale, we therefore expect a

mixture of zones containing triplets (local nb = 3) and zones

containing chains (local nb = 2).

An important question for design of functional materials

that are not at thermodynamic equilibrium (see below for

further discussion) is the kinetic stability or otherwise of dif-

ferent structures. We examine structural conversion between

monomers, chains and more compact structures by identifying

particles as belonging to chains or compact groups as follows.

A chain particle will have at least two neighbors (particles

within some cutoff distance) but, crucially, to qualify as

a chain particle these neighbors must not be neighbors of

each other. (Here we use a cutoff distance of 0.5a to define

neighbors: we have checked that results are insensitive to

this as long as it is not too large, i.e., does not approach

the repulsion range. Note that such neighbors in chains are

not therefore necessarily bonded by attractive interactions: we

seek a general structural analysis that can be applied even for

zero attraction, important because we know that chains form

even with zero attraction.) Particles at the end of chains, which

have only one neighbor, are also identified as chain particles

if that neighbor is itself a chain particle. Conversely we define

a group particle as having at least two neighbors which are

also neighbors of each other. Finally there are also particles

with no neighbors within the cutoff distance, i.e., monomers.

Inspection of snapshots (see the inset to Fig. 9 for an example)

is used to validate that this method successfully distinguishes

between chains, groups, and monomers.

The temporal behavior of the fractions of particles in

chain and group configurations (Fig. 9) demonstrates that in

the chain labyrinth regime (1.0 < nb � 2.0) conversion from

chain to group is very slow, the growth of the group fraction

being approximately logarithmic in time. Chain labyrinths

persist for long times. Even though coarsening would nor-

mally be seen as a local process depending on the short-

range interaction of two particles, with an Arrhenius-type

characteristic rate determined simply by the attractive inter-

action, because the particles are assembled into chains and

neighboring chains are strongly correlated at the significantly

larger length scale δR by the repulsion, coarsening, e.g., into

groups requires not just breaking local attractive bonds but

overcoming the repulsion of neighboring parallel chains: a

much more energetically costly disturbance in the local energy

balance.

Figure 9 shows that there is a “maximum chain” state

at a particular nb = nmax where the fraction of particles in

groups and monomers is minimized. In Fig. 9, � = 0.35, for

example, this occurs around nmax ≈ 1.4. For nb below this,

we see chain-monomer coexistence. The observed monomers

tend to be grouped in lines akin to chains: these monomers

are the “remnants” of the ordered single-particle dispersed

phase. As nb increases above nmax the population of particles

in groups increases, until by nb ≃ 2.0 significant numbers of

particles exist in groups rather than chains.

The fact that the proportion of particles in chains and

groups is still changing at the longest run times demonstrates

that the systems are not at thermodynamic equilibrium. Re-

structuring and aging processes are in fact occurring on a

range of timescales and length scales. At early times after the

quench from zero interaction to the given value of ER and EA,
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FIG. 9. Fraction of particles belonging to chains (top), compact

groups (middle), and fraction of monomers (bottom), for � = 0.35,

EA = −7, and various δR (nb). The inset to the middle plot shows an

example snapshot (� = 0.35, EA = −7, δR = 3.0, nb = 2.2) at t =

107 time steps, with particles belonging to chains plotted in green,

particles in groups in yellow. Arrows in the middle plot indicate

change in growth of fraction in compact groups, as discussed in the

text.

Fig. 9(a) shows that the majority of particles exist in chains.

Thermal conversion over time from chains to more stable

triplets and larger groups occurs at a rate that increases as nb

increases from nmax . At large nb the rate of conversion also

reduces at later time [see arrows in Fig. 9(b) for nb = 3.15

and nb = 8.75]. This switch in growth rate coincides with

when FV , the fraction of system area contributing to large

voids, reaches its maximum value (Fig. 7). The increase in

FV indicates growth of large voids between chains or groups

as particles seek reduced energy states: FV reaches a constant

as this route to reducing repulsion energy by maximizing

separation reaches a limit when there is no further space to

create large voids. According to Fig. 9(b), local chain-to-

group reconfiguration continues after this time, representing

a secondary route to further minimizing energy but with a

different (slower) characteristic timescale.

The magnitude of restructuring rate is highly dependent

on nb: for example, from Fig. 9 at nb = 3.15 (δR = 4) the

fraction of particles in groups reaches 0.5 in around 106 time

steps. If we extrapolate from the logarithmic trends at nb =

2.18(δR = 3.0) and nb = 1.93(δR = 2.7) we find equivalent

characteristic times of 109 steps and 1014 steps, respectively.

This indicates a very significant dependence on small changes

in nb. For a real material where one simulation time unit is

around 10−7 s, e.g., such as the example mentioned above of a

film of ≃1 µm colloids, a reduction in repulsion length scale

from δR = 4 to δR = 2.7 therefore generates an increase in the

characteristic time for structural evolution from a fraction of a

second to hundreds of days. Such a huge change in timescale

indicates a strongly cooperative effect not simply related to the

interaction between two isolated particles: indeed, logarithmic

scaling in time is often associated with aging in complex

energy landscapes such as labyrinths and glasses [5,19,20].

Such a sensitivity of timescale magnitude to system properties

indicates a valuable control variable in the design of func-

tional materials.

IV. CONCLUSIONS

We have explored the complex interplay between short-

range attraction and long-range repulsion, focusing here on

relatively strong repulsion, demonstrating effects on structure

and kinetics that vary significantly depending on EA, δR , and

�. The effect of the repulsion is to drive separation of particles

into “repulsion zones” of length scale δR . The average number

of particles that, by mass conservation, must nominally oc-

cupy each zone, nb, combines the effects of repulsion length

scale and particle area fraction and is a useful parameter to

categorize structural and kinetic behavior. Ordered single-

particle systems give way, as nb increases above 1, to chains

driven and stabilized by repulsion, and the formation of a

chain labyrinth. The formation of this labyrinth occurs at all

EA, and thermal coarsening is very slow even with zero attrac-

tion. As nb increases above ≃2, systems become characterized

by mixtures of chains and compact groups. In this regime,

kinetics of structural evolution (chains converting to groups

under thermal fluctuation) is exceptionally strongly dependent

on nb. At yet higher nb, systems demonstrate coexistence

of different ordered and disordered structures which depend

strongly on EA and persist for long times, again showing little
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sign of thermal coarsening. Finally at large nb ≫ 1 the system

is dominated by repulsion, ultimately separating into layered

or ordered compact groups. Short-length-scale structure and

coarsening depend on EA but systems show similar power-law

long-length-scale coarsening kinetics at all EA.

Our results deepen our knowledge of the role of com-

bined short-range attraction and long-range repulsion and

the consequences of “frustrated” systems, demonstrating that

an exceptionally rich range of out-of-equilibrium structures

and mixed systems can be obtained and their aging toward

equilibrium controlled. With recent developments in tuneable

colloid chemistry such as “patchy” colloids, star copoly-

mers, and so on, alongside tuneable interactions (strength

and range, repulsive and attractive) from charge stabiliza-

tion, magnetic interactions, and depletion attractions, results

from this simple model potentially provide a road map for

design of films and membranes with complex porous struc-

ture and aging properties at the colloidal length scale. That

such rich behavior can arise from such a simple interaction

underlines such materials’ potential for novel and versatile

functionality.

Here we have considered a relatively strong repulsion

ER = 45 and focused on the roles of � and δR , showing how

these two parameters combine in nb, and of EA, exploring how

attraction influences structure and kinetics in different regimes

of nb. Further work extending to higher �, and varying the

repulsion strength ER to providing a further tuning parameter

to shift the balance between attraction and repulsion, is in

progress and will be described elsewhere.

All data underpinning this publication are openly available

from the University of Strathclyde KnowledgeBase [21].
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