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Introduction 

• A fractal is a detailed, recursive, and infinitely self-similar mathematical set that 
exhibits similar patterns at increasingly small scales.

• In other words and in the most basic sense, fractals are objects that display self-
similarity over a wide range of scales.

• Introduced by Mandelbrot to extend the concept of theoretical fractional 
dimensions to geometric patterns found in nature.

o What is a fractal?
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• Example: Consider a straight line segment of length  . For  the first iteration 
(n=1) with a square pattern( !	=90° ),  is replaced by d = 8 segments of length #$ = 	 / &	. For n iterations, the length of the segment is #' =	 #(')$)/&.
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• Previous studies
• Incompressible
• Result in higher turbulence intensities and a more enhanced turbulent mixing. 
• Reduce the impact of the recirculation region around aircraft parts, e.g. spoilers, 

and hence the low-frequency noise.
• Significantly changes the near-field structure of the jet (by breaking up the large-

scale coherent structures) responsible for the low-frequency noise.

• The mathematical properties of some fractals. 
• Area conservation 

o Motivation 
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o Wake generators / fractal plates considered in this study
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Governing equations & numerical framework

• All dimensional spatial coordinates are normalized by the reference length D 
associated with the fractal geometry. ,, ., / = (0∗,2∗,3∗)4

• The velocity is scaled by the freestream velocity magnitude 56∗7, 8, 9 = (:∗,;∗,<∗)=>∗ 	
• The pressure and temperature are non-dimensionalized, respectively, by the 

freestream dynamic pressure ?6∗ 56∗@ and temperature A6∗ . BC = =>∗C>∗ 	 , 		 DEF = G>∗ =>∗ 4H>∗ 	 , 		 IJ = H>∗ KLM>∗ 	
• where N6∗ , O6∗ ,P6∗ stand for, respectively, the freestream speed of sound, dynamic 

viscosity and thermal conductivity, QR the specific heat at constant pressure. 

• Full compressible Navier-Stokes equations in generalized curvilinear coordinates 

o Scaling / non-dimensionalization
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• Implicit large eddy simulations, where numerical filtering is applied to account for 
the missing sub-grid scale energy. 

• The numerical algorithm uses high-order finite difference approximations for the 
spatial derivatives and explicit time marching. 

• The time integration is performed using a third order TVD Runge-Kutta method.

o Numerical framework 

o Immersed boundary method 

• the construction of the solid geometry inside the Cartesian grid is achieved by 
adding a forcing term f to the momentum equations that represents the 
impermeability of the fractal geometry to the governing equations.

• The fractal objects are obtained by multiple geometrical constrains. The forcing 
term consists of a penalty factor S multiplied by the difference between the 
conserved variables ?, 	?7T , NUV	W and the imposed ones ?TXR, 	?7T,TXR, 	 WTXR. 
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Results 
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M = 0.2 Iso-surfaces of the vorticity magnitude colored by the velocity magnitude
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M = 0.8 Iso-surfaces of the vorticity magnitude colored by the velocity magnitude
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Contour plots of the XZ-plane 
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Conclusion  

o Ongoing work 
• Higher Mach numbers 

o Future work
• Jets
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M = 1.5 Iso-surfaces of the vorticity magnitude colored by the velocity magnitude



Thank you.
Questions? 
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