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Abstract. In this paper, we present an efficient approach to detect and tracking 

the fundamental frequency (F0) from ‘wav’ audio. In general, music F0 and har-

monic frequency show the multiple relations; therefore frequency domain analy-

sis can be used to track the F0. The model includes the harmonic frequency prob-

ability analysis method and useful pre-post processing for multiple instruments. 

Thus, the proposed system can efficiently transcribe polyphonic music, while 

taking into account the probability of F0 and harmonic frequency. The experi-

mental results demonstrate that the proposed system can successful transcribe 

polyphonic music, achieved the quite advanced level.  

Keywords: Automatic Music Transcription, multiple pitch estimation, poly-

phonic music segmentation, fundamental frequency detection. 

1 Introduction 

In the past decades, detection and tracking of the fundamental frequency (F0) has been 

an essential part in Blind Signal Separation (BSS) and Music Information Retrieval 

(MIR) field. Firstly, it is the basic part in semantic level and many features are based 

on that, for example, if using pitch based features, it would be easier when retrieval 

since the pitch can be directly used on music. Secondly, pitch tracking can be used on 

many applications such as humming detection, polyphonic music identification, etc. 

Thirdly, generally, pitch is an independent direction by contrast with other music re-

search directions (timbre, beat, rhythm, chord, melody) that results in pitch can be com-

bined with other directions’ methods. At present, F0 tracking can be achieved by using 

many methods [1] such as probabilistic latent component analysis (PLCA) [2], Non-

negative Matrix Factorization (NMF) [3], Support Vector Machines (SVM), Gaussian 

Mixture Model (GMM), Hidden Markov Model (HMM) [4], etc. 
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In this paper, we present a tracking F0 frame work which contains five steps: Firstly, 

we use the Constant Q Translation (CQT) as time-frequency translation function, be-

cause CQT is a log frequency representation, which can match with pitch that is also 

log-frequency representation. Secondly, PLCA can consider the constant harmonic in-

terval with log-frequency representations so that small pitch shift or frequency-modu-

lated can be detected; another benefit is it can process the different dimensions and can 

show various features. Thirdly, before doing the harmonic analysis, we should make a 

smoothing progress. In this step, we use the sigmoid curve and mean filter to remove 

some relatively small value. Next, we analyses the harmonic structure frame by frame. 

Finally, we do a post-processing based on several rules.  

The rest of the paper is organized as follow: Sect.2 described the related technologies 

in proposed methods. Sect.3 elaborates the frame work. Experimental results are pre-

sented and discussed in Sect.4. Finally, some concluding remarks and future work are 

summarized in Sect.5. 

2 Related work 

2.1 Feature Extraction(Front End) 

Constant Q Transform (CQT) is a time spectrum transform, and it represents a log-

frequency since CQT follows human cochlear structure. What is more, CQT do not 

stretch spectrum when doing the Fourier transform domain, which is gainful in fre-

quency translation [5]. For music analysis, time and log-frequency signal can be con-

verted to time and pitch signal because pitch is still log-frequency. The frequency and 

pitch translate as follows: 

 pitch = 69 + 12 ×  log2
𝑓

440
 (2.1) 

Therefore, pitch is a log-frequency. In addition, all frequencies are scaled by a con-

stant factor, which can result in a better frequency resolution in low-frequencies and a 

better time resolution in high-frequencies. 

2.2 Spectrogram factorization 

In order to link to the previous step, we use the shift-invariant probabilistic latent com-

ponent analysis (SI-PLCA) [6] to do the spectrogram factorization. Because PLCA [7] 

can improve the resolution in both time and frequency domain at the same time. In 

addition, the SI-PLCA is useful when the input is a log-frequency presentation. Because 

the harmonic spacing of all periodic sound is the same. The SI-PLCA can be defined 

by the following as: 

 𝑃𝑡(𝑝, 𝑓, 𝑠|𝑤) =
𝑃(𝑤|𝑠,𝑝,𝑓)𝑃𝑡(𝑓|𝑝)𝑃𝑡(𝑠|𝑝)𝑃𝑡(𝑝)

∑ 𝑃(𝑤|𝑠,𝑝,𝑓)𝑃𝑡(𝑓|𝑝)𝑝,𝑓,𝑠 𝑃𝑡(𝑠|𝑝)𝑃𝑡(𝑝)
 (2.2) 

where 𝑃𝑡(𝑝, 𝑓, 𝑠|𝑤) are what we want as an output from this step, w is frequency index 

from last step, p is the piano notes from A0 to C8, f is a parameter is from CQT that 



f∈[1,…,5] where f=3 is the ideal diapason situation when temperament are same and s 

is the number of instrument sources. 𝑃𝑡(𝑓|𝑝) is the time-varying log-frequency shifting 

for pitch p, 𝑃𝑡(𝑠|𝑝) is the source contribution, 𝑃𝑡(𝑝) is the pitch activation, 𝑉𝑤,𝑡 is the 

log-frequency spectrogram and it is like the 𝑃(𝑤, 𝑡)which is the bivariate probability 

distribution[8]. 

 

Fig. 1. Result of SI-PLCA with CQT 

The Fig.1 is a time-pitch spectrogram, and the value of y axis has been converted 

from frequency to pitch. It can be seen the signal energy is stronger when pitch is from 

30 to 55, because the fundamental frequencies and low order harmonics are concen-

trated in this region. On the contrary, the signal energy is weaker in high pitch region 

due to the dense distribution of high-order harmonics.  

3 Proposed method 

 

 

Fig. 2. Workflow of proposed method 

This flow chart illustrates the process of the effective system. The input is a one-dimen-

sional ‘wav’ form. By feature extraction, it is transformed into the time-log frequency 

signal. It turns to CQT for extraction. After that, SI-PLCA would be used as a spectro-

gram factorization. The following part is the harmonic frequency probability analysis, 

it should smoothing firstly, and then make an analysis in each frame. Finally, the post-

processing would estimate by a length of pitch. The precision, recall, and F- measure 

would be the output as a comparing data. 



3.1 Mean removal and smoothing 

In order to reduce the redundant information, increase the consistency of pitch. A har-

monic structure analytics is proposed. In the first step, the result from SI-PLCA will be 

normalized into [0, 1] by max-mean sigmoid activation function: 

                                      y =
1

1+𝑒−𝑧  , 𝑧 =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

max(𝑥)−min (𝑥)
                                        (3.1) 

It adjusts dynamic range. Then, we filter the previous result with mean filter. Further-

more, we binaries the filtered result by a fixed threshold 0.5, because sigmoid curve 

usually set the decision boundary as 0.5. The equation 3.2 is a smoothing in order to 

avoid high-frequency components because sometimes it might change suddenly large 

and small. And we define, if there are less than two frame gaps (each frame represents 

0.01 sec) between two same notes, then the gap should be filled. And then output [x.*y’] 

since we need filtered pitch value for the harmonic analysis.  

 𝑦𝑖 = (𝑦𝑖−1 + 𝑦𝑖 + 𝑦𝑖+1)/3 (3.2) 

{
𝑦′ = 1, 𝑖𝑓 𝑦 > 0.5

𝑦′ = 0. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.3) 

3.2 Harmonic frequency analysis 

Harmonic frequency analysis is applied in each frame with an interval of 0.01s. The 

peak values are extracted from SI-PLCA and they would be more if have no smoothing 

part.  The following is the process of this analysis. Firstly, we use the Bayesian model 

to estimate a rank. The equation has shown below: 

                                                  𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
                                           (3.4) 

where P(A) is harmonic frequency, P(B) is fundamental frequency, P(B|A) is when 

it is harmonic frequency what the probability to be fundamental frequency, P(A|B) is 

when it is fundamental frequency, what the probability to be harmonic frequency. 
The rank is to determine which frequencies have the higher probability to become 

fundamental frequency (F0). One peak value can show both F0 and harmonic fre-

quency, because it is polyphonic music, it is usually appear the case that one peak is 

fundamental frequency but also other’s harmonic frequency at the same time, they 

would be superposition. If there is a frequency that is only the fundamental frequency 

but not any other harmonic frequency, then P(A|B)=1; if there is frequency which has 

a high peak value but not the totally fundamental frequency, then it will get a probability 

by using Bayesian model. From Fig.3 top, we can see that the x axis value 30, 45, 51 

are independent, they can be extracted firstly. And then, there are three values (42, 49, 

and 54, respectively) might be the harmonic frequency of 30, or they have a probability 

to become fundamental frequency. By comparing their peak value, if there are 4 notes 

at same time, the value 42 would be detected by comparing their Bayesian probability 

and peak value. From Fig.3 bottom, the rank 1-6 nearly contains all of the fundamental 

frequency, even some note have a little gap, but in next step would processing in the 



whole frame in order to link them together. Even this database just have four instru-

ments, it does not impact the effect. Assuming that we have known the number of in-

strument, this approach at least is able to guarantee that one to eight notes play at the 

same time because the independent value and high probability value would be more. 

 

 

Fig. 3. The conceptual illustration (top) and the harmonic analysis (bottom) 

3.3 Post-processing 

In this module, a rule-based processing is proposed to further improve the precision of 

the segmentation of fundamental frequency. The input is pitch value, define ‘A’ is the 

length of the connected pitch, and ‘mu’ is the mean value of connected pitch group. In 

harmonic analysis, we set pitch rank as 1-6. Because the actual value will sometimes 

appear at rank 5 or 6. And the post-processing can solve this problem by comparing the 



mean value from a length of pitch not just a frame like the last step. We know that 

generally, the shortest note is 0.08s, so in this part, we filter the notes whose length are 

smaller than 0.08s. Besides, by training 10% data and testing other 90% data, we get 

the gain parameter (1.1*instruments) as the standard value to compare with the rank. 

First of all, we fill up the vacant when it is below 0.08s, but set the rank as the top one 

such as 6. Secondly, we made a comparison with mean rank value and gain parameter. 

If the mean value of each rank higher than the gain parameter, this pitch will be con-

sidered as foreground and background otherwise. The gain parameter comparison 

would show on the result. 

 

Fig. 4. Result from post-processing (left) and Ground truth with four instrument sources (right) 

4 Experimental results 

4.1 Experiment setup 

To evaluate the performance of our method, we present our method on BACH10 dataset 

[9] which contains ten quartets of four part polyphonic pieces with length range from 

27 to 45 seconds. Four instrument sources such as violin, clarinet, saxophone, and bas-

soon are included. And we also use three widely used evaluation criteria to present the 

performance of proposed method. 

                          Precision =
∑ 𝑇𝑃(𝑡)𝑇

𝑡=1

∑ 𝑇𝑃(𝑡)+𝐹𝑃(𝑡)𝑇
𝑡=1

, Recall =
∑ 𝑇𝑃(𝑡)𝑇

𝑡=1

∑ 𝑇𝑃(𝑡)+𝐹𝑁(𝑡)𝑇
𝑡=1

                   (4.1) 

                          F − measure =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑎𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑎𝑐𝑎𝑙𝑙
 (4.2) 

where TP is the number of correct non-zero F0 values, FP is the number of incorrect 

non-zero F0 values, and FN is the number of incorrect zero or non-zero F0 values. The 

time step of each frame in both test result and ground truth is 0.01s. In addition, F-

measure [1] is defined as the F0 mean of precision and recall, if the two values are 

closer, the F-measure would be higher. 

4.2 Evaluation Results and Discussion 

To validate the performance of the proposed approach, two different sequences are used 

in our experiments. The gain parameter is extracted in the post-processing, which is 



used to calculate the mean pitch value. In Table 1, the gain parameter illustrates what 

is the best gain parameter in this database. We can see that the best one is 4.4 when 

there are four instruments. And when the gain parameter is lower, the precision and 

recall would be closer. What is more, even the database is only four instruments; the 

gain parameter must higher than the number of the instruments.  

The system configuration (Table 2) is using 4.4 as the gain parameter, it demon-

strates every part of the system is indispensable, where A is CQT and SI-PLCA, B is 

smoothing, C is harmonic structure analysis, and D is post-processing. We can see that 

each module has its contribution and every module is indispensable. Part A mainly 

transform the one-dimensional to both time and frequency domain. Meanwhile, they 

emphasize the energy in lower frequency. Table 2 shows that the highest recall and 

lowest precision are both A. That means part A include a high similarity. When B has 

been added after A, the recall value decreases slightly. Because the points removed by 

part B do not impact the recall. Part C is the most critical part due to increasing almost 

30%. The smoothing (B) and post-processing (D) part both occupy the same important 

degree. When both module B and D are integrated with A and C together, the system 

would show the highest F-measure. In addition, when F-measure is higher, precision 

and recall are closer, and our system configuration demonstrates the effective results. 

5 Conclusion 

In this paper, we proposed a framework to track the fundamental frequency in poly-

phonic music pieces even performed by different instruments. By estimating the har-

monic probability analysis followed by CQT and SI-PLCA, the fundamental frequency 

(F0) can be successfully detected with bio-inspired rule-based post-processing. In fu-

ture work, we will extend more datasets to testify this framework such as MAPS [10] 

and RWC [11]. We will also apply a deep learning based method to detect how many 

notes per frame. If this step is achieved well, it can not only find how many notes per 

frame, but also information about which instruments they come from. In addition, there 

still exist other modules such as beat and chord based methods [12] [13], which can be 

extended as future study, where denoising and spectrum analysis will be highlighted 

even for broadcasting applications [14-16]. 

Table 1. Different gain parameter 

Gain 

Parameter 
Precision Recall 

F- 

measure 

4.2 79.99 83.31 81.62 

4.3 79.56 84.90 82.14 

4.4 79.35 86.73 82.88 

4.5 78.63 86.58 82.41 

4.6 78.23 87.03 82.39 

 

Table 2. System configuration 

System 

configuration 
Precision Recall 

F- 

measure 

A 33.39 93.62 49.22 

A+B 35.6 93.09 51.50 

A+B+C 74.54 83.91 78.95 

A+C+D 72.74 85.84 78.75 

A+B+C+D 79.35 86.73 82.88 
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