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Abstract 

 
Reducing wind turbine downtime through innovations 

surrounding asset management has the potential to greatly 

influence the overall levelised cost of energy of large onshore 

and offshore developments. This research paper uses multiple 

examples of the same generator bearing failure to provide 

insight into how condition monitoring systems can be used in 

to train machine learning algorithms with the ultimate goal of 

predicting failure and remaining useful life. Results show that 

by analysing high frequency vibration data and extracting key 

features to train support vector machine algorithms, an 

accuracy of 67% can be achieved in successfully predicting 

failure 1-2 months before occurrence. This paper reflects on 

the limitations surrounding a generalised training approach, 

taking advantage of all available data, showing that if too many 

different examples are considered of different wind turbines 

and operating conditions the overall accuracy can be 

diminished.   

1 Introduction 

 
In order for wind energy to compete with traditional methods 

of generating electricity such as fossil fuels, the levelised cost 

of energy (LCOE) must be further reduced in the coming years. 

Costs associated with the operation and maintenance (O&M) 

of a wind farm makes up a significant proportion of total 

lifetime costs. In fact, up to 30% of the total energy cost can be 

spent on O&M for some large offshore developments [1]. With 

wind farms moving into harsher environments further offshore, 

this value is only expected to increase in the future. As more 

money is spent on O&M, innovations surrounding asset 

management have the potential to greatly influence the overall 

LCOE. According to a study found in [2], innovations 

associated with operations, maintenance and service are 

anticipated to reduce the LCOE by approximately 2% between 

2014 and 2025.  

One of the areas in which significant improvement can be made 

is through the introduction of turbine condition-based 

maintenance [2]. By measuring vibrations throughout the 

nacelle, it is possible to gain insight into the dynamic 

performance of a particular system, and in turn identify any 

potential issues or faults. Generator faults can contribute 

significantly to the overall downtime experienced by a wind 

farm due to component failure, with around 1 failure per year 

in state of the art offshore wind turbines [3,4,5].  

The research presented in this paper draws upon synchronised 

databases of generator bearing vibration time series and failure 

events from a turbine OEM. This allows multiple vibration 

signal examples of the same failure mode at a number of time 

intervals leading up to failure to be analysed and compared. 

This approach provides insight into the key features which can 

be extracted and to what extent examples differ, using these to 

train and test machine learning algorithms for future fault 

prognosis.  

2 Generator Bearing Failure 

Faults in the generator can be both mechanical or electrical in 

nature, with the most common types of mechanical failure 

being due to mechanical looseness, misalignment and rotor 

imbalances within the system [6]. This investigation 

concentrates on a specific generator bearing failure, a 

mechanical looseness issue within the internal assembly.  

 

Mechanical faults all follow a similar path to failure regardless 

of the failure mode or root cause (see Figure 1). Once a fault 

has been introduced into the bearing the dynamic response of 

the system will change. This means that vibration analysis can 

sometimes be used to detect faults months before component 

failure, which allows for longer periods of time for wind farm 

operators to take preventative measures. Once a component 

gets closer to failure, excessive friction will be evident through 

oil debris analysis, before audible noise can detected either by 

ear or through acoustic emissions. The days leading up to 

failure heat and/or smoke will be detected indicating a serious 

incident could be imminent [7].  

 

Root causes sometimes stem from design and manufacturing 

issues such as imperfections in material grade, out of tolerances 

and improper installation methods. Other causes include 

operational and maintenance issues such as high loading, 

unbalanced electromagnetic forces, damage while in transit or 

inadequate cooling and inspection strategies [6]. It is believed 

that for the generator bearing failure identified in this research, 

raised bearing temperatures have led to bearing inner ring 
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growth resulting in the bearing inner ring spinning on the 

generator rotor shaft at the drive end. 

 

Figure 1: Diagram showing methods of detecting fault indicators over 

time as fault progresses towards failure. Adapted from [7]. 

 

3 Approach 

In order to track and compare the component’s condition, 

vibration data was sought at different points in time leading up 

to generator bearing failure. To achieve this, events associated 

with generator bearing failure from a wind turbine OEM were 

analysed until 10-20 examples of the same failure mode were 

identified. This was then cross checked with SCADA data to 

ensure dates of wind turbine downtime were correlated. To 

guarantee a fair comparison, all examples were from an 

identical generator and drivetrain configuration; a doubly fed 

induction generator (DFIG) with a rated power of between 2-4 

MW. Each turbine utilised a variable speed, pitch regulated 

control strategy. Generator rotor speed at rated power was 

determined by grid frequency, where examples were found for 

both 50 and 60 Hz.  

 

Once the failure mode had been identified, the data gathered 

prior to occurrence was classified. Both a three and two class 

system were trialled, each divided into a number of categories 

based on health condition. Results from the two class system 

approach will be presented in this paper, which can be 

described as follows: 

 

 Class 1: healthy - at least 5 months before failure 

 Class 2: 1-2 months before failure 

 

A total of 15 different wind turbines from eight wind farms 

were used in the study, in each of which the same failure mode 

was identified. Vibration data gathered consisted of at least six 

samples a week apart at 1 year, 5-6 months and 1-2 months 

before failure, with each turbine having data from at least two 

of the three classes. Each sample consisted of approximately 

10 seconds of data taken with a sampling frequency of 

approximately 25kHz at both the drive-end and non-drive end 

generator bearing (see Figure 2 for clarification). 

 

 
Figure 2: Diagram showing rough accelerometer position used on 

generator bearings to measure vibration. 

 

 

Once features were successfully identified and verified, 

machine learning algorithms were then trained and tested, with 

the most accurate chosen and applied to the set of features 

specific to the failure mode, classifying the condition 

according to whether it is healthy or not, and the time before 

failure. The algorithm was then tested against similar, unseen 

vibration data from wind turbines omitted from the training 

process. The prognostic process was evaluated, using a 

confusion matrix giving correct/incorrect classification and the 

likelihood of false positives/ negatives. 

 

4 Vibration Analysis Techniques 

Most of the experience to draw upon to analyse vibration in 

generators and other rotating machinery comes from industries 

which utilise large fixed speed machines. Modern wind 

turbines employ variable speed control strategies and, along 

with the stochastic nature of the wind, produce load patterns 

that are far more varied than traditional generators. The 

analysis of such vibration signals are therefore more complex 

and as such, makes diagnosing faults in wind turbine 

generators more difficult.  

 

 

4.1 Time domain  

 

The vibration signal can be analysed in a number of ways, the 

simplest of which is in the time domain. Basic statistical 

analysis techniques can provide important information about 

the signal and although it is not sufficient to actually diagnose 

faults it is certainly a useful method in which to detect any 

obvious irregularities. Table 1 shows the features that were 

extracted and used to analyse the signal. 
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Feature 

No. 

Feature Formula 

1 Maximum 捲陳銚掴 噺 max岶x岫t岻岼 
2 Minimum 捲陳沈津 噺 min岶x岫t岻岼 

 

3 Mean 憲掴 噺 な劇豹 x岫t岻穴建脹
待  

4 RMS 憲追陳鎚 噺 峪な劇豹 x態岫t岻穴建脹
待 崋怠【態 

5 Standard 

Deviation 購掴 噺 峪な劇豹 岷捲岫t岻 伐 憲掴峅態穴建脹
待 崋怠【態 

6 Kurtosis 紅 噺 な劇豹 岷捲岫t岻 伐 憲掴峅替穴建脹
待  

Table 1: Time-domain features 

 

4.2 Frequency domain  

 

The frequency domain is one of the most commonly used 

methoda to analyse vibration in rotating equipment. Fourier 

analysis is a technique widely used to convert an input signal 

in the time domain to an output in the frequency domain using 

a fast Fourier transform (FFT) algorithm. The FFT algorithm 

samples a signal over a specific time period and divides it into 

its frequency components, with each sinusoidal component 

having a unique frequency with its own amplitude and phase. 

It is important to focus on the range of frequencies which are 

associated with the mechanical rotation of the generator shaft, 

which will allow any indicators of a fault to be detected. In 

general, this frequency range will be the mean generator shaft 

rotational frequency and associated harmonics.  

 

 
Figure 3: Expected harmonics and sub-harmonics introduced to the 

spectrum due to mechanical looseness within the internal generator 

assembly [6] 

 

Consider a FFT spectrum of a vibration signal measured from 

an accelerometer located at a generator bearing with 

mechanical looseness in the internal assembly. Many 

harmonics are introduced into the spectrum due to the non-

linear response of the loose parts to the exciting forces from the 

rotor, with the largest amplitude occurring twice per rotation 

(or 2抜 the shaft frequency). Sub-harmonics are often also 

caused at frequencies in multiples of 1/2 or 1/3 times the shaft 

rpm (see Figure 3) [6]. The features extracted in the frequency 

domain are shown in Table 2. 
 

 

Feature 

No. 

Feature Description 

1 1P Amplitude Amplitude of peak closest to 

mean shaft rotation 

2 2P Amplitude Amplitude of peak closest to 

two times mean shaft 

rotation 

3 1P Energy 

 

Energy in signal surrounding 

1P 

4 2P Energy Energy in signal surrounding 

2P 
Table 2: Frequency-domain features 

 

 

4.3 Order domain  

 

During each vibration sample the generator shaft speed varies, 

often significantly, meaning that the signal is not stationary. 

This produces a smearing effect on the FFT spectrum 

somewhat proportional to the range of shaft speeds 

experienced over the sample. One option available to try and 

negate these effects and gain a clearer picture of the signal is 

to perform order analysis. This is a resampling technique which 

takes a signal from the time domain, of constant sample rate at 

variable rotational speed, to the order domain, of variable 

sample rate at constant rotational speed.  

 

Instead of frequency being represented along the x-axis (as 

with the FFT spectrum), the order domain uses order numbers, 

where the first order is a reference shaft speed. The order power 

spectrum is computed using a short-time Fourier transform of 

the resampled signal. Table 3 shows the features extracted from 

the order domain. 

 

Feature 

No. 

Feature Description 

1 1st order 

amplitude 

Amplitude of peak at order 

number 1 

2 2nd order 

amplitude 

Amplitude of peak at order 

number 2 

Table 3: Order-domain features 

 

5 Application of Fourier Analysis 

The FFT single-sided power spectrum is a commonly used way 

in which to represent the signal in the frequency domain. By 

looking at various examples it becomes apparent that even with 

identical drivetrain configurations, spectra can change 

significantly between wind turbines. There are a considerable 

number of factors which will determine the outcome of the 

spectrum, however by making direct comparisons, an attempt 

can be made to highlight which components make the most 

significant contribution. This will provide a basis to better 
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understand which features can be extracted and more generally 

applied across any wind turbine. 

 

 
Figure 4: Comparison of FFT spectra: same turbine, same health 

classification, similar operating points. Overlaid with frequencies of 

expected amplitude gains due to fault for clarity. 

 

5.1 Comparison of similar operating conditions in the same 

wind turbine 

 

The simplest comparison between spectra that can be made is 

by considering two different vibration samples of a single wind 

turbine when exposed to similar operating conditions within 

the same health classification. Figure 4 shows samples taken a 

week apart at similar wind speeds. 

 

The first obvious observation is that the spectra are very similar 

in both peak amplitude and noise levels. The peak of the lower 

spectrum at 2抜 the rotational speed of the shaft is slightly lower 

and spread out, which can be attributed to higher variation in 

generator speed throughout the sample. 

 

 

5.2 Comparison of different operating conditions in the 

same wind turbine 

 

To show the influence that operating conditions have on the 

power spectrum, consider the same wind turbine (in the same 

health classification) but this time operating under significantly 

different external conditions. The first working in a region well 

below rated wind speed and the other considerably above. This 

comparison is shown in Figure 5. 

 

The first notable observation is that the vibration signal 

measured when the turbine was operating above rated power 

has considerably more noise present. It also has a much lower 

and broader peak at 2抜 the rotational speed of the generator. 

This can be partly attributed to large variation in rpm of the 

high speed shaft. It is clear however that the energy contained 

in the signal surrounding this frequency is greater, meaning the 

peak in itself is not sufficient to determine if a fault is present. 

 
Figure 5: Comparison of FFT spectra: same turbine, same health 

classification, different operating points. Below rated operating 

conditions (above) and above rated operating conditions (below). 

Overlaid with frequencies of expected amplitude gains due to fault for 

clarity. 

 

5.3 Comparison of different wind turbines in similar 

operating conditions. 

 

Even with identical drivetrain configuration and performance 

specifications, the FFT power spectrum can change 

significantly between turbines. Figure 6 shows four examples, 

each taken from turbines with healthy generators in similar 

operating conditions. It should be noted that these turbines 

differ in design when it comes to the power output frequency, 

which would be 50Hz or 60Hz depending on the wind farm 

location globally. This will shift the operational speed of the 

high speed generator shaft, therefore shifting the frequency of 

any associated peaks in the FFT spectrum. It is clear that there 

is little coherence with regards to peak amplitude between 

turbines. This change in dynamics could be due to a range of 

factors: the manufacture and assembly of the drivetrain and 

wider structure, differences in fatigue and ageing of 

components due to structural and thermal loads, corrosion, 

faults and replacements elsewhere in the assembly, different 

wind profiles (shear and turbulence intensity) at a particular 

site, or even weather conditions at the time of measuring the 

vibration sample. Whatever the reasons, it is obvious that 

feature ranges or limits cannot be assumed equal for all 

turbines. 

 
Figure 6: Comparison of FFT spectra: different turbines, same health 

classification, similar operating points. 
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5.4 Comparison of spectra using the same turbine leading 

up to failure. 

 

In order to determine whether features change as a generator 

bearing fault develops in a drivetrain, the FFT spectrum can be 

compared over time leading up to failure. Section 4 explains 

what should change in theory by introducing a fault associated 

with mechanical looseness, and by looking at multiple 

examples a sense of which features are actually observable in 

real wind turbine applications can be gained. Finding out to 

what extent these features are measurable (and in what time 

frame leading up to failure) is a useful exercise. Figure 7 shows 

examples of spectra for a wind turbine, with each classification 

presented leading up to failure. 

 

The largest increase in amplitude occurs at approximately 

58Hz (or 2抜 the rotational speed of the shaft), which is 

expected for a fault of this nature. It should be noted that the 

FFT amplitude in this example 1-2 months before failure is still 

lower than one of the healthy examples above, further proving 

that the dynamics are not the same for all turbines, even if 

identical machines.  

 

The other expected gains in amplitude occur at shaft speed, and 

sub-harmonics at frequencies in multiples of 1/2 or 1/3 times 

the shaft rpm. In practise these gains are very hard to measure, 

and often not detectable. 

 

 

 
Figure 7: Comparison of FFT spectra: same turbine, different health 

classification leading up to failure. 

6 Application of Order Analysis 

Figure 8 shows the same example used in Figure 7, but this 

time in the order domain as opposed to the frequency domain. 

When computing the frequency-RPM map it is important that 

a sensible resolution bandwidth is chosen to capture all the 

desired features of the signal therefore losing as little 

information as possible.  

 

By applying order analysis techniques, the peaks at both 1x and 

2抜 the shaft speed align, allowing for more clarity in the 

amplitude measurement. As the fault worsens and moves 

closer to absolute failure, the amplitude at 2抜 the shaft speed 

shows the most noticeable gain. 

 

 
Figure 8: Comparison of order spectra: same turbine, different health 

classification leading up to failure. 

7 Application of Support Vector Machine 

Algorithms using Supervised Learning 

Support vector machines (SVM) are adaptable algorithms 

widely used for both classification and regression problems. 

They work by plotting each data point in n-dimensional space, 

with n being the number of features used to train the model. 

Classification is achieved by finding the hyper-plane that 

differentiates the classes of coordinates (also known as support 

vectors). A simple example is shown in Figure 9. The margin 

is a measure of the distance between the hyper-plane and 

nearest support vector of each classification. A large margin 

indicates that the support vector machine is stable and will be 

less susceptible to misclassifying data [8].   

 

 
Figure 9: Example of how support vector machines classify data. 

 

There are two main stages when applying machine learning to 

vibration data for classification; a training phase followed by a 

validation phase. This process was repeated with different 

permutations of features to discover which could best be used 

to produce the greatest overall accuracy. 

 

For each classified vibration sample leading up to failure the 

features described in Tables 1-3 were extracted and used to 

create unique co-ordinates, or support vectors. Additional 

features including mean shaft torque and wind speed were also 

used to describe the operating point at which the sample was 
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taken. Using a two class system, a total of 306 support vectors 

were established consisting of 204 in class A (healthy) and 102 

in class B (1-2 months before failure). To ensure the algorithm 

is trained in a balanced manner, 100 random co-ordinates were 

chosen from each class. 

 

Cross-validation was used to determine the overall accuracy of 

the algorithm. This method involves partitioning the data into 

subsets of a predetermined ratio, one of which is then omitted 

from training and used to test the algorithm. For this example, 

20% of the data was used for validation purposes. The process 

is then repeated using different sup-populations and an average 

error calculated to use as a performance indicator. 

8 Results 

The accuracy of algorithm will depend on the random set of 

data which was taken for training and validation. By repeating 

this process, a mean accuracy can be determined along with 

associated standard deviation (see Figure 10). This will give a 

good indication of how sensitive and robust the algorithm is to 

the data used. A confusion matrix can be useful to visualise the 

algorithm accuracy by representing the true class and predicted 

class of each support vector, as shown in Figure 11.  

 

 
Figure 10: Mean accuracy and standard deviation of algorithm 

variations using 7 random datasets.  

 

 
Figure 11: Example confusion matrix using all features from a random 

set of training variables with 5-fold cross validation. 

9  Conclusion 

Predictive maintenance strategies that use previous failures to 

learn and predict failure and remaining useful life of different 

wind turbines have the potential to make substantial savings to 

costs associated with O&M. This research indicates that 

machine learning algorithms can be applied to specific features 

to successfully predict generator bearing failure 1-2 months 

before occurrence with an overall accuracy of 67%. The 

example shown in Section 8 finds a balance between false-

positives and false-negatives. From commercial perspective 

however, it may be worth refining the model to either minimise 

or maximise false-positives, which could be further explored 

through cost-benefit analysis.  

 

Although the results shown in this paper seem reasonable, the 

accuracy is not great enough to effectively aid decision 

making. To further increase the accuracy beyond 70%, this 

generalised approach (training the model from any data within 

each health class) will need to be revised. Section 5 shows the 

differences which can occur in FFT spectra for different 

turbines, environmental conditions and operating points. A 

more specific training regime using sub-populations of data 

based on these factors could be one way to try and improve 

accuracy. In this case the methodology shown in this report 

could act as a starting point from with to refine as more 

information is learned about a specific wind turbine.  
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