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Deepak Kumara, Michal Šmı́da,1, Sushil Singha, Alexander Solovievb, Hannes
Bohlina, Konstantin Burdonovb, Gashaw Fentea,2, Alexander Kotovb, Livia
Lanciac, Vit Lédld, Sergey Makarove, Michael Morrisseya, Sergey Perevalovb,
Denis Romanovskyb, Sergey Pikuze, Ryousuke Kodamaf, David Neelyg, Paul
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Abstract

The design of ellipsoidal plasma mirrors (EPM) for the PEARL laser facility is

presented. The EPM achieved a magnification of 0.32 in the focal spot size and

the corresponding increase in focused intensity is expected to be ∼ 8. Designing

and implementing such focusing optics for short pulse (< 100 fs) systems paves

the way for their use in future high power facilities where they can be used to

achieve intensities beyond 1023 W/cm2. A retro-imaging based target alignment

system is also described, which is used to align solid targets at the output of

the ellispoidal mirrors (numerical aperture of 0.75 in this case).
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1. Introduction

The consistent technological development of high intensity short pulse lasers

and the corresponding improvement in focused intensity over the last few decades

have led to the exploration of new frontiers of basic science and applications[1].

Current generation of petawatt (PW) class lasers provide focused intensities5

around ∼ 1021−22 W/cm2 with traditional focusing optics of about f/3. In

upcoming facilities like Apollon[2], ELI pillars[3, 4, 5], etc. the corresponding

focused intensities will increase to about ∼ 1022−23 W/cm2. However, the

ability to achieve higher intensities of the order of 1023−24 W/cm2

will enable the possibility of exploring novel phenomena like radia-10

tion reaction[6] and ion acceleration to relativistic energies[7]. Laser

plasma interaction in the radiation reaction dominated regime is qual-

itatively different from the currently achievable regimes of focused in-

tensities . 1022 W/cm2 because the energy radiated by the oscillating

electrons at the focus is comparable to the energy the electrons gain15

from the laser field. Consequently, a significant fraction of the laser

energy is expected to be emitted in multi-MeV X-rays[8, 9]. Thus it

will be highly beneficial to increase the achievable intensities, for e.g., by tightly

focusing the laser beam to a spot size of the order of the laser wavelength. To

achieve this, scientists have either used a small f-number parabola[10] or an20

ellipsoidal plasma mirror (EPM)[11, 12, 13, 14]. Because of debris damage to

the parabola and the associated financial implications, using a small f-number

parabola is not a viable option for upcoming facilities like ELI Beamlines[3].

Thus the performance of the EPMs on currently available PW class short pulse

lasers is being studied to gain valuable experience in pursuing this technology25

on future high intensity laser facilities.
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An EPM is a small mirror designed to be placed after the focus of the

main focusing element. It images the first focus into the second one with a

significantly smaller f-number in order to reduce the focal spot. The EPM acts

in the plasma mirror regime with very high irradiance on the surface and so is a30

single-use optic. Since 2010, when the first use of the EPM on short pulse lasers

was demonstrated[11], there has been steady experience gained on the use of

such optics on glass laser systems with pulse lengths of the order of a ps[12, 13].

The optimal geometrical parameters like eccentricity and angle of incidence of

the EPM to achieve the desired magnification under paraxial approximation35

have been described earlier[15]. The only remaining parameter for designing the

EPM is its scale size, which is set to optimize the reflectivity of the main laser

pulse on the EPM[13]. This paper describes the design of an EPM for the

PEARL laser facility[16, 17] at Nizhny Novgorod, Russia. The laser

uses large-aperture nonlinear DKDP crystal for optical parametric40

amplification of the main pulse at a central wavelength of 910 nm and

provides a maximum energy of . 20 J. A four grating compressor

with a total efficiency of about 77% compresses the beam to a pulse

duration of ∼ 60 fs. The main beam, which has a diameter of about

18 cm, is then focused using an f/2 parabola. The EPM was coupled to45

the focus of the off-axis parabola (OAP) to tightly focus the beam with a

numerical aperture of 0.75 at the output. To the best of our knowledge, this is

the first instance of using the EPM on a short pulse (< 100 fs) laser system.

For such a tightly focused spot, the front surface of the solid target needs

to be positioned within the Rayleigh length of about 2 µm (for a diffraction50

limited spot). This is a challenging requirement because many precision mea-

surement devices are not suitable for the harsh laser-plasma environment. For

e.g., several encoders like the resistive or magnetic encoders are susceptible to

electro-magnetic pulse (EMP). Thus optical methods for aligning the target are

often used. In many such cases the rear surface of the target is aligned with55

respect to a reference (for e.g., a microscope objective or a chromatic confocal

sensor). Then the target is translated by a distance equal to its thickness in
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Figure 1: (a) Sectional view of the EPM depicting the geometry. The boundary of the laser

beam path is shown in red. Fin (Fout) is the input (output) focus of the EPM. (b) Image of

a machined EPM placed next to a 10 ù coin of diameter 17.5 mm. (c) Expected fluence in

J/cm2 on the surface of the EPM when used with the PEARL laser delivering 20 J on target.

All dimensions are in mm.

order to align the front surface. An alternative method is to align the front

surface of the target with using a retro imaging system which has been demon-

strated to work well with precision comparable to the Rayleigh length of the60

focusing optic[18]. Alignment based on retro reflection has the advantage of

being immune to surface irregularities on the target introduced while mounting

the target. This paper describes a retro imaging system for aligning a solid tar-

get to the tightly focused output from an EPM. The performance of the retro

alignment system is bench-marked against an alternative alignment technique65

based on monitoring the near field of the beam being obstructed by the target.

This paper is structured as follows. Section 2 describes the geometry of the

EPMs and characterizes their performance. Section 3 describes two different

procedures for aligning the target at the output focus of the EPM. Finally, the

paper concludes with section 4.70

2. EPM geometry and performance characterization

Geometry of the EPM. The EPMs designed for the PEARL campaign had a

major axis of 5.5 mm and a minor axis of 3.5 mm as shown in figure 1a. The

axis of the EPM was oriented at an incident angle of 18◦ with respect to the axis

of the incoming beam focused by an f/2 parabola. Such a geometry transforms75
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Figure 2: Focal spot images characterizing the performance of the EPMs. Focal spot at the

input (a) and at the output (b) of the EPM at the test bench. Focal spot at the input (c)

and at the output (d) of the EPM at the PEARL laser facility as measured with low power

alignment beam. Field of view in all the images is 20 µm×20 µm. The diameter of the full

width at half maximum (FWHM) of the focal spot (ΦFWHM) and the fraction of energy

enclosed within the FWHM (Eenc) is mentioned in each image.

the input beam numerical aperture of 0.24 to an output numerical aperture

of 0.75, i.e., an expected magnification of approximately 0.3[15]. The EPM

was machined by single point diamond turning from a polymethyl methacrylate

(PMMA) substrate. An example of a machined EPM is shown in figure 1b. For

the geometry of the EPM described above, the expected fluence on the surface80

of the EPM was calculated when used with the PEARL laser (20 J, 60 fs) and

is shown in figure 1c. For an average fluence of about 110 J/cm2, we expect a

reflectivity of about 60− 70%[19].
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Characterization of the EPM. The EPMs were characterized in a non-plasma

regime on a test bench where a collimated 5 cm diameter HeNe laser beam was85

focused by an f/2 OAP. The setup was similar to that described by Wilson et

al[13] and the f-number of the parabola matched that of the PEARL facility.

The focal spots produced by the EPM on the test bench and also on the

PEARL laser facility are shown in figure 2. On the test bench the measured

magnification was about 0.48, significantly weaker than the predicted mag-90

nification of 0.3. In order to explain this discrepancy, we are currently

developing optical models which calculate exact solution of focused

intensity in the non-paraxial regime and also incorporate wavefront

errors[20]. On the PEARL facility the observed magnification was 0.32.

The corresponding increase in focused intensity that can be expected at the95

PEARL laser facility is about 8 when compared to operation of the laser with

normal f/2 OAP[13, 11]. When compared to a setup including a planar plasma

mirror operating at similar fluence, the expected enhancement of intensity is

even higher ≈ 11.

3. Target alignment: setup and results100

Setup for alignment. The EPM and the target at the second focus were mounted

on 3-axis motorized linear stages with picomotor actuators (Model number 8302

from Newport Corporation). The picomotors had a minimum step size of < 30

nm and thus were very useful in precisely aligning the EPM and the target. The

setup of the EPM and targetry stages is shown in figure 3. In order to align105

the front surface of the target, a retro imaging system was assembled as shown

in the figure. The laser light reflected from the front surface of the target is

collected by the EPM. The pellicle beam splitter of thickness 5 µm then reflects

the light which is then focused by a retro imaging lens on to a camera. The retro

imaging lens used in the setup had a focal length of 10 cm and an aperture of110

7.5 cm. Such high f-number lens enabled collecting all the light reflected from

the pellicle and also ensured a desired magnification of about 10 by the lens
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Figure 3: (a) Schematic of the setup used on the test bench to characterize the EPMs and

bench mark the retro alignment system. (b) Image of the setup showing the physical layout

of the components.

within a reasonable space.

A similar setup for mounting the EPM and the target was also used for

real laser-plasma experiments at the PEARL laser facility. The retro imaging115

system was not installed at the PEARL facility as only thin targets were shot

as discussed in the next paragraph.

Target alignment by monitoring the near field. At the PEARL laser facility,

3 µm thick Al foils were aligned to the output focus of the EPM. The target

thickness was comparable to the Rayleigh length and so, the target was aligned120

by monitoring the near field after the EPM focus as shown in figure 4a. The

microscope objective used for aligning the EPM was defocused and used as a

lens for monitoring the near field. The near field images obtained during the

alignment procedure are shown in figure 4b. As the target moves to intercept

the incoming alignment beam, the shadow of the target is clearly visible in the125

near field. The direction from where the shadow enters the near field image

depends on whether the target is in front or behind the focus. When a thin
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Figure 4: Target alignment by monitoring the near field. (a) Schematic of the alignment

method. (b) Near field images during target alignment at PEARL facility showing unob-

structed near field, shadow of target moving from the right and shadow of the near field when

target is at focus.

target is at the focus, the entire near field profile diminishes simultaneously

as seen in the figure (4b, right). If the target thickness (3 µm in our case) is

comparable to the Rayleigh length (expected to be around 3 µm for the output130

of EPM at the PEARL facility) then two shadows approaching from either side

on the near field can also be observed and the shadow from the front side of the

target (figure 4b center) can be distinguished from the shadow from the rear

side of the target. On the PEARL facility, front side of the targets were aligned

by monitoring the shadow from the front surface and placing the front surface135

at the focus. When shot with the full energy beam, a significant increase in

the X-rays and the maximum ion energy were measured as compared to normal

OAP shots. These results will be described in subsequent publications.

Target alignment by retro imaging. The retro imaging system, which is useful

for aligning thicker targets was assembled only on the test bench in order to140

bench-mark its performance. A 0.8 µm thick Al target was chosen to compare
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Figure 5: Average brightness of the spot measured on the retro imaging camera as a function

of the target displacement. A displacement of 0 corresponds to the reference location of the

target where it was aligned by monitoring the near field.

the two alignment procedures, as the target thickness was comparable to the

Rayleigh length on the test bench (see figure 2b). Initially the target was aligned

at the focus by monitoring the near field as described in the previous paragraph.

Subsequently, the axial location of the target was varied around this reference145

location. The location of the target was absolutely measured using a Fabry-

Pérot interferometer based displacement sensor. Figure 5 shows the average

brightness of the measured spot on the retro imaging camera as a function of

target displacement. The result shows that optimizing the target location for

maximizing the average intensity measured in the retro imaging camera can be150

used for aligning the target at the focus of the EPM within the Rayleigh length

(approximately ±1 µm on the test bench). Such a retro imaging system is

planned to be implemented on future campaigns involving thicker targets with

EPMs. It should be noted that on high power facilities, the pellicle

will have to be removed from the beam path before the full power155

shot in order to avoid the beam wavefront distortion due to nonlinear

interaction of high intensity laser beam with the pellicle.

Retro imaging setups on existing facilities[18] utilize the focusing OAP to

collect light reflected from the target front surface. However, the retro imaging

setup described in this paper uses the EPM to collect the reflected light. The160

EPM in this configuration for collecting the reflected light acts like a high mag-

9



nification objective to create an image at the front focus which is then imaged

on the retro imaging camera with a lens. The pellicle beamsplitter used in the

alignment process introduces significant wavefront errors in the reflected light,

but as is evident from figure 5 the alignment procedure is still robust.165

4. Conclusion

This paper presents the design of EPM for PEARL laser facility and the

retro-focus alignment procedure for aligning solid targets to the focus of the

EPM. Measurement of the focal spots before and after the EPM on the PEARL

facility yield an expected enhancement in intensity of ∼ 8 during its operation.170

For a tightly focused beam at the output of the EPM, the Rayleigh length is

extremely small (≈ 2 µm) and front surface of solid targets have to be aligned

within this precision. Two different methods for aligning the target at the focus

of the EPM were described. The retro imaging system which aligns the target by

collecting the reflected light was shown to have a precision of alignment within175

the Rayleigh length.
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