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Connectivity in an aquatic setting is determined by a combination of hydrodynamic

circulation and the biology of the organisms driving linkages. These complex processes

can be simulated in coupled biological-physical models. The physical model refers to

an underlying circulation model defined by spatially-explicit nodes, often incorporating

a particle-tracking model. The particles can then be given biological parameters or

behaviors (such as maturity and/or survivability rates, diel vertical migrations, avoidance,

or seeking behaviors). The output of the bio-physical models can then be used to

quantify connectivity among the nodes emitting and/or receiving the particles. Here we

propose a method that makes use of kernel density estimation (KDE) on the output of

a particle-tracking model, to quantify the infection or infestation pressure (IP) that each

node causes on the surrounding area. Because IP is the product of both exposure time

and the concentration of infectious agent particles, using KDE (which also combine

elements of time and space), more accurately captures IP. This method is especially

useful for those interested in infectious agent networks, a situation where IP is a superior

measure of connectivity than the probability of particles from each node reaching other

nodes. Here we illustrate the method by modeling the connectivity of salmon farms via

sea lice larvae in the Broughton Archipelago, British Columbia, Canada. Analysis revealed

evidence of two sub-networks of farms connected via a single farm, and evidence that

the highest IP from a given emitting farm was often tens of kilometers or more away from

that farm. We also classified farms as net emitters, receivers, or balanced, based on their

structural role within the network. By better understanding how these salmon farms are

connected to each other via their sea lice larvae, we can effectively focus management

efforts to minimize the spread of sea lice between farms, advise on future site locations
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and coordinated treatment efforts, and minimize any impact of farms on juvenile wild

salmon. The method has wide applicability for any system where capturing infectious

agent networks can provide useful guidance for management or preventative planning

decisions.

Keywords: aquatic epidemiology, sea lice, salmon lice, kernel density, infectious pressure, disease networks,

marine spatial planning, connectivity

INTRODUCTION

Marine ecosystems are connected by hydrodynamic
exchange through linked parcels of water. Understanding the
various and complex ways in which these connections happen
over space and time is the domain of connectivity modeling.
The scale of the question can alter the definition of connectivity,
but in its broadest sense, connectivity is the exchange of
individuals among geographically separated subpopulations of
a meta-population (1). In contrast to the terrestrial case, marine
connectivity has the additional complication of operating on
larger spatial scales, due to fewer dispersal barriers and an ideal
medium for transporting larvae, viruses, or other agents over
large distances (2). Marine connectivity studies have been used
to investigate questions across multiple disciplines. For example,
for planning of marine protected areas based on planktonic
connectivity (3, 4), to understand how coral reefs are connected
via gametes (5), to determine best release locations for sea turtle
hatchlings (6), for spatial planning of salmon farm locations
(7), and to determine the ideal groups of farms for coordinated
treatments to prevent disease spread among salmon farms (8, 9).
Connectivity in marine systems is driven in large part by the
underlying circulation of the system of interest; thus abiotic
factors such as wind or storm events, river discharge, tidal cycles,
and heat fluxes can impact connectivity (10–12). Likewise, the
behavior and/or life history of the organism of interest driving
the connectivity is important. For example, passive viral particles
will be almost exclusively driven by circulation (11). This is in
contrast to sea turtle hatchlings or planktonic larvae, which may
swim to avoid or seek certain conditions, have species-specific
energy reserves, and maturation rates which can be impacted by
the abiotic conditions (6).

To account for the complexity of the many drivers of
connectivity in aquatic systems, coupled models which link
biology and physical (bio-physical) modeling are increasingly
being used (3–6, 11, 13–15). In this approach, an underlying
circulation model using a framework such as the Finite-
Volume Community Ocean Model (FVCOM) or Regional
Ocean Modeling System (ROMS) is first developed. Then,
the output from the circulation model is used to inform a
computerized particle-tracking model. The particles, in turn,
have a biological model associated with them. Processes such
as mortality and maturity, swimming avoidance behaviors, or
diel vertical migration can be determined for each particle by
exposure to certain abiotic criteria such as temperature and
salinity. Output from bio-physical models can then be used to
quantify spatiotemporal patterns in connectivity of the aquatic
ecosystem.

In the case of infectious agent connectivity, there is an
additional challenge related to the uncertainty on how to
probabilistically link the physical presence of the agent to the
biological implications of its presence, that is, effective infection
or infestation pressure (IP). IP has been used in deterministic
models to estimate the influence each source of infectious agents
exerts on the surrounding area (16–18). IP is a measure of a
combination of the amount of infectious agents present and the
exposure time near a susceptible host (17). In the context of
infectious diseases, where the outcome of interest is illness or
infestation, IP is an ideal measure to quantify the impact of
point sources of infectious agents. While IP has been used in
deterministic modeling (17, 19), it has not, to our knowledge,
been used in the context of network or connectivity models
that are based on bio-physical simulation output. Rather, recent
biophysical modeling of sea lice dispersal in such areas as
Norway, Scotland, and the Faroe islands have used a probabilistic
approach to estimate connectivity between farms (7, 15, 20, 21).

Here we illustrate the use of kernel density estimation (KDE)
in quantifying connectivity from bio-physical modeling outputs
via IP estimates. KDE is a technique with a full and robust
literature, and has been used widely in ecology, epidemiology,
sociology, etc. since the 1950s (22). Briefly, it is a non-
parametric technique for estimating the underlying distribution,
or probability density function (PDF) of a continuous, non-
random variable. It does this by making a smoothed “kernel”
centered around each datum, then adds them to estimate the PDF
of the data as a whole (23). Our method uses KDE performed
on snapshots (i.e., cross-sections of time) of particle locations
to determine the IP each node (i.e., the spatially explicit source
for each cohort of particles) exerts on all the other nodes. This
approach aims to estimate connectivity as a factor of both time
and infectious dose. Taking into account the amount of time a
particle spends in a given location is important in infectious
agent connectivity studies, as the longer the potential hosts are
exposed to the infectious particles (exposure time), the more
likely it is that this will result in an infection/disease or infestation
(24, 25). Thus, our approach is particularly suitable to measure
connectivity of infectious agent networks.

We have chosen a salmon farming area as our “test” system to
apply this KDE method to estimate IP approach: the Broughton
Archipelago (BA) in British Columbia (BC), Canada. The BA was
chosen because in addition to having active salmon farming in
the region, it is also an area where many major rivers from BC
meet the ocean, and thus is home to some large and ecologically
important juvenile wild salmon out-migrations to the sea (12).
Thus, it is important economically as well as from a conservation
perspective. We have elected to model sea lice dispersion because
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sea lice are one of the most costly and persistent problems facing
salmon farmers as well as one of the most concerning threats to
wild salmonids from farmed salmon (26–29). Additionally, sea
lice have a planktonic stage before they become infectious, and
can be carried tens of km away from where they are released
before they attach to a host (24, 30, 31). Thus, sea lice larvae IP
estimates from our approach are likely to yield results that are not
intuitive based simply on sea-way distance measures.

Lepeoptheirus salmonis is the species of most concern to
salmon farming operations in the northern hemisphere. The
L. salmonis louse has two planktonic nauplii stages before
molting to an infective copepod stage, at which point it can attach
to a host (24, 31), and consume their skin and mucus (32, 33).
After attachment, there are two chalimus stages, two pre-adult
stages, and finally an adult stage. The development times at nearly
every stage are temperature dependent. Females can produce egg
strings of upwards of 300 eggs each after mating, depending
on what temperature the females are exposed to during egg
production (34, 35). These eggs require between 17.5 days at 5◦C
and 5.5 days at 15◦C to hatch (36). Development time to the
infectious copepod stage ranges between 10 days at 5◦C to about
2 days at 15◦C (37–40). Additionally, while there is disagreement
in the literature over the exact level at which low salinity begins to
impact sea lice larvae survival, (37, 38, 40, 41), there is agreement
that salinity has an important impact. Thus, the complex and
high plasticity life cycle of sea lice demands a biological model.

This sea lice/salmon farm biological-system is important
because the potential for sea lice to spill over into wild salmon
populations is a major conservation issue worldwide (42–48).
Sea lice attachment to adult fish can cause lesions, making them
susceptible to secondary infections, and also results in reduced
feeding. The consequences for juvenile salmon can include death
due to osmoregulatory failure (32, 33, 41, 49). Additionally,
the complexity of management issues for controlling sea lice
infestation make understanding disease dynamics and farm-to-
farm connectivity via infective sea lice larvae crucial in terms of:
sustainability of the industry, reduction in the number of sea lice
treatments, acceptance by the public, and minimizing impact on
wild salmonids. Furthermore, increased welfare/decreased stress
of farmed fish could lead to reduced outbreaks of other diseases
at farms (39, 50–55).

Our goal is to establish a new methodology for using
bio-physical modeling outputs. Because the results of this
bio-physical output remain unvalidated [though the physical
model is validated in Foreman et al. (10)], any management
suggestions/implications should be used more for hypothesis
generation than immediate implementation into management.
While not shown in this paper, validation using real sea lice
counts and sensitivity analysis around some of the simulation
parameters is the focus of a forthcoming paper. Here we assess
data from a bio-physical particle tracking circulation model for
the BA region run over a 5 month window (March 3rd–July
30th, 2009) chosen to coincide with the juvenile wild salmon
outmigration period (56). The biological model has equations
governing the maturation of individual particles based on the
temperatures the particles are exposed to, and survivability based
on exposure to varying salinity. The physical model refers to

the underlying FVCOM circulation model, which includes the
river discharge to capture the important spring freshet event.
We apply a KDE method to estimate the infestation pressure
each farm has on its neighbors and characterize the network of
farms during the simulation period. We make recommendations
for coordinated treatment based on the network results of the
“baseline” connectivity (i.e. the connectivity outside of stochastic
events that lead to temporary spikes in overall connectivity of the
network), and then discuss the potential applications of using our
KDE approach in the study of aquatic epidemiology.

METHODS

Study Area
The Broughton Archipelago is a group of islands off the
northeastern tip of Vancouver Island, in the northeastern flank
of the Queen Charlotte Strait on the coast of British Columbia,
Canada (Figure 1). This area has around 20 active salmon farms
and is also home to important juvenile wild salmon populations.
As such, it is both important commercially and as an area with
ongoing conservation efforts. Salmon farms are managed so as to
minimize the likelihood of juvenile salmon encountering sea lice
larvae during their outmigration (13).

Simulation Period
The simulation used in this study ran from March 3rd to July
31st (57). The circulation model mimics conditions from 2009.
The FVCOM model began the simulation on March 1st, 2009.
FVCOM takes around 8 days to ramp up (Mike Foreman,
personal communication), so it was allowed 10 days to initialize
as a precautionary approach. Thus the first day of the particle-
tracking model was March 11th, 2009. The particles were all
tracked for 11 days following their release. Thus, the last particle
releases occurred on July 20th, but the simulation ran until July
31st.

FVCOM Model
For the underlying circulation model, the Finite Volume Coastal
Oceanographic Model (FVCOM) was used. More details and
validation of this model can be found in Foreman et al. (10).
Briefly, the FVCOM model uses an unstructured, triangular
grid to organize simulated processes (13). This allows higher
resolution in complex topography and bathymetry, and less
resolution in wide channels. The grid for our model domain
had 42,682 junctions and 74,774 triangles. Triangles’ sides varied
in length from ∼2.3 km in wide channels to <50m in narrow
passages. There were 21 vertical gridded layers with variable
spacing from sea bottom to surface, with the highest resolution at
the surface and bottom layers, and maximum inter layer spacing
of 9% of the depth at mid column. Depth ranged between 3 and
520m, resulting in a possible maximum vertical grid layer size
ranging between 27 cm and 46.8m at mid-column, depending
on the depth of the grid. Freshwater discharge data from the six
major rivers in the BA were used for this forcing (10).
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FIGURE 1 | Study location of Broughton Archipelago (red inset) in British Columbia. Dark blue illustrates the extent of the model domain while the study farm sites are

indicated as black dots.

Particle Tracking Model
The particle tracking model simulated the release of 50 particles
from each farm every hour for March 11th–July 20th, 2009;
a total of 130 days. One single release of particles across all
20 farms was termed a “pulse.” The location of every particle
once released was recorded every 20min, and every pulse was
followed for 11 days post release. The 11 days was a reasonable
assumption based on real mean sea surface temperatures for the
BA during the simulation period, which ranges between 7.4 and
10.1 C, which corresponds to 6.1 and 3.6 days, respectively, until
maturation (based on the maturation formula used from (36),
and explained below) (12, 54). The max constraint of 11 days was
chosen as a sea louse is not likely to live past this time frame if
they are not by then attached to a host, due to limited energy
reserves (58). However, this could underestimate long distance
dispersal pathways for particles that are exposed to cold water
temperatures (i.e. winter conditions in the BA, or particles that
may encounter deeper, colder water).Thus, there is potential for
some particles to be infective passed the 11 day window we chose
(35). In particular, future studies looking at model domains larger
than our current model domain (roughly 85 km from north to
south), such as modeling the entire coast of British Columbia,
should consider increasing the tracking time of the particles.

Particle movements were dictated by a combination of the
underlying circulation model and a random walk component,
computed by the following equation:

Lt(x, y, z) = Lt−1t(x, y, z)+ 1t[U(x, y, z)]+ δH(x, y)+ δz(z)

(1)

Where, Lt(x, y, z) is the location of a particle at time t, 1t
is the time step of particle tracking algorithm (60 s for this
simulation), U(x, y, z) is the velocity from circulation model,
and δH and δz represent the horizontal and vertical random
walk adjustments to the particle position, respectively. Model
velocities were linearly interpolated in space and time and the
particle’s advection was calculated using a 4th order Runge–Kutta
algorithm. As sea lice larvae use their limited swimming abilities
to remain in the upper few meters of the water column (59, 60),
particles were constrained to remain in the top 5m (61). Particles
were prevented from becoming grounded on the shoreline by
holding their positions when a trajectory predicted stranding.
The positions of the particles were held until the velocity field of
a new time step in the model carried them away from land (12).

Biological Model
The particles also had a biological model associated with
them which calculated maturity and survivability based on
temperature and salinity of the water the particles were exposed
to and the age of the particle. Particles were released as “pre-
infectious” nauplii (I or II), and molted into infectious copepods.
Pre-infectious particles have a maturity value < 1, and infectious
particles have a maturity value ≥ 1. The development time (time
until the particle molts to a copepod, i.e., when maturity = 1)
was calculated based on temperature, and was modeled using a
simplified Bělehrádek function (36).

τ (T) =

[

β1

T − 10+ β1β2

]2

(2)

Frontiers in Veterinary Science | www.frontiersin.org 4 October 2018 | Volume 5 | Article 269

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Cantrell et al. Epidemiological Relevant Salmon Farm Connectivity

Where, T is temperature in degrees C, β1 = 24.79◦C d−0.5 and β2
= 0.525◦C d−0.5.

The survivability coefficient, µpi, of the pre-infectious
particles (maturity< 1) started at one and decreased as a constant
(−0.31 d−1) as long as the salinity was more than 30 ppt. When
salinity dropped below 30 ppt, the survivability coefficient was
calculated as:

µpi (S ≤ 30) = 0.16 · S− 5.11 (3)

Once particles molted (maturity≥ 1), the survivability coefficient
constant of −0.22 d−1. A constant survivability was chosen
because there was not sufficient agreement among studies for the
mortality rates of sea lice copepods at different temperature and
salinity profiles (40).

The µpi, was then used in the following exponential decay
equation to calculate the survivability of each particle:

Spi = exp(µpit) (4)

Sampling the Particle Tracking Data
For this analysis, the focus was on the fate of sea lice larvae
cohorts. We therefore defined one cohort of sea lice larvae as 24 h
of pulses, or one day’s worth of particle releases. Each cohort was
followed over their lifetime by extracting the data and location for
each particle every 24 h post release. Because pulses are released at
intervals of 1 h, and each cohort consists of 24 h worth of pulses,
there are 24 h of “real world” time between the initial and the final
pulse for each cohort. Thus, by extracting information for each
pulse at 24-h intervals following its release, we obtain a diagonal
snapshot of data for each cohort that consists of 24 pulses of the
same age spanning 24 h in simulation time (Figure 2). Because
each pulse was followed for 11 days, there are 11 of these diagonal
snapshots for each cohort. These 11 snapshots for each cohort
were then combined into one dataset, and stored as a shape
file for GIS manipulations. Because there were 141 days in the
simulation, there were 130 such cohorts to follow over their
lifetime, and each one is referred to hereafter as a “Cohort Release
Day,” or CRD (Figure 2). The particles (n = 50) of each cohort
were then separated by farm (n = 20) from which they were
released, and their spatial position saved in 20 spatial point files of
13,200 points (50 particles/farm x 11 days x 24 h) for each CRD,
resulting in 2,600 spatial point files (20 farms x 130 cohorts), to
be used in the KDE process discussed below.

Kernel Density Estimation
For each of the 130 cohorts, a KDE for the particles released from
each farm (20) was constructed, and saved as a grid file (raster
format) with a 100 × 100m grid cell size. A bandwidth of 1/8 of
the minimum extent of either the x or y coordinates (whichever
was smaller) of the points was used. This was a compromise
arrived at after trial and error to find an adaptive bandwidth
that adequately smoothed the densities of the particles without
being overly taxing in computational time. A polygon of the
coastline was used as a bounding box for the KDEs. Diggle’s edge
correction was also used to control for bias introduced by the
complex coastline. KDEs often spill over boundaries, and are thus

susceptible to bias close to edges. If ignored, the bias can lower the
value of the KDE near the origin (62).When the edge correction
is used, the intensity value at point u is calculated as:

λ (u) = e(u)
∑

i
k(xi − u)wi (5)

Where k is the Gaussian smoothing kernel, e(u) is an edge
correction factor, and wi are the weights.

The edge correction term e(u) is the reciprocal of the kernel
mass (i.e., the absolute number of particles smoothed in the KDE)
inside the window:

1

e(u)
=

∫ W

Wo
k (v− u) dv (6)

Where, W is the observation window.
This KDE method took the biological model into account

by weighting the KDEs on the survivability of the particles and
filtering to include only particles with maturity ≥ 0.8. This value
was chosen to ensure there were an adequate number of particles
reaching maturity to be able to perform a KDE for each farm
in each CRD. During times where the temperature was low in
the simulation, no particles reached a maturity value of 1 (when
they are deemed to become “infective”) for a number of farms.
This may imply that our biological model for maturity was too
sensitive to decreases in temperature. By setting the maturity
threshold to 0.8, we mitigated this potential over-sensitivity to
low temperature.

Connectivity Matrices
Every farm (n = 20) has its own KDE raster for each CRD
(n = 130). The values in the KDE are expressed in particles per
square kilometer, and represent the infestation pressure of that
farm on the surrounding area. The value at the 100 × 100m
grid cell of the KDE raster where the farm of origin is located
is defined as self-infestation. The values in the 100 × 100m grid
cells where each of the other 19 farms were located are assumed
to represent the infestation pressure from the farm of origin.
These values were extracted using the spatstat package in R.
This information was stored in a 20 × 20 matrix, with emitting
farms (“from”) on the x-axis, and receiving farms (“to”) on the
y-axis, for every CRD. These matrices were then turned into a
heatmap using ggplot in R, creating one heat-map per CRD in
order to visualize clusters of farms and connectivity. The rows
and columns in the heatmaps attempt to follow the approximate
geographical arrangement of the farms from west to east. Note
that the matrices are not symmetrical in that the infestation
pressure from farm “a” to farm “b” is not necessarily equal in
the opposite direction from farm “b” to farm “a.” The leading
diagonal of the matrices shows self-infestation. The highest value
of the heatmaps has been artificially set as 2 particles km−2, with
any value above this being the same darkest purple as values of
2 particles km−2 in order to better illustrate detail at the lower
connectivity levels.

Network Visualization
The infestation pressure from each site reaching all other sites
was calculated for the entire 4.5 month simulation period by
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FIGURE 2 | The cohort sampling scheme. The location of each “pulse” is extracted at their release, and every 24 hours after release until the particles are no longer

tracked. Note that the x-axis (time) has been interrupted and omits hours between 49 and 264. This figure shows three of the 11 sampling points for a given cohort.

These 11 sampling points, from each of 24 pulses on a given day, are combined to represent a cohort release day (CRD).

averaging the 130 [20 × 20] connectivity matrices, and was used
to visualize the network of farms during this simulation period.
To visualize consistent connections, as well as reduce small and
potentially less biologically important connections (i.e., less likely
for infectious larvae to attach to a host if the infestation pressure
on a farm is very low), infestation pressures below 0.15 particles
km−2 (two times the mean connectivity value) were not included
in the visualization. Additionally, in order to capture a more
typical network without the “peaks” in connectivity, CRDs 10–
30 have been omitted from this analysis, as have CRDs 55–61,
90–95, and 120–125.

Network Dynamics
In order to visualize the network characteristics over the period
under study, three analyses were conducted. First, the average
connectivity across the entire network for each CRD was
calculated by averaging all the values for each of the 130 matrices.
The confidence interval for each average was calculated using
boot-strapping methods. Second, the difference between the
infestation pressure that each farm exerts and the pressure each
farm receives, for a given CRD, was calculated using values from
each connection matrix (values are in particles km−2). All the
“from” values for each farm were summed into one “emitting”
value (i.e., infestation pressure from a given farm on all the
other farms). All the “to” values for a given farm, excluding
self-infestation, were also summed into a separate “receiving”
value (i.e. infestation pressure from all other farms on the given
farm). A difference was then calculated based on these emitting
and receiving metrics. If (received infestation pressure—emitted
infestation pressure) > 3, the farm is considered a net receiver
for that CRD. If the value was close to 0, the receiving/emitting
infestation pressure was deemed to be balanced, while if (received
infestation pressure—emitted infestation pressure) < −3, the
farm was consider to be a net emitter for that CRD. Farms were
considered “overall net emitters” for the simulation period if they

had values < −3 for more than five CRDs during the simulation,
or “overall net receivers,” if they had values > 3 for more than
five CRDs. The +/– 3 threshold was chosen because it is twice
the mean of the absolute value of received infestation pressure—
emitted infestation pressure during the highest connectivity
period (i.e., CRDs 11–30). This was to ensure it was capturing
farms that truly where playing the role of net receiver or emitter.

Third, vertex betweenness scores for each farm were
calculated for the network described in 2.9 using the
“betweenness” command in the igraph package in r. Betweenness
in this context refers to the number of shortest paths going
through a vertex. The algorithm used to define betweenness of
vertex v is defined in Brandes, 2001 (63) as:

6(givj/gij, i! = j, i! = v, j! = v) (7)

Software
All analysis was carried out in R (64). Net-CDF file manipulation
was done using the “raster” package (65). Other data
manipulation used the “tidyr” (66) and “dplyr” packages
(67). GIS analysis used the “spatstat” package (68, 69). Graphics
where created using the “ggplot2” package (70). Network analysis
used the “igraph” package (71).

RESULTS

The mean connectivity across the entire network over the period
under study is shown in Figure 3, and indicates a decrease in
the level of overall connection as the simulation progressed, with
peaks at CRDs 59, 93, and 123. More than 99% of all particles
remained within the model domain for all CRDs, with very
few exceptions (particles where tracked regardless of mortality
or maturity status).Results will focus on spatial patterns to
determine “baseline” connectivity, in the absence of the stochastic
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FIGURE 3 | The mean connectivity for each cohort release day (CRD). The

purple and orange points indicate the mean (+/- 95% confidence intervals)

connectivity, including and excluding self-infestation, respectively.

events that may lead to spikes in connectivity, across the entire
network for particular cohorts of particles.

A connectivity heatmap for CRD 50 is shown in Figure 4.
This CRD was chosen as an example of a “typical” day (i.e.,
a CRD that is not a member of any connectivity peak).
Additionally, a video made up of heatmaps for every CRD can
be seen in the Supplementary Video. Values in the heatmaps
represent the infestation pressure that a given farm (represented
by each column) exerts on all other farms (where each is
represented by a given row). Thus, the maps indicate a measure
of connectivity between all possible pairs of farms (including
between themselves; 20 farms × 20 farms = 400 possible
connections). There appear to be two well defined sub-networks,
consisting of farms 1–5 (sub-network A) and farms 7, 10, 15–
18, which receive particles from farm 4 (sub-network B), both of
which are often weakly connected to farm 11.

The KDEs for all farms on CRD 50 are shown in Figure 5, with
each panel showing various groups of farms. All sub-networks
exhibit the highest density of particles around 10 km or more
away from the center of the contributing farms. The density
centers for sub-networks A and B indicate that particles are
frequently heading along the nearby channels in a north-easterly
direction. In panel C (farms 10–11, and 15), the density center
appear to be to the west of the contributing farms, with relatively
few particles moving toward sub-network A. Panel D (farms

19–20, 8–9, and 12–14) indicates that these farms contribute very
little to the overall network. Note that panels A and B are on a
scale that is an order of magnitude higher than C and D.

The infestation pressure each farm experiences from all
other farms (pressure received), minus the infestation pressure
each farm exerts on all other farms (pressure emitted) over all
CRDs is summarized in Table 1 (and shown in graphical format
in Supplementary Material 1). These net infestation pressure
metrics for each farm indicate the structural role each farm plays
in the network of farms over time for this simulation period. No
farms were net emitters or net receivers for the entire duration
of the simulation, though farms 2, 11, 17, and 18 are receivers for
much of the simulation. Only farm 4 crosses between being a “net
emitter” and a “net receiver” over time.

A schematic representation of an “average” network is shown
in Figure 6. The color of each farm indicates its structural role
in the network (i.e. net emitter, net receiver, neither, or both)
as determined in Table 1. This network does not include CRDs
that were deemed to be “atypical” (i.e., CRDs 10–30, and the
three peaks around CRD 59, 93, and 123), in order to capture
the baseline connectivity network. The sub-networks identified in
the Figure 4 are also seen in the network shown here. Farms 1–5
are connected (“sub-network A”); as are farms 6–7, 10, and 15–18
(“sub-network B”). Sub-networks A and B are weakly connected
through farm 11. Farms 8, 12, 13, 14, 9, 19, and 20 appear to have
low connectivity to other sites in terms of sharing infective sea
lice larvae.

The betweenness scores are summarized in Table 2. These
show farm 11 with the highest betweenness score, and farms 2, 7,
and 15 also having high scores (between 15 and 30). Farms 16, 17,
and 18 also show non-0 betweenness scores, though much lower
(</=5).

DISCUSSION

One of the biggest challenges in quantifying connectivity based
on bio-physical modeling of marine systems is the question of
how best to capture the different amounts of time particles spend
in each receiving location. The most commonly used approach
in the sea lice literature draws a polygon around a receiving area,
and counts each time a particle enters the polygon. The particle
can then be removed from the simulation (9), or allowed to
continue (7, 15, 20). Continuing particles can either be counted
once per time it enters the receiving area (20) or multiple times
if it remains in the receiving area (35). These approaches have
been used in connectivity modeling of sea lice in salmon farming
regions such as Scotland, Norway, and the Faroe Islands (7, 9,
11, 20, 72). However, in the case of infectious agent networks,
infection or infestation is a result of IP, that is, exposure time
and infectious dose. Therefore, a particle that passes through a
polygon in less than an hour does not exert the same IP as a
particle that spends 3 days within the polygon. This is partially
addressed by the method used by Samsing et al. (7), which allows
multiple connections to be counted when a particle spends an
extended amount of time within a receiving polygon. The use
of KDE is a more holistic approach because it incorporates both
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FIGURE 4 | The connectivity matrix for CRD50. This CRD was chosen as being representative of an “average” day. The farms on the x-axis are emitting nodes

(“from”), while the farms on the y-axis are the receiving nodes (“to”). Farms are ordered in approximate geographical order, from West to East. The diagonal from

bottom left to top right indicates self-infestation.

FIGURE 5 | KDEs associated with various sub-networks for CRD50. (A) sub-network A, farms 1 – 5, (B) part of sub-network B, farms 6 – 7 and 16 – 18, (C) part of

sub-network B, farms 10, 11, and 15 [which act as a bridge between sub-network (A,B)]. (D) Farms 8 – 9, 12 – 14, and 19 – 20 which are not strongly connected to

either sub-network. Note that (A,B) and (C,D) are on different scales.
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TABLE 1 | A summary of the role taken on by each farm in the network.

Farm # CRDs as an emitter

> 3

# CRD’s as a receiver

< −3

Role in the network

1 5 0 N

2 0 25 R

3 0 3 N

4 6 6 B

5 24 0 E

6 0 0 N

7 4 1 N

8 0 0 N

9 0 0 N

10 17 0 E

11 0 15 R

12 0 0 N

13 0 0 N

14 0 0 N

15 2 0 N

16 3 0 N

17 0 19 R

18 0 25 R

19 0 2 N

20 0 0 N

Classification is based on the number of CRDs that a farm spends as an emitter, defined

as (emitting pressure—receiving pressure) > 3, or as a receiver, defined as (emitting

pressure—receiving pressure) < −3. Where either of these was the case for more than

five CRDs over the course of the simulation a farm was classified as a “net emitter” (E), a

“net receiver” (R), Farms where this was not the case for more than 5 days were classified

as “neither” (N), while farm 4 was classified as “both” (B), as it functioned as a net emitter

and receiver at different times during the simulation.

time and space into the connectivity estimates of infectious agent
networks.

We apply this method to provide insights toward infectious
agent connectivity in aquatic environments in the context of
farm-to-farm sea lice infestation. Controlling sea lice is one of the
most important health management considerations on Atlantic
salmon farms and for minimizing farm impacts on native
salmonid populations. Because sea lice can be transported in
water currents upwards of 30 km (7, 20), and can be transported
for several days before molting into an infectious stage, IP will
not necessarily decrease with increasing distance from release
sites, as could be expected for other marine pathogens such
as viruses that spread directly through water (73). Therefore,
bio-physical models can potentially produce far better estimates
for sea lice larval modeling (assuming model assumptions are
realistic), in order to adequately characterize sea lice networks.
Given the complexity of problems surrounding sea lice control
globally, such as the development of populations resistant to
treatments and the high cost of administering treatments (26, 52,
74–76), spatial planning considering sea lice epidemiology and
larval dispersal capabilities is crucial for the sustainability of the
industry.

However, it is worth noting that it is not yet clear exactly
how the theoretical IP that farms experience from neighboring
farms translates into sea lice loads, on either the salmon in the
farms or the wild salmon migrating through the KDE “clouds.”
There have been a few attempts at quantifying this using lab

experiments, mathematical models, and field studies (48, 77, 78),
but wide disagreement across the field still exists. These need
to be resolved in order to assess in absolute terms how large
a threat to wild salmon or neighboring salmon farms the IP
measures from our studies might be. However, even without
this resolution, we can assess relative risk to each other (e.g.,
farm 4 has a larger IP impact on its neighbors than the rest
of the farms in sub-network A), and describe the network
based on IP estimates from our models to support hypothesis
generation around management recommendations. Once the
model is validated, these recommendations could potentially be
implemented. While not a formal validation, it is worth noting
that other papers in the area have found similar large-scale spatial
relationships. Rees et al. (29) found general patterns similar to
those in this study, using a GLM approach to link farm and
wild salmon infestation levels. The highest probabilities (and
intensities) of infestation occurred near the farms in the inlets
on the BA in areas we found farms to be highly connected,
with lower probabilities and intensities found near the farms
closer to the open ocean. These farms we found to be not highly
connected to other farms. Farm 6 (in our study) is particularly
noteworthy, as it is near the open ocean but the area around
it still had a high probability of infecting wild salmon in Rees
et al. and we found it to be highly connected to sub-network
2 (29). Patanasatienkul et al. (25), found evidence of clusters of
elevated sea lice infestation on wild pink and chum salmon in
the BA, with three distinct clusters of non-motiles (i.e., more
recent infestations) which locations are similar to the locations
of the sub-networks of farms we found (i.e., cluster 1 corresponds
spatially to sub-network B, cluster 2 to sub-network C, and cluster
1 to sub-network A) (25). Additionally, for diseases where this
is better understood, these absolute values could potentially be
translated into predictions around the likelihood of disease (79).

Drivers of Connectivity Variability
Connectivity via living organisms (i.e., larvae, gametes, etc.) is
ultimately the result of a complex combination of physical and
biological drivers. Temporal connectivity variability, such as seen
in Figure 3, could be caused by changes in physical and biological
drivers, or more likely, the combination of both. Changes in
winds from storms, temperature drops in fjordic areas from
increases in river discharge, or in more open-ocean areas from
upwelling events are just a few examples of physical changes that
can drastically alter circulation patterns in the short term (10).
Although identifying the drivers of the peaks in connectivity seen
in Figure 3 is beyond the scope of the present study, the strong
relationship between water temperature and particle maturity
(40) as well as water circulation (11, 13) emphasizes the potential
bio-physical models have to inform connectivity models. A
further study will explore in depth the relative contribution of
physical and biological drivers on sea lice connectivity for this
simulation in order to explain the exponential decrease seen in
the first 30 CRDs, as well as the spikes around CRDs 59, 93, and
123 (Burnett et al., in preparation). It is, however, likely tied to
salinity and temperature fluctuations related to the spring freshet,
when large amounts of fresh and cold water enter the BA from the
surrounding rivers.
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FIGURE 6 | The typical network characterizing sea lice larvae exchange among farms in the BA. This network is based on connectivity estimates over the entire

simulation period, excluding “peak” events.

Sea Lice Connectivity Among Salmon
Farms of the BA and Management
Implications
Over our simulation period, we found evidence that the farming
region had two main areas of connectivity, and that these
were linked by farm 11 (Figure 6). This was also confirmed
by the high betweenness score of farm 11 (the highest of all
farms, with a score of 30). Consequently, investigation efforts
should be made to see whether additional sea lice treatment
and surveillance effort should be focused on this site to break
parasite transmission between the two sub-networks of farms.
Caution may be warranted in the case of any future applications
for new farm sites along the Tribune Channel, where the farms
already located near here (i.e., 11, 2, 7, and 15) had the highest
betweenness scores of the network as it may strengthen the
connection of the two sub-networks and could potentially lead
to more difficult sea lice control. Farms located further from
channels and more toward the open ocean would theoretically
be a better location from a sea lice management perspective,
given the lack of connectivity detected among these farms, and
betweenness scores of 0 (i.e., 8, 9, 12, 13, and 14). It is likely that
these farms had a low connectivity on their neighbors because
their simulated sea lice larvae are being simply flushed out of the
channel by the time they reach maturity and become infectious.
Counter-intuitively, while the rest of the tribune channel farms
(i.e., 2, 11, 15, and 7) had high betweenness scores, farm 10 had
a score of 0, despite being classified as a net emitter. This is
likely due to some sheltering affect of farm 10 being placed far

enough into the bay that sea lice moving through this channel do
not infect farm 10. Thus, it is not receiving particles from many
neighbors (thus lowering its betweenness score), but is emitting
its particles to the rest of sub-network B.

In Figure 3 the confidence intervals of the points with self-

infestation overlap with those that include no self-infestation,
indicating that self-infestation does not play a large role
in this particular model system. This coupled with Figure 5

demonstrating that the location with highest density of particles
can be tens of km away from the emitting farms indicates that

the particles are being carried away before they mature and reach
infectiousness. Thus, farms in the BA would likely benefit from
coordinated treatment efforts, particularly within sub-network
A and B. Without regional coordination with treatments, re-
infection after treatment is likely from farms in the sub-

network that have not also been treated. In addition, connectivity
measurements based only on seaway distances, as can be found in
a number of studies in the literature, may inadequately describe
the transmission patterns between farms. However, until the bio-

physical model is validated, these sub-networks of farms remain
only a tool for hypothesis generation for field tests. Additionally,
sensitivity analysis of simulation parameters, particularly around

the biological model (i.e., maturity and mortality) should be
conducted, as small changes in these parameters have the
potential to have a large impact on connectivity scores. These

studies are planned in forthcoming papers.
It is worth noting that simulation parameters were based

on studies of the Atlantic L. salmonis salmonis subspecies, and
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TABLE 2 | Farm vertex betweenness scores.

Farm Betweenness

1 0

2 29

3 0

4 0

5 0

6 0

7 20

8 0

9 0

10 0

11 30

12 0

13 0

14 0

15 14

16 5

17 4

18 1

19 0

20 0

the BA has L. salmonis oncorhynchi subspecies. Morphological
and biological differences between the subspecies have been
documented (80). However, these parameters were the most
well studied available at the time of running the simulation, so
were used despite the possibility of subtle differences between
subspecies.

Additionally, though there is evidence of burst swimming
behaviors in sea lice, such as salinity avoidance, temperature
seeking, host finding, and diel vertical migrations (81), these
were not included in the model. This is because while the
burst swimming abilities of sea lice appears to be important
for host finding in short distances, there is conflicting evidence
on if burst swimming plays an important role in large-scale
dispersal (55, 82–84). Johnsen et al. (85) found that the light
sensitivity behavior in sea lice did not have a large effect
in model outcomes. They did, however, find that vertical
movements could impact horizontal dispersion, which in our
case could impact connectivity. However, they also found that
even with different swimming speeds and turbulence response
behaviors, the greatest densities of lice were always found at
the surface. Additionally, laboratory experiments have shown
different swimming behaviors between copepods and nauplii
(86). Given this uncertainty around biologically appropriate
behaviors, and the fact that even with different behaviors/
parameters (i.e., swim speeds and turbulence avoidance) the
greatest densities of sea lice were found at the surface in the
Johnson simulation, we chose not to include this in our model.
However, this potential model limitation should be kept in mind.

Strengths and Weaknesses of the KDE
Approach
The approach described in this paper of using KDEs to estimate
the IP each farm experiences from the other farms, has several

strengths, particularly in regards to quantifying infectious agent
networks. Firstly, estimating the IP the network nodes (in
this example, farms) experience from their neighboring nodes
incorporates both exposure time and infectious agent (i.e.,
particles) density, and therefore is more relevant for infectious
agent networks than other measures of connectivity, such as
probability of connections. The method can be applied to
any aquatic system with transmission through water, in which
networks connected by infectious agents emitted from point
sources are of interest. Some marine disease outbreaks that have
had large economic and ecological consequences and are good
candidates for having this more holistic method of quantifying
infectious agent networks applied include: sea star wasting
disease in the Pacific Northwest, infectious withering system
in California Black Abalone, and sea grass wasting disease in
the Atlantic, etc. (87). Additionally, because the locations of
the particles across their lifetime are smoothed in KDEs, this
method can be applied to fairly temporally dispersed particle
tracking data, so it is not necessary to record the location of
every particle every few minutes. This lower temporal resolution
requirement can significantly reduce computational demands
and processing time. Additionally, since the output is a smoothed
surface estimating particle densities for the entire region, it could
be used to simulate specific outbreak scenarios across a region
by scaling the number of particles released from each farm/node
based on the biomass of the fish stock at each farm.

Weaknesses around the use of KDEs to estimate IP are, firstly,
knowing what impact varying levels of IP has on organisms
in receiving nodes/farms. Translating IP experienced by a farm
into sea lice counts on farmed salmon or wild salmon passing
near a farm (or onset of disease, in the case of other infectious
agents) is the domain of experimental lab and field studies (54).
Secondly, the simulation in this paper does not model settlement
or recruitment processes, which are critical aspects of larval
connectivity and can be influenced by temperature and salinity
(88). Including these model extensions into the bio-physical
model should yield more accurate estimates of IP on the farms,
as the IPs generated by the model would reflect the likelihood of
infectious sea lice larvae settling onto a host salmon.

CONCLUSIONS

In summary, we utilized output from a bio-physical model for a
kernel density estimation (KDE) approach in order to quantify
connectivity of 20 salmon farms in the Broughton Archipelago
during a critical 4.5 month period (March 2nd–July 30th) when
juvenile wild salmon are out-migrating to the ocean. The KDE
approach allowed us to take both time and space into account
when making the infestation pressure estimates each farm exerts
on the others. These methods incorporate climatology, space,
time and the biology of the infectious agent (in this case, the
sea louse) into connectivity estimates. In areas where accurate
connectivity information is important for management decisions
and conservation efforts, incorporating coupled bio-physical
models with KDEs could be a useful tool. This is particularly true
for infectious agent networks, where understanding infection or
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infestation pressure each source of particles exerts on the region
is crucial.

Understanding these sea lice larvae networks may support
future advice for best treatment practices, generate hypotheses
for future empirical studies in the BA, and provide a better
understanding of sea lice transmission patterns in the Broughton
Archipelago. This can lead to improved marine spatial planning
to mitigate sea lice transmission, and could ultimately contribute
to an increasingly sustainable salmon farming industry in British
Columbia, Canada. Furthermore, the approach demonstrated in
this paper can be applied to other aquatic scenarios where meta-
populations are connected via infectious agents for improved
spatial planning, treatment strategies, and hypotheses generation
around preventing or mitigating outbreaks.
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