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ABSTRACT

Energy disaggregation of appliances using non-intrusive load mon-

itoring (NILM) represents a set of signal and information process-

ing methods used for appliance-level information extraction out of

a meter’s total or aggregate load. Large-scale deployments of smart

meters worldwide and the availability of large amounts of data, moti-

vates the shift from traditional source separation and Hidden Markov

Model-based NILM towards data-driven NILM methods. Further-

more, we address the potential for scalable NILM roll-out by tack-

ling disaggregation complexity as well as disaggregation on houses

which have not been ’seen’ before by the network, e.g., during train-

ing. In this paper, we focus on low rate NILM (with active power

meter measurements sampled between 1-60 seconds) and present

two different neural network architectures, one, based on convolu-

tional neural network, and another based on gated recurrent unit,

both of which classify the state and estimate the average power con-

sumption of targeted appliances. Our proposed designs are driven

by the need to have a well-trained generalised network which would

be able to produce accurate results on a house that is not present in

the training set, i.e., transferability. Performance results of the de-

signed networks show excellent generalization ability and improve-

ment compared to the state of the art.

Index Terms— Energy analytics, non-intrusive load monitor-

ing, energy disaggregation, neural networks, deep learning

1. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) refers to identifying and ex-

tracting individual appliance consumption patterns from aggregate

consumption readings, to estimate how much each appliance is con-

tributing to the total load. This problem has been researched for over

30 years [1] and has become an active area of research again recently

due to ambitious energy efficiency goals, smart homes/buildings, and

large-scale smart metering deployment programmes worldwide.

Different approaches have been proposed for NILM, using vari-

ous signal processing and machine learning techniques (reviews can

be found in [2, 3]). Approaches proposed include include Hidden

Markov Models (HMM)-based methods and their variants (see, e.g.,

[4, 5]), signal processing methods, such as dynamic time warping

[6, 7, 8], single-channel source separation [9], graph signal process-

ing [10, 11], decision trees [6], support vector machines with K-

means [12], genetic algorithms [13, 14] and neural networks [15].

The recent increase in availability of load data, e.g., [9, 16, 17],

for model training has ignited data-driven approaches, such as deep

neural networks (DNNs) using both convolutional neural network

(CNN) and recurrent neural network (RNN) architectures [18, 19,

20, 21]. Currently, DNN-based NILM relies on creating a new net-

work for each house and each appliance. With the availability of

Table 1. DNN-based NILM methods used in previous papers

(Dataset abbreviations: UK-DALE = UK-D, Prv. = Private.
Paper Year Datasets Synthetic Best Architecture

Data

[24] 2016 UK-D No LSTM

[18] 2015 UK-D Yes Denoising Autoencoder

[20] 2017 UK-D, REDD, Prv. No LSTM

[21] 2018 UK-D No Deep CNN

[22] 2016 UK-D, REDD No CNN

[23] 2017 Prv. Yes Stacked Denoising Autoencoder

[25] 2015 REDD Yes LSTM

[26] 2015 REDD Yes HMM-DNN

a sufficient and good training dataset, these networks perform well

as they are highly targeted, but if NILM is to become widespread

and scalable, networks will need to be trained on a wide range of

electrical load signatures. As such, the challenge is to design a sin-

gle network to accurately disaggregate any appliance across multiple

“unseen” houses, i.e., houses not present in the training dataset.

Though the previous DNN-based approaches [18, 19, 20, 21, 22,

23, 24] demonstrated competitive results, they do not fully exploit

the DNN potential. Indeed, the approaches of [18] and [19] are lim-

ited by generation of synthetic activations, which do not necessarily

capture “noise” well, here defined as unknown simultaneous appli-

ance use, usually present in the dataset. In [25, 26], an long short-

term memory (LSTM) & DNN-HMM approach was used to rebuild

the appliance signal but due to the difference in aggregate and sub-

metered sampling rates in the REDD dataset, synthetic data was used

exclusively in both papers by summing all sub-meters; this limits the

amount of noise as appliances not sub-metered would be excluded.

[20] uses real “noisy” dataset, but requires thousands of epochs to

generate accurate results, which is not a feasible approach for online

disaggregation, while the architecture of [21] contains large number

(i.e., 44) layers designed only for identification of appliance state,

without generating disaggregation or load consumption estimations.

Table 1 summarises the state-of the-art DNN-based NILM meth-

ods. Though prior work considered transferability across houses

within the same dataset (e.g., [18, 19]), only [27] has looked at

cross dataset evaluation (using curve fitting and DBSCAN to gen-

erate a generic model for each appliance), i.e., transferability across

datasets. This is particularly challenging due to the large variation

in sampling rates, appliances, usage patterns, climate, age (differ-

ent energy labels) and electrical specifications (e.g., voltage, phase)

across datasets. Cross-dataset transferability is very much needed in

order to be able to use the developed models at scale.

The main contributions of this paper are:

(a) showing that a single neural network can be trained to ac-

curately target at once both NILM problems (which have been ad-

dressed separately or unevenly so far), that is, to identify occurrences



Fig. 1. Proposed GRU Network Architecture.

AND estimate the contribution to the total load of a specific appli-

ance. Our approach addresses these problems inseparably with flow

of information from the classification part of the network to the load

estimation part. This is in contrast to previous work that focused on

binary classification of appliance state (ex. [19, 20, 21]) or estima-

tion of appliance load mainly (ex. [22, 18]).

(b) The proposed architectures are designed to facilitate success-

ful transfer learning between very distinct datasets.

(c) Our proposed networks represent a significant reduction in

complexity (the number of trainable parameters) compared to pre-

vious approaches [18, 19, 20, 21, 22], even though our proposed

networks are tested on arguably more challenging real datasets.

(d) We do not make use of synthetic data and perform both train-

ing and testing on balanced data to avoid the issue of bias due to lack

of appliance activations, which is a feature of many NILM datasets.

In order to demonstrate transferability, we resort to three

datasets, namely UK REFIT [17] and UK-DALE [16], which we

expect to have similar appliances, as well as US REDD [9], whose

appliances are different in terms of electrical signatures, as com-

pared to UK appliances.

2. PROPOSED NETWORK ARCHITECTURES

We introduce two networks, both of which are suited to processing

temporal data: (1) a Gated Recurrent Unit (GRU) architecture, as

shown in Figure 1, and (2) a Convolutional Neural Network (CNN)

architecture, as shown in Figure 2. Both architectures remain pur-

posely simple with a two-branch layout, with the side branch con-

sidering state estimation and feeding it back to the main branch to

assist with consumption estimation.

It is worth noting that prior work has generally focused on ei-

ther state or consumption estimation, using a single-branch network

[20, 21, 22], or attempting to rebuild the signal hence generating

both state and consumption as an output [18, 19, 23, 24]. In the lat-

ter, an autoencoder network is used where the network takes in an

aggregate window and attempts to rebuild the target appliance sig-

nal only; these network types require a large amount of labelled data

and generally make use of synthetic data. In addition, each of our

networks differs from the literature, by training on fewer epochs or

by having many less trainable parameters.

The GRU is a variant of the LSTM unit, especially designed

for time series data to handle the vanishing gradient problem of net-

works. As such, they are designed, as LSTM, to ‘remember’ pat-

terns within data, but are more computationally efficient. GRUs

Fig. 2. Proposed CNN Network Architecture.

have fewer parameters and thus may train faster or need less data

to generalize. Therefore, a GRU is more suited to online learning

and processing than the LSTM unit. The specific variation used in

this work is the original version, proposed in [28], using an NVidia

CUDA Deep Neural Network library (CuDNN) accelerated version

and implemented in Keras (CuDNNGRU). The GRU network con-

tains 4,861 parameters, out of which 4,757 are trainable and 104

non-trainable, i.e., hyper-parameters.

The proposed CNN consists of Conv1D (Keras) layers. 1D

convolutional layers look at sub-samples of the input window and

decide if the sub-sample is valuable. The CNN network contains

28,696,641 parameters, out of which 28,696,385 are trainable, and

256 non-trainable, hyper-parameters.

In both proposed networks, we make use of the ReLU func-

tion [29] as the network activation. This activation is monotonic and

half rectified, that is, any negative values are assigned to zero. This

has the advantage of not generating vanishing gradients, exploding

gradients or saturation. However, ReLU activations can cause dead

neurons; we therefore use dropout to help mitigate the effect of dead

neurons which may have been generated during training. Both pro-

posed networks also use sigmoid activations for the state estimation

and linear activations for the power estimation. The sigmoid func-

tion is used as it only outputs between 0 and 1, thus ideal for the

probability that the appliance is on or off; in our networks, we as-

sume a value greater than 0.5 to be on and anything below to be

off. Linear activations can be any value and therefore are the best

when estimating power. Both networks are implemented using the

TensorFlow wrapper library Keras using Python3.

3. TRAINING OF PROPOSED NETWORKS

We train the proposed networks using REDD and REFIT datasets,

both containing sub-metered data. Note that sampling rates in these

two datasets are different. To account for this, we pre-processed all

data down to 1 second (using forward filling), then back to uniform

8 second intervals. Data was standardised by subtracting the mean,

then dividing by the standard deviation.

We train on houses, except House 2, in both REDD and REFIT

datasets, for the entire duration of the respective datasets. Testing is

then performed on unseen House 2 in REDD and House 2 in RE-

FIT, as well as UK-DALE House 1. The latter was used as it was

monitored for the longest period of time. Details of houses used for

training each appliance model are shown in Table 2.

An example of a typical day within each of the datasets is shown

in Figure 3. It can be seen that the aggregate of the REDD dataset

typically has very few appliance activations and a low noise level.



Fig. 3. Aggregate load measurements for a typical day for Houses

2 in REFIT and REDD datasets and House 1 UK-DALE, showing

relatively higher noise levels for UK REFIT and UK-DALE houses.

Table 2. Appliances and Houses Used
REDD REFIT

Appliance Houses Houses Window Size (samples) On State (Watts)

MW 1, 2, 3 2, 6, 8, 17 90 (12 mins) > 100
DW 1, 2, 3, 4 2, 3, 6, 9 300 (40 mins) > 25
FR 1, 2, 3, 6 2, 5, 9, 15, 21 800 (1.78 hours) > 80
WM 2, 3, 10, 11, 17 300 (40 mins) > 25

On the other hand, the REFIT and UK-DALE datasets are similar

in complexity with both having multiple large appliance activations

with a complex low consumption noise level at below 500 watts.

Four models are trained, one for each target appliance: dish-

washer (DW), refrigerator (FR), microwave (MW) and washing ma-

chine (WM). As each appliance has a different duty cycle, windows

were chosen to capture a significant portion of a single activation,

shown in Table 2 along with the watt thresholds, obtained using

training data, and are used to decide if the appliance is deemed to

be on, i.e., if the threshold was exceeded.

Input data was balanced to avoid a training bias within the net-

works, by limiting the majority class to that of the minority class.

Limiting the majority class was done by selecting samples at ran-

dom, which resulted in a 50/50 split of the data. Validation data

was then generated from randomly sampling 10% of training data.

Each network was trained to 10 epochs with early stopping moni-

toring “Validation Loss”; if this failed to improve after 2 epochs the

best performing network weights were used. Both networks used

binary cross entropy as the loss function for state classification, for

consumption the CNN uses mean square error (MSE) and the GRU

logcosh. The CNN uses the stochastic gradient descent (SGD) opti-

miser and the GRU uses RMSprop.

Four performance metrics are used, F1-score (state prediction),

Accuracy, Root MSE (RMSE) & Mean Absolute Error (MAE) (con-

F1-Score Accuracy [%] RMSE [W] MAE [W]

Appliance CNN GRU CNN GRU CNN GRU CNN GRU

Microwave 0.95 0.95 76.4% 55.7% 165.73 252.17 68.02 127.79

Dishwasher 0.71 0.74 71.4% 76.3% 185.72 136.79 119.35 98.90

Refrigerator 0.67 0.67 83.5% 53.9% 16.17 31.15 10.14 28.31

Table 3. Testing on “unseen” House 2, after training the networks

on all other REDD houses.

F1-Score Accuracy [%] RMSE [W] MAE [W]

Appliance CNN GRU CNN GRU CNN GRU CNN GRU

Microwave 0.82 0.87 68.7% 65.6% 88.75 107.57 35.49 39.08

Dishwasher 0.82 0.82 82.9% 84.8% 200.98 211.78 82.74 73.53

Refrigerator 0.93 0.85 76.9% 64.1% 14.77 23.94 8.56 13.30

Washing Mac 0.79 0.86 71.8% 68.9% 176.22 190.05 71.99 79.33

Table 4. Testing on “unseen” REFIT House 2, after training the

networks on all other REFIT houses.

sumption estimation), which frequently appear in literature:

F1 =
2 · precision · recall

precision+ recall
(1)

Accuracy = (1−

∑

∞

n=1
|et|

2 ∗
∑

∞
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true

) ∗ 100 [%] (2)

RMSE =

√

Σn
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(

et

)2

n
[ Watts], (3)

MAE =
1

n

n
∑

t=1

|et|[ Watts], (4)

where n is the number of samples and

precision = True Positives
True Positives+False Positives

,

recall = True Positives
True Positives+False Negatives

,

et = predicted load − actual load,

true = actual load.

The testing data was also balanced to avoid artificially improving

scores; that is, in NILM datasets there is a higher likelihood that an

appliance will be in an off state than it will be on (fridges and freezer

being the exception). For example, a microwave may only be used

once or twice per day or around 0.14% of a day. Therefore with

unbalanced testing data, a network that only predicts the microwave

in the off state will score well assuming that the microwave is used

infrequently. Therefore, balancing the test data clearly shows the

network is working well if it has an F1-score above 0.5.

Before assessing transferability across datasets, we establish

baseline performance by training and testing on the same dataset.

Tables 3 and 4 show the results of testing of each network on un-

seen House 2 from within the same dataset, i.e., electrical load

measurements from Houses 2 of REDD and REFIT datasets were

not used at all for training. The tables show that GRU tends to

perform appliance state estimation marginally better (as shown by

F1-score), while CNN performs slightly better for appliance con-

sumption (as shown by Accuracy, RMSE and MAE). However,

overall, both networks perform in a similar manner and demonstrate

very good performance when training and testing on unseen houses

on the same dataset. We thus show that the proposed methodology

transfers well for unseen houses from within the same dataset.



Fig. 4. Typical appliance signatures for MW, DW and FR across

REDD, REFIT and UK-DALE datasets.

4. RESULTS

In this section, we demonstrate our networks’ ability to transfer

across datasets. This real-world test shows the ability of the net-

work to handle completely unknown appliances, duty cycles and

consumption - see, for example, Figure 4.

We first present the results when the models are trained using

only REFIT houses (as per Table2), and tested on House 2 from the

REDD dataset. This is shown in Table 5. Compared to Table 3,

we can observe a drop in performance for MW and DW, due to a

difference in make/models of appliances between UK houses and the

US house. Similar conclusions can be made from Table 6, where we

show results when the models are trained using only REDD houses

and tested on one REFIT house.

Note that in Table 6, the accuracy of Fridge is missing due to the

window size selection; that is, with this window size, in the REDD

dataset, there is always a fridge that is on, which means transferabil-

ity between REDD to REFIT is biased to predicting the fridge always

being on. This can be seen in Fig. 4, where the REDD fridge has a

considerably smaller duty cycle than in the REFIT and UK-DALE

datasets. This can be remedied by choosing a smaller window size;

however in real-world applications this would only become apparent

after testing, and multiple fridge networks may have to be generated.

Table 7 shows the results of training on REFIT houses and test-

ing on unseen UK-DALE House 1. The UK-DALE dataset is similar

to the REFIT dataset as it is also UK based, therefore has similar

appliance types. This is reflected in the scoring metrics, as it has

minimal performance drop compared to Table 4.

When comparing state estimation and consumption estimation

performance of the proposed CNN and GRU networks across all re-

sults, we observe that they both perform similarly.

Though the metrics used are similar to those in the NILM litera-

ture, we cannot directly compare our consumption estimation results

with the literature because the network outputs are different. How-

ever, as an indication of classification performance, [18] achieves F1

scores of 0.26 for MW, 0.74 for DW and 0.87 for FR when training

on UK-DALE and testing on an unseen house also in the UK-DALE

dataset. Our cross-dataset results in Table 7 show superior F1 perfor-

mance for MW and FR. Comparing results for House 2 REDD, i.e.,

Tables 3 and 5, our best F1 scores show similar results as [19] best

scores for MW (0.95), better for FR (1 vs 0.94) but slightly worse

for DW (0.74 vs 0.82).

F1-Score Accuracy [%] RMSE [W] MAE [W]

Appliance CNN GRU CNN GRU CNN GRU CNN GRU

Microwave 0.41 0.49 64.1% 54.7% 120.01 103.71 90.96 39.26

Dishwasher 0.44 0.57 50.2% 39.6% 305.22 284.34 183.27 222.34

Refrigerator 1.00 0.98 76.0% 65.5% 44.44 59.92 38.42 55.11

Table 5. Training on REFIT houses only and testing on unseen

House 2 from REDD.

F1-Score Accuracy RMSE [W] MAE [W]

Appliance CNN GRU CNN GRU CNN GRU CNN GRU

Microwave 0.70 0.78 47.9% 50.8% 114.89 100.17 59.20 55.82

Dishwasher 0.80 0.62 62.8% 54.0% 431.61 386.91 179.83 222.43

Refrigerator 0.67 0.67 – – 68.97 56.57 63.73 53.37

Table 6. Training on REDD houses only and testing on unseen

House 2 from REFIT.

F1-Score Accuracy RMSE [W] MAE [W]

Appliance CNN GRU CNN GRU CNN GRU CNN GRU

Microwave 0.79 0.7 77.3% 65.11% 66.96 144.46 41.30 63.70

Dishwasher 0.21 0.46 44.1% 52.09% 43.09 44.62 29.08 24.97

Refrigerator 1 0.69 82.0% 73.08% 14.38 19.56 11.15 16.69

Table 7. Training on REFIT houses only and testing on unseen UK-

DALE House 1.

5. CONCLUSION

In this paper, we address one of the biggest NILM challenges that

is yet to be demonstrated and hence limiting commercial take-up:

scalability. This is reflected in performance vs complexity trade-off

of NILM solutions and the ability to disaggregate appliance loads,

which have previously not been seen (or trained) by the NILM

solution, i.e., transferability. Driven by the increasing availability

of smart meter data, we thus design and propose two data-driven

deep learning based architectures that perform state estimation and

classification estimation inseparably, and can generalize well across

datasets. We show the ability of our trained CNN- and GRU-

based networks to accurately predict state and consumption across

3 publicly available datasets, commonly used in the literature. We

show that our proposed trained networks have the ability to trans-

fer well across datasets with minimal performance drop, compared

to the baseline when we train and test on the same dataset, albeit

on an unseen household within the same dataset. Both GRU- and

CNN-based networks show similar performance but the GRU-based

network has fewer trainable parameters and is thus less complex

than the CNN-based network.
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