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a b s t r a c t

Although effective cooling of micro-electro-mechanical systems (MEMS) with oscillatory components is

essential for reliable device operation, the role of oscillation on heat transfer remains poorly understood.

In this work, heat and mass transfer of the oscillatory gas flow inside a square cavity is computationally

studied by solving the Boltzmann model equation, i.e. the Shakhov model. The oscillation frequency of

the lid and rarefaction and nonlinearity of the flow field are systematically investigated. Our results show

that, when the oscillation frequency of the lid increases, the usual cold-to-hot heat transfer pattern for

highly rarefied flow changes to hot-to-cold, which contradicts the well-known anti-Fourier (i.e. cold-

to-hot) heat transfer in a non-oscillatory lid-driven cavity. In addition, the thermal convection will be

dramatically enhanced by lid oscillation, which may play a dominant role in the heat transfer.

Meanwhile, the average Nusselt number varies non-monotonically with the oscillation frequency, with

the maximum occurring at the anti-resonance frequency. Finally, the average Nusselt number on the

lid at various oscillation frequencies is found to reduce when the gas becomes more rarefied. These find-

ings may be useful for the thermal design of MEMS.

� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The micro-oscillators are commonly built in the micro-electro-

mechanical system (MEMS) devices [1], e.g. the micro-

accelerometers, the inertial sensors, and the resonating sensors.

Proper cooling of the oscillatory components is key to the reliable

and robust operation of MEMS devices. However, heat transfer in

the MEMS oscillators remains poorly understood.

With the miniaturization of the device structure, the character-

istic dimension could shrink to the micro- and nano-scales, in

which the gas flows are generally rarefied. The degree of gas rar-

efaction is normally characterized by the Knudsen number (Kn),

which is defined as the ratio of the gas mean free path to the char-

acteristic flow length. Alternatively, the Knudsen number can also

be defined as the ratio of the oscillation frequency and the mean

collision frequency of gas molecules [2]. The most gas MEMS

devices operate in the slip (10�3
K KnK 0:1) and early transition

regimes (0:1K KnK 1) [3,4]. Furthermore, the oscillation fre-

quency of the moving parts may aggravate non-equilibrium of

gas flow in oscillatory systems [5,6]. As the conventional Navier-

Stokes-Fourier equations break down, the gas kinetic theory

should be adopted for rarefied flow analysis [7,8].

The oscillatory rarefied gas flows have been investigated by

seeking the solutions of the Boltzmann equation and its model

equations, which are usually solved by the direct simulation Monte

Carlo (DSMC) method [3,9–14] or the discrete velocity method

(DVM) [4,5,2,7,15–17]. These studies have been focused on the

damping force on the oscillating parts, the effect of oscillation on

heat transfer for rarefied flows has largely been oversighted

[11,12], except for simple one-dimensional (1D) oscillating Couette

flows [11,18]. Note that great efforts have been made to investigate

the heat transfer in non-oscillatory rarefied lid-driven cavity flows

[19–23], in which the non-Fourier heat transfer (i.e., the cold-to-

hot heat flux) was reported, and the effect of external force field

on heat transfer was also discussed [21,22].

For the DSMC and DVM methods, the computational time step

and spatial mesh size need to be smaller than the mean collision

time and the gas mean free path, respectively, if the free streaming

and collisions of gas molecules are dealt with separately. Thus,

these two methods are computationally expensive for flows near

the hydrodynamic regime [24,25]. As a result, studies of the oscil-

latory rarefied gas flows are mainly restricted in the highly rarefied

regimes. Meanwhile, the velocity amplitude of the oscillator is usu-

ally assumed to be very small, so that the linearized Boltzmann

equation or its model equations can be used to obtain the analyt-

ical results for the simple 1D flows in the limits of the continuum

and free molecular regimes [2,26]. In fact, the velocity magnitude
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of the oscillator can also dramatically affect the mass and heat

transfer [16,27,6]. Therefore, it is necessary to take account of the

effect of flow nonlinearity/compressibility in studying the heat

transfer of the oscillatory flows.

Recently, we used the discrete unified gas-kinetic scheme

(DUGKS) to solve the gas kinetic model for an oscillatory rarefied

cavity flow focusing on the damping force exerting on the oscilla-

tory lid [6,28]. In this work, the flow and thermal characteristics of

the oscillatory rarefied gas flow inside a square cavity are investi-

gated on the basis of the Shakhov equation. The effects of gas non-

linearity and oscillation frequency are systematically studied

covering the flow regimes from the hydrodynamic to free molecu-

lar flows. The results of non-oscillatory lid-driven rarefied cavity

flow are also presented for comparison [29].

The remainder of the paper is organized as follows. We intro-

duce the formulation of the problem and the Shakhov model in

Section 2. The computational details including discretizations of

the molecular velocity space, the spatial space, and the temporal

space are described in Section 3. Our numerical results for mass

and heat transfer are presented and discussed in Section 4, which

is followed by the conclusions in Section 5.

2. Problem formulation

We consider a rarefied monatomic gas flow in a two-

dimensional square cavity driven by a moving lid at y ¼ H, see

Fig. 1. The lid oscillates harmonically in the x-direction at fre-

quency x, with the velocity given by

Uw ¼ U0 cosðxtÞ; ð1Þ

where U0 is the amplitude of the oscillating velocity, and t is the

time. The other three walls at x ¼ 0; x ¼ H, and y ¼ 0 are fixed,

and all the four walls are isothermal with a fixed temperature of Tw.

The problem considered is characterized by the Mach number

(Ma), the Strouhal number (St), and the Knudsen number, which

are, respectively, defined as

Ma ¼ U0
ffiffiffiffiffiffiffiffiffiffiffi

cRTw

p ; St ¼ xH

vm

; Kn ¼ k

H
; ð2Þ

where c ¼ 5=3 is the specific heat ratio for monatomic gas,

vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2RTw

p
is the most probable molecular speed with R being

the specific gas constant, and k is the mean free path of gas mole-

cules, which is related to the shear viscosity l of the gas as

k ¼ lðT ¼ TwÞ
p

ffiffiffiffi

p
p

vm

2
; ð3Þ

where p ¼ qRT is the gas pressure, with q and T being the density

and temperature, respectively. In this work, the hard-sphere molec-

ular model is used, where the shear viscosity of the gas is deter-

mined by power-law in terms of the gas temperature:

l ¼ lðT ¼ TwÞ
T

Tw

� �0:5

: ð4Þ

The Shakhov equation, which is widely used to describe the

dynamics of monatomic gases [30], is adopted to describe the

non-equilibrium flow induced by the gas rarefaction and the oscil-

lation of the lid. In the absence of external force, it takes the form of

@f

@t
þ n �rf ¼ �1

s
f � f

S
h i

; ð5Þ

where f ðx; n; tÞ is the molecular velocity distribution function of gas

molecules at the position x ¼ ðx; y; zÞ, time t, velocity n ¼ ðnx; ny; nzÞ.
f
S
is the reference distribution function expressed as the combina-

tion of the Maxwellian distribution function f
eq

and a heat flux cor-

rection term:

f
S ¼ f

eq
1þ ð1� PrÞ c � q

5pRT

c2

RT
� 5Þ

� �� �

; ð6Þ

where c ¼ n� U is the peculiar velocity with U being the macro-

scopic flow velocity, q ¼ 1
2

R

cc2fdn is the heat flux, and Pr ¼ cpl=k
is the Prandtl number being equal to 2=3 for the monatomic gases.

Here cp is the specific heat, l is the dynamic viscosity, and k is the

thermal conductivity. The collision time s in Eq. (5) is given in terms

of the dynamic viscosity l and the gas pressure p as s ¼ l=p. The

Maxwellian distribution function f
eq

is given by

f
eq ¼ q

ð2pRTÞ3=2
exp � c2

2RT

� �

; ð7Þ

where q is the gas density.

The conservative variablesW � ðq;qU;qEÞT are calculated from

the velocity moments of the velocity distribution function:

W ¼
R

wfdn, where w ¼ 1; n; 1
2
n2

� �T
. Note that the gas temperature

is related to the total gas energy as qE ¼ 1
2
qU2 þ 3

2
qRT. In addition,

the shear stress can be computed as

rxy ¼
Z

cxcyfdn; ð8Þ

where cx and cy denote the components of peculiar velocity in the x-

and y-axises, respectively.

3. Numerical method

The DUGKS is used to solve the Shakhov equation [31], where

the velocity distribution function across the cell interfaces is con-

structed on basis of the discrete characteristic solution of the

kinetic model, consisting of both the kinetic and hydrodynamic

parts [25,32]. With the intrinsic coupling of molecular collision

and transport processes in determining the flux across the cell

interface, the computational time step and mesh size are not lim-

ited by the mean collision time and mean free path of gas mole-

cules, respectively. Therefore, the multiscale-flow physics can be

efficiently and self-adaptively captured from the hydrodynamic
Fig. 1. Schematic diagram of the oscillatory flow in a square cavity. The origin of the

coordinate is located at the left bottom corner of the cavity.
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to the free molecular flow regimes [24]. The details of the DUGKS

for the Shakhov model can be found in Guo et al. [31].

In order to accurately approximate the moments of velocity dis-

tribution function, the continuous molecular velocity space

nx; ny; nz 2 ð�1;þ1Þ
� �

should be discretized according to the

degrees of rarefaction and compressibility of the gas flow, using

a certain quadrature rule to compute the velocity integrals. For

slightly rarefied flows with low Mach number, the highly accurate

Gauss-Hermite quadrature with few discrete velocity points is usu-

ally applied, while the trapezoidal rule with more discrete velocity

points associated with nonuniform abscissas [33,34] is adopted to

capture discontinuities in the distribution function for high-speed

flows in the highly rarefied regimes. Details of the discretized

molecular velocity space are given in Table 1.

For the spatial discretization, in order to accurately capture the

flow properties near the wall boundary, a set of non-uniform

meshes with Nx � Ny grid points are adopted in the x- and y-

axises, respectively, and the mesh resolution is gradually refined

from the cavity center to the walls. The location of a control volume

center (xi; yj) is generated by xi ¼ ðfi þ fiþ1Þ=2; yj ¼ ðfj þ fjþ1Þ=2;
0 6 i < Nx;0 6 j < Ny, where fi is defined by

fi ¼
1

2
þ tanh½aði=N � 0:5Þ�

tanhða=2Þ ; i ¼ 0;1;2; . . . ;Nx;y � 1; ð9Þ

in which a is a constant that determines the mesh distribution. The

larger a is, the smaller the mesh size becomes near the walls. Here a

in the x- and y-directions is set to be 2 and 3.5, respectively. The

grid points used in the discretization of spatial space are also listed

in Table 1. Independence of the results on the discretized molecular

velocity and spatial spaces given in Table 1 has been carefully con-

firmed for our simulations.

The computational time step in the DUGKS is solely determined

by the Courant-Friedrichs-Lewy (CFL) condition [35],

Table 1

Details of the discretizations in the molecular velocity space and spatial space. Here

ðG=Nm;nÞ represents using m Gauss-Hermite/Nonuniform velocity points and n grid

points in each direction of the molecular velocity space and spatial space, respec-

tively. Note that the integration interval for the trapezoidal rule is truncated within

½�4vm;4vm� and ½�6vm;6vm� for Ma = 0.1 and 1, respectively.

Kn 0:001 0:01 0:1 1 10

Ma ¼ 0:1 G8;64ð Þ G16;48ð Þ G16;32ð Þ N32;32ð Þ N48;32ð Þ
Ma ¼ 1 G16;64ð Þ G28;48ð Þ G28;32ð Þ N48;32ð Þ N48;32ð Þ

Fig. 2. The horizontal velocity U and the shear stress rxy along the line x ¼ 0:5 for Kn = 0.01 at various St (top row), and for St = 2 at various Kn (bottom row). The shear stress

profiles in (b) and (d), respectively, share the same legend as the velocity in (a) and (c). Here t=Ts ¼ 0 and Ma = 0.1.
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Dt ¼ gDxmin=nmax, where g is the CFL number, Dxmin is the minimum

mesh size, and nmax is the maximum discretized molecular velocity.

Note that the DUGKS has a distinguished performance in robust-

ness [36,37], therefore, a relatively large CFL number can be used

to reduce the computational time. In all the simulations, the CFL

number g � 0:5 is set to satisfy nDt ¼ p;n 2 Z
þ.

The accuracy of the DUGKS has been extensively demonstrated

in the previous studies e.g. [24,36–39]. In particular, the capacity of

DUGKS for the oscillatory rarefied flow has been proven in our

recent study [6,28]. It should be emphasized that, the primary rea-

son for adopting the DUGKS is that, different from the traditional

DVM, the grid size in the DUGKS is not necessary to be smaller than

the mean free path of gas molecules in the slip and continuum

regimes [32], which allows the DUGKS to use much fewer grid

points than the traditional DVM in describing the slip and contin-

uum flows [24]. For example, as the Knudsen number changes

from 10 to 0.001, the ratio of gas mean free path to the average

mesh size varies widely from 640 to 0.064.

4. Results and discussion

Numerical simulations are performed by the DUGKS covering a

wide range of the Knudsen numbers, the Strouhal numbers, and

the Mach numbers, which describe the role of gas rarefaction,

oscillation frequency, and flow nonlinearity, respectively. The dif-

fuse boundary condition is applied for gas-wall interactions [6].

For this unsteady problem, the flow converges to a time-

periodic steady flow after a few periods of oscillation. The flow

field is regarded as time-period flow steady-state, if the following

criteria is satisfied:

� ¼
P kuðnTsÞ � u ðn� 1ÞTsð ÞÞk1

P kuðnTsÞk1
< 10�7;n 2 Z

þ; ð10Þ

where the summarization is taken over the whole flow field,

Ts ¼ 2p=x is the oscillatory period of the lid, and n is number of

the oscillatory period. In what follows, the results are prepared in

a time-period steady-state unless otherwise stated. In addition,

the velocity, temperature, shear stress, and heat flux are, respec-

tively, normalized by the U0; Tw;q0RTwU0=vm and q0RTwU0, with

the reference density q0 being set to 1. The height of the cavity is

set to H ¼ 1 for clarity.

4.1. Flow characteristics

Flow velocity and shear stress, which play an important role in

determining the heat transfer mechanism, are first investigated at

t=Ts ¼ 0 and Ma = 0.1. Fig. 2(a) and Fig. 2(b) show the profiles of

horizontal velocity and shear stress along the vertical centerline

Fig. 3. Contours of the shear stress overlaid by the streamlines of the velocity for Kn = 0.01 (top row) and Kn = 10 (bottom row), with St = 0 (left column) and St = 2 (right

column). Here t=Ts ¼ 0 and Ma = 0.1.
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of x ¼ 0:5 for Kn = 0.01, at different values of St. It is clear to see

that the magnitude of shear stress exerting on the oscillation lid

is proportional to the difference of velocity between the oscillating

lid and the flow on the lid. As St increases, a larger magnitude of

the shear stress on the lid is observed in Fig. 2(b), because of the

reducing flow velocity there, see Fig. 2(a). However, for larger

Knudsen numbers (Kn P 0:1), it was reported that the velocity

and the Strouhal number show no general dependency [5]. In addi-

tion, the velocity (shear stress) near the moving lid at x ¼ 0:5

reduces (increases) rapidly with St. It has been shown in the anal-

ysis of one-dimensional flow that a new length scale, i.e. the pen-

etration depth, is created for the oscillatory Couette flow [3]. Here,

we can define an analogical length scale as the distance from the

moving wall to the position where the velocity decays to 10% of

its excitation value (U0). It is noticed that the penetration depth

along the vertical centerline x ¼ 0:5 decreases with increasing St,

see Fig. 2(a).

The flow velocity and shear stress along the centerline of x ¼ 0:5

for St = 2, with Kn from 0.001 to 10, are presented in Fig. 2(c) and

Fig. 2(d), respectively. As expected, when Kn decreases, the hori-

zontal velocity U on the lid increases, until reaching the no-slip

limit U ¼ U0 at Kn = 0.001. In addition, negative minimum U is

observed near the oscillating lid for Kn = 0.001 and 0.01, indicating

that a vortex emerges there, as shown in Fig. 3(c). In Fig. 2(c), the

location of the minimum U for a smaller Kn is found to be closer to

the oscillating lid as well.

To further elaborate the above observations, the shear stress

contours overlaid by the velocity streamlines for Kn = 0.01 and

10, with St = 0 and 2, are illustrated in Fig. 3. As expected, for

Kn = 0.01, the vortex appears in both non-oscillatory and oscilla-

tory flows, and location of the vortex center in the oscillatory flow

is closer to the lid than that of the non-oscillatory one. However,

for Kn = 10, a primary vortex emerges only in the non-oscillatory

flow.

Finally, the velocity magnitude contours overlaid by the stream-

lines of velocity for Kn = 0.1 and Kn = 1 during the first quarter of

the oscillation period are depicted in Fig. 4. When t=Ts ¼ 0, the

driving velocity Uw ¼ U0, the intense movements occur near the

oscillating lid, where the streamlines are almost parallel to the

moving lid. As Uw is reduced to about 0:31U0 at t=Ts ¼ 0:2, for both

Kn = 0.1 and 1, the flow penetrates deeper, a primary vertex

emerges in the upper region of the cavity as well. Eventually, for

Uw ¼ 0 at t=Ts ¼ 0:25, the regions, where the velocity magnitude

is maximum, appear symmetrically along the vertical centerline

of the cavity. Meanwhile, for Kn = 1, the vertex completely disap-

pears, see Fig. 4(f).

4.2. Thermal characteristics

Fig. 5 shows the temperature field overlaid by the heat flux

streamlines at t=Ts ¼ 0 for Kn = 0.01, 0.1, 1, and 10, and St = 0,

0.5, 1, and 2. The Mach number is set to 0:1. We notice that, the

cold and hot regions are normally located at the top left and right

corners of the cavity, respectively. It is well recognized that for a

low-speed lid-driven rarefied cavity flow, the anti-Fourier heat

transfer, i.e. the heat transferring from the cold region to the hot

one, is dominant, which has been extensively reported in the liter-

atures [19,40–43]. We can see from the first column of Fig. 5 that

when St = 0, even for a very small Knudsen number Kn = 0.01, the

cold-to-hot heat transfer prevails inside the cavity, even though

the heat transferring from the hot region (top-left corner) to the

cold one (top-right corner) also takes place in the bottom left side

of the cavity. As St is increased to 0.5, the hot-to-cold heat transfer

becomes dominant at the cavity center, see Fig. 5(a2). Thereafter,

when St = 1 (Fig. 5(a3)), the domain of hot-to-cold heat transfer

is expanded to the middle and bottom of the cavity. Eventually,

when St = 2 (Fig. 5(a4)), the hot-to-cold heat transfer almost dom-

inates the whole cavity, except the two top corners, where the non-

Fig. 4. Contours of the velocity magnitude overlaid by the velocity streamlines for Kn = 0.1 (top row) and Kn = 1 (bottom row), at t=Ts ¼ 0, 0.2, and 0.25 (from left to right

column). The Mach number is set to be 0.1.
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equilibrium effects due to intensive gas-wall interactions are

strong. The similar phenomena are also observed for the cases of

Kn = 0.1, 1, and 10.

On the other hand, as the Knudsen number increases, the Strou-

hal number, at which the heat transfer pattern is reversed, i.e.

transferring from cold-to-hot to hot-to-cold, becomes larger. For

instance, when St = 1, the hot-to-cold heat transfer is dominant

for Kn = 0.01, vice versa for Kn = 1, see Fig. 5(a3) and Fig. 5(c3).

However, when St = 2, for all the Knudsen numbers, the hot-to-

cold heat transfer prevails. These results indicate that, the oscilla-

tion of lid is able to change the heat transfer mechanism, such that

the hot-to-cold heat transfer could be dominant in a highly rarefied

flow, when the oscillating frequency of the lid is sufficiently high.

Different from the Fourier law in the framework of continuum

theory, the gas kinetic theory can consider the rarefaction effect

on heat transfer inside a lid-driven cavity. For a moderate Kn, the

heat flux can be described by the regularized 13 moment equations

as [42,40]:

Q i ¼ �15

4
l
@T

@xi
� 3

2

l
p
T
@rik

@xk
; i 2 fx; yg; ð11Þ

where the gradient of shear stress r can also be represented by the

second derivative of velocity, according to the Burnett equations

[40,42]. The component of heat flux due to temperature gradient

and the one due to shear stress gradient are plotted in Fig. 6, which

confirms that the derivative of temperature governs the hot-to-cold

heat transfer, while the shear stress gradient is responsible to the

cold-to-hot heat flow. From Fig. 6(a) and Fig. 6(b), combining with

Fig. 5(b1), it is noticed that, the heat transfer due to the gradient

of shear stress dominates at St = 0. However, at St = 2, the heat

transfer caused by temperature gradient in turn prevails inside

the cavity, see Fig. 5(b4), Fig. 6(c) and Fig. 6(d).

The above observations can be qualitatively interpreted as fol-

lows: the lid oscillation can enhance the strength of shear motions

inside the cavity, more heat is therefore generated through viscous

dissipation. For the lid-driven cavity flow (St = 0), the moving lid

with a small velocity (Ma = 0.1) induces a temperature field with

a small variation, indicating a small local temperature gradient

inside the cavity. Therefore, the contribution of shear stress gradi-

ents to heat flux is more significant than that due to the tempera-

ture gradient, which leads to cold-to-hot heat transfer. However, as

the oscillation frequency increases, more heat is generated by the

Fig. 5. Contours of the temperature overlaid by the streamlines of heat flux for Kn ¼ 0:01;0:1;1, and 10 (from top to bottom row), at St = 0, 0.5, 1, and 2 (from the left to right

column), when t=Ts ¼ 0 and Ma = 0.1.
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intense viscous dissipation, as a result, the variational range of the

temperature is extended. Meanwhile, the hot and cold regions

move toward the cavity center, which leads to a larger gradient

of temperature there. When the oscillation frequency reaches a

certain value, the hot-to-cold heat flux, which is proportional to

the negative gradient of temperature, could surpass the cold-to-

hot transfer associated with the gradient of the shear stress, as

observed from the last column of Fig. 5. However, in the vicinity

of the top corners, the gradient of shear stress is large, the cold-

to-hot heat transfer therefore still dominates.

It is known that the nonlinearity of flow field can also affect

heat transfer inside the cavity [6,19]. In order to elaborate the com-

bined effect of lid-oscillation and gas rarefaction, we illustrate the

temperature contours and the heat flux streamlines in Fig. 7 where

Kn ranges from 0.001 to 1, St = 0 and 2, and Ma = 1 (producing a

nonlinear flow field). Note that the heat transfer for Kn = 10 is sim-

ilar to that of Kn = 1, so the results of Kn = 10 are not presented

here. As we see from Fig. 7(a) and Fig. 7(b), for Kn = 0.001, the

directions of heat flux are strictly perpendicular to the isotherms.

That is to say, heat transfer satisfies the conventional Fourier

law. The similar phenomena are observed from Fig. 7(c) and

Fig. 7(d) for Kn = 0.01, in which the Fourier heat transfer still pre-

vails inside the cavity, even though the flow is in the slip regime.

Furthermore, for Kn = 0.1, when St = 0, even though the predomi-

nant heat transfer is hot-to-cold, see Fig. 7(e), the heat flux stream-

lines are not strictly perpendicular to the isotherms. When St is

increased to 2, the heat transfer in the lower part of the cavity

seems to satisfy the Fourier law, see Fig. 7(f). It is also noticed that

when St = 0, the directions of heat transfer near the wall bound-

aries are from the gas to the wall, whereas when St = 2, it is from

the wall to the gas near the left vertical wall. This is because the

temperature inside a non-oscillatory cavity is overall higher than

the wall temperature, while a cold region with the temperature

being smaller than Tw is developed by a strong flow expansion

(cooling effect) inside an oscillatory cavity.

In essence, temperature represents the total internal energy,

which can be transformed from the kinetic energy through viscous

dissipation. Therefore, the heat generation inside the cavity

depends on not only the degree of gas rarefaction and velocity

amplitude, but also the oscillation frequency of the driven lid. A

higher speed on the lid indicates a larger input of the kinetic

energy, thus increases internal energy in the cavity. Similarly, a

higher oscillation frequency could induce more intense shear

motion to generate more heat. Meanwhile, the less gas rarefaction

is, the more frequent collisions of gas molecules are, leading to

more heat generation. The interplay of these factors are responsi-

ble to the above complex phenomena.

4.3. The average Nusselt number on the oscillating lid

The heat transfer is characterized quantitatively by the Nusselt

number (Nu), which is a measure of the relative strength of the

convection and conduction processes. Specifically, the heat trans-

fer is dominated by the conduction in the flow domain where

Nu < 1, and by the convection as Nu > 1. In this work, of particular

interest is the average Nusselt number Nua on the oscillating lid,

which can reveal the dominant heat transfer behavior of the flow

Fig. 6. Contours of the temperature overlaid by the streamlines of @T
@xi

(a, c) and
@rxy

@xi
(b, d), for St = 0 (a, b) and St = 2 (c, d), at t=Ts ¼ 0, Kn = 0.1 andMa = 0.1. Note that @rxx

@xi
and

@ryy

@xi

in this case can be neglected [40].
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Fig. 7. Contours of the temperature overlaid by the streamlines of heat flux for Kn = 0.001, 0.01, 0.1, and 1 (from top row to bottom row), and St = 0 (left column) and 2 (right

column). Here t=Ts ¼ 0 and Ma = 1.
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near the isothermal lid. The average Nusselt number Nua is defined

as [44]

Nua ¼
1

H

Z H

0

Nuðx; y ¼ HÞdx; with Nuðx; y ¼ HÞ ¼ Qyðx; y ¼ HÞH
jðTw � TbÞ

;

ð12Þ

where j is the gas thermal conductivity, Q y is the heat flux along

the vertical direction, and Tb is the bulk temperature inside the cav-

ity defined as [44]

Tb ¼
R

A
qUTdA

R

A
qUdA

; ð13Þ

where A is the whole domain of the cavity, and U is the velocity in x-

direction. Note that because the heat flux is scaled by q0RTwU0, the

difference of the average Nusselt number between the linear and

nonlinear oscillations is so small that the effect of gas nonlinearity

on Nua can be neglected. For example, for St = 0 and 4, the relative

difference between the results of Ma = 0.1 and 1 is less than 1%.

Therefore, we only present the results of Ma = 0.1 here.

Fig. 8 shows the evolution of Nua during one period for two typ-

ical Knudsen numbers, i.e. Kn = 0.1 and 1. It is found that the period

of Nua is half of that of the oscillating lid. This is because the change

of Nua is associated with the velocity magnitude and streamlines

(see Fig. 4) inside the cavity, whose periods are half of the oscilla-

tion period [5,6]. In addition, two peaks of Nua appear at t=Ts ¼ 0:2

and 0.7, suggesting the strong convection caused by the intensive

flow at these times, which can be confirmed by the vortex currents

shown in Fig. 4.

The variations of Nua with respect to St for Kn = 0.1 and 1 are

depicted in Fig. 9, where t=Ts ¼ 0. We note that as St increases,

Nua first increases dramatically to a maximum at St � 2:3 and 3:3

for Kn = 0.1 and 1, respectively, then decreases rapidly to a limiting

value when St > 8. It is interesting to note that, at approximately

the same Strouhal number for the maximum Nua to appear, i.e.

Sta � 2:5 and 3.5 respectively [5,6], the anti-resonance occurs and

the damping force exerting on the lid reaches a local minimum. This

is because the flow velocity along the oscillating lid reaches its

maximum at the anti-resonance frequency, which induces the

strongest convective heat transfer near the moving lid.

Table 2 summarizes the average Nusselt number Nua on the

oscillating lid at different Kn and St. We find that Nua decreases

with increasing Kn, which is similar to the observation in the

micro-channel [44,45]. When the lid oscillation frequency and

speed are fixed, increasing rarefaction will reduce gas bulk motion.

So the heat convection becomes less significant. In addition, when

St = 0 the heat convection near the driven lid is weak for all the

Knudsen numbers, and the conduction absolutely dominates the

heat transfer there. However, by enforcing an oscillation on the

lid, even in a very small frequency, e.g. St = 0.5, the intensity of

thermal convection relative to the conduction could be boosted

for several orders of magnitude.

Fig. 8. Evolution of the average Nusselt number Nua during one-period of the oscillation for (a): Kn = 0.1 and (b) Kn = 1, with Ma = 0.1.

Fig. 9. Variation of the average Nusselt number Nua with the Strouhal number St for (a): Kn = 0.1 and (b) Kn = 1, when t=Ts ¼ 0 and Ma = 0.1.

Table 2

The average Nusselt number Nua on the oscillating lid with different values of Kn and

St, at t=Ts ¼ 0.

St=Kn 0:001 0:01 0:1 1 10

0 8.7721e�03 3.4439e�03 5.7691e�04 1.3240e�06 3.4931e�07

0:5 7.7582 1.0065 1.4889e�01 2.9020e�03 1.3119e�03

1 43.885 4.1496 7.2916e�01 1.8029e�02 2.6743e�03

2 1381.2 2.5005 4.7717 5.1495e�02 7.2586e�03

10 173.94 30.673 1.3887 2.5027e�02 1.0593e�04
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5. Conclusions

The flow and thermal characteristics of the oscillatory rarefied

flow inside a square cavity have been systematically investigated

on the basis of the gas-kinetic theory. We find that the oscillation

frequency and speed of the lid can significantly change the heat

transfer in the cavity. For example, in contrast to the cold-to-hot

heat transfer observed in rarefied gas flow in a lid-driven cavity,

the hot-to-cold transfer can prevail for the highly rarefied flows

if the lid oscillates with sufficiently high frequency or speed. The

thermal convection can be dramatically strengthened by enforcing

an oscillation on the lid, so that the convective transfer may play a

dominant role even for the moderately rarefied flows. As the oscil-

lation frequency becomes larger, the average Nusselt number on

the lid first increases to a maximum, then decreases to a limiting

value. The oscillation frequency, at which the average Nusselt

number is maximum, is almost the same as the anti-resonance fre-

quency. In addition, the average Nusselt number on the lid is found

to reduce with gas rarefaction.

Conflict of interest

The authors declared that there is no conflict of interest.

Acknowledgments

The authors would like to thank Dr. Lei Wu for helpful

discussions and careful reading of this manuscript. This work is

financially supported by the UK’s Engineering and Physical

Sciences Research Council (EPSRC) under grants EP/M021475/1,

EP/L00030X/1.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in

the online version, at https://doi.org/10.1016/j.ijheatmasstransfer.

2018.11.060.

References

[1] A. Beskok, G. Karniadakis, Microflows and Nanoflows: Fundamentals and

Simulation. Interdisciplinary Applied Mathematics, Springer, 2005.

[2] F. Sharipov, D. Kalempa, Oscillatory Couette flow at arbitrary oscillation
frequency over the whole range of the Knudsen number, Microfluid. Nanofluid.

4 (5) (2008) 363–374.
[3] J.H. Park, P. Bahukudumbi, A. Beskok, Rarefaction effects on shear driven

oscillatory gas flows: a direct simulation Monte Carlo study in the entire

Knudsen regime, Phys. Fluids 16 (2) (2004) 317–330.
[4] A. Frangi, A. Frezzotti, S. Lorenzani, On the application of the BGK kinetic model

to the analysis of gas-structure interactions in MEMS, Comput. Struct. 85 (11)
(2007) 810–817.

[5] L. Wu, J.M. Reese, Y. Zhang, Oscillatory rarefied gas flow inside rectangular
cavities, J. Fluid Mech. 748 (2014) 350–367.

[6] P. Wang, L. Zhu, W. Su, L. Wu, Y. Zhang, Nonlinear oscillatory rarefied gas flow

inside a rectangular cavity, Phys. Rev. E 97 (4) (2018) 043103.
[7] D. Kalempa, F. Sharipov, Sound propagation through a rarefied gas confined

between source and receptor at arbitrary Knudsen number and sound
frequency, Phys. Fluids 21 (10) (2009) 103601.

[8] F. Sharipov, Rarefied Gas Dynamics: Fundamentals for Research and Practice,

John Wiley & Sons, 2015.
[9] S. Stefanov, P. Gospodinov, C. Cercignani, Monte Carlo simulation and Navier–

Stokes finite difference calculation of unsteady-state rarefied gas flows, Phys.
Fluids 10 (1) (1998) 289–300.

[10] N.G. Hadjiconstantinou, Sound wave propagation in transition-regime micro-
and nanochannels, Phys. Fluids 14 (2) (2002) 802–809.

[11] J.H. Park, S.W. Baek, S.J. Kang, M.J. Yu, Analysis of thermal slip in oscillating

rarefied flow using DSMC, Numer. Heat Transf.: Part A: Appl. 42 (6) (2002)
647–659.

[12] J.H. Park, S.W. Baek, Investigation of influence of thermal accommodation on
oscillating micro-flow, Int. J. Heat Mass Transf. 47 (6) (2004) 1313–1323.

[13] N.G. Hadjiconstantinou, A.L. Garcia, Molecular simulations of sound wave

propagation in simple gases, Phys. Fluids 13 (4) (2001) 1040–1046.

[14] D.R. Emerson, X.-J. Gu, S.K. Stefanov, S. Yuhong, R.W. Barber, Nonplanar

oscillatory shear flow: from the continuum to the free-molecular regime, Phys.
Fluids 19 (10) (2007) 107105.

[15] T. Doi, Numerical analysis of oscillatory Couette flow of a rarefied gas on the
basis of the linearized Boltzmann equation, Vacuum 84 (5) (2009) 734–737.

[16] T. Tsuji, K. Aoki, Gas motion in a microgap between a stationary plate and a

plate oscillating in its normal direction, Microfluid. Nanofluid. 16 (6) (2014)
1033–1045.

[17] L. Wu, Sound propagation through a rarefied gas in rectangular channels, Phys.
Rev. E 94 (5) (2016) 053110.

[18] S. Hutcherson, W. Ye, On the squeeze-film damping of micro-resonators in the

free-molecule regime, J. Micromech. Microeng. 14 (12) (2004) 1726.
[19] B. John, X.-J. Gu, D.R. Emerson, Investigation of heat and mass transfer in a lid-

driven cavity under nonequilibrium flow conditions, Numer. Heat Transf. Part
B: Fundam. 58 (5) (2010) 287–303.

[20] C. Liu, K. Xu, Q. Sun, Q. Cai, A unified gas-kinetic scheme for continuum and
rarefied flows IV: full Boltzmann and model equations, J. Comput. Phys. 314

(2016) 305–340.

[21] T. Xiao, Q. Cai, K. Xu, A well-balanced unified gas-kinetic scheme for multiscale
flow transport under gravitational field, J. Comput. Phys. 332 (2017) 475–491.

[22] T. Xiao, K. Xu, Q. Cai, T. Qian, An investigation of non-equilibrium heat
transport in a gas system under external force field, Int. J. Heat Mass Transf.

126 (2018) 362–379.

[23] L. Yang, C. Shu, W. Yang, J. Wu, An implicit scheme with memory reduction
technique for steady state solutions of DVBE in all flow regimes, Phys. Fluids

30 (4) (2018) 040901.
[24] P. Wang, M.T. Ho, L. Wu, Z. Guo, Y. Zhang, A comparative study of discrete

velocity methods for low-speed rarefied gas flows, Comput. Fluids 161 (2017)

33–46.
[25] K. Xu, Direct Modeling for Computational Fluid Dynamics: Construction and

Application of Unified Gas-kinetic Schemes, World Scientific, 2014.
[26] N.G. Hadjiconstantinou, Oscillatory shear-driven gas flows in the transition

and free-molecular-flow regimes, Phys. Fluids 17 (10) (2005) 100611.
[27] K. Aoki, S. Kosuge, T. Fujiwara, T. Goudon, Unsteady motion of a slightly

rarefied gas caused by a plate oscillating in its normal direction, Phys. Rev.

Fluids 2 (1) (2017) 013402.
[28] P. Wang, W. Su, Y. Zhang, Oscillatory rarefied gas flow inside a three

dimensional rectangular cavity, Phys. Fluids 30 (10) (2018) 102002.
[29] S. Naris, D. Valougeorgis, The driven cavity flow over the whole range of the

Knudsen number, Phys. Fluids 17 (9) (2005) 097106.

[30] E. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn.
3 (5) (1968) 95–96.

[31] Z. Guo, R. Wang, K. Xu, Discrete unified gas kinetic scheme for all Knudsen
number flows. II. Thermal compressible case, Phys. Rev. E 91 (3) (2015)

033313.
[32] K. Xu, C. Liu, A paradigm for modeling and computation of gas dynamics, Phys.

Fluids 29 (2017) 026101.

[33] L. Wu, J.M. Reese, Y. Zhang, Solving the Boltzmann equation deterministically
by the fast spectral method: application to gas microflows, J. Fluid Mech. 746

(2014) 53–84.
[34] W. Su, S. Lindsay, H. Liu, L. Wu, et al., Comparative study of the discrete

velocity and lattice boltzmann methods for rarefied gas flows through

irregular channels, Phys. Rev. E 96 (2) (2017) 023309.
[35] Z. Guo, K. Xu, R. Wang, Discrete unified gas kinetic scheme for all Knudsen

number flows: low-speed isothermal case, Phys. Rev. E 88 (3) (2013) 033305.
[36] P. Wang, L. Zhu, Z. Guo, K. Xu, A comparative study of LBE and DUGKS methods

for nearly incompressible flows, Commun. Comput. Phys. 17 (03) (2015) 657–
681.

[37] L. Zhu, P. Wang, Z. Guo, Performance evaluation of the general characteristics

based off-lattice Boltzmann scheme and DUGKS for low speed continuum
flows, J. Comput. Phys. 333 (2017) 227–246.

[38] Y. Bo, P. Wang, Z. Guo, L.-P. Wang, DUGKS simulations of three-dimensional
Taylor–Green vortex flow and turbulent channel flow, Comput. Fluids 155

(2017) 9–21.

[39] P. Wang, L.-P. Wang, Z. Guo, Comparison of the lattice Boltzmann equation and
discrete unified gas-kinetic scheme methods for direct numerical simulation

of decaying turbulent flows, Phys. Rev. E 94 (4) (2016) 043304.
[40] A. Mohammadzadeh, E. Roohi, H. Niazmand, S. Stefanov, R.S. Myong, Thermal

and second-law analysis of a micro-or nanocavity using direct-simulation
Monte Carlo, Phys. Rev. E 85 (5) (2012) 056310.

[41] J.-C. Huang, K. Xu, P. Yu, A unified gas-kinetic scheme for continuum and

rarefied flows ii: multi-dimensional cases, Commun. Comput. Phys. 12 (3)
(2012) 662–690.

[42] A. Rana, M. Torrilhon, H. Struchtrup, A robust numerical method for the R13
equations of rarefied gas dynamics: application to lid driven cavity, J. Comput.

Phys. 236 (2013) 169–186.

[43] L. Yang, C. Shu, J. Wu, Y. Wang, Numerical simulation of flows from free
molecular regime to continuum regime by a DVMwith streaming and collision

processes, J. Comput. Phys. 306 (2016) 291–310.
[44] N.G. Hadjiconstantinou, O. Simek, Constant-wall-temperature Nusselt number

in Micro and Nano-channels, J. Heat Transf. 124 (2) (2002) 356–364.

[45] S. Colin, Gas microflows in the slip flow regime: a critical review on convective
heat transfer, J. Heat Transf. 134 (2) (2012) 020908.

300 P. Wang et al. / International Journal of Heat and Mass Transfer 131 (2019) 291–300

https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.060
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.060
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0005
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0005
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0005
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0010
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0010
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0010
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0015
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0015
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0015
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0020
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0020
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0020
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0025
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0025
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0030
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0030
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0035
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0035
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0035
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0040
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0040
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0040
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0045
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0045
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0045
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0050
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0050
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0055
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0055
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0055
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0060
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0060
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0065
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0065
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0070
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0070
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0070
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0075
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0075
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0080
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0080
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0080
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0085
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0085
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0090
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0090
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0095
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0095
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0095
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0100
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0100
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0100
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0105
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0105
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0110
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0110
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0110
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0115
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0115
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0115
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0120
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0120
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0120
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0125
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0125
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0125
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0130
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0130
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0135
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0135
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0135
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0140
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0140
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0145
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0145
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0150
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0150
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0155
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0155
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0155
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0160
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0160
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0165
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0165
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0165
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0170
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0170
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0170
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0175
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0175
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0180
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0180
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0180
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0185
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0185
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0185
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0190
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0190
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0190
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0195
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0195
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0195
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0200
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0200
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0200
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0205
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0205
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0205
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0210
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0210
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0210
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0215
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0215
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0215
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0220
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0220
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0225
http://refhub.elsevier.com/S0017-9310(18)34361-8/h0225

	Heat and mass transfer of oscillatory lid-driven cavity flow �in the continuum, transition and free molecular flow regimes
	1 Introduction
	2 Problem formulation
	3 Numerical method
	4 Results and discussion
	4.1 Flow characteristics
	4.2 Thermal characteristics
	4.3 The average Nusselt number on the oscillating lid

	5 Conclusions
	Conflict of interest
	Acknowledgments
	Appendix A Supplementary material
	References


