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Abstract 

The main losses in solar cells result from the incomplete utilization of the solar spectrum. Via the 

addition of an upconverting layer to the rear side of a solar cell, the otherwise-unused sub-

bandgap photons can be utilized. In this paper, we demonstrate an efficiency enhancement of a 

silicon solar cell under real sunlight due to upconversion of sub-bandgap photons. Sunlight was 

concentrated geometrically with a lens with a factor of up to 50 suns onto upconverter silicon 

solar cell devices. The upconverter solar cell devices (UCSCDs) were also measured indoors 

using a solar simulator. To correct for differences in the spectral distribution between real 

sunlight and the solar simulator a spectral mismatch correction is required and is especially 

important to properly predict the performance when a non-linear response (e.g. upconversion) is 

involved. By applying a spectral mismatch correction, good agreement between the solar 
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simulator measurements and the outdoor measurements using real sunlight was achieved. The 

method was tested on two different upconverter powders, -NaYF4: 25% Er3+ and Gd2O2S: 10% 

Er3+, which were both embedded in a polymer. We determined additional photocurrents due to 

upconversion of 9.4 mA/cm2 with -NaYF4 and 8.2 mA/cm2 with Gd2O2S under 94-suns 

concentration. Our results show i) the applicability of measurements using standard solar cell 

characterization equipment for predicting the performance of non-linear solar devices, and ii) 

underline the importance of applying proper mismatch corrections for accurate prediction of the 

performance of such non-linear devices. 

Introduction 

Significant spectral losses are caused by the discrepancy between the discrete bandgap of the 

absorbing material in single junction solar cells and the very broad solar spectrum, as illustrated 

in Figure 1(a). Transmission losses occur for photons with less energy than the bandgap, as 

they do not carry enough energy to generate free carriers. However, these low energy photons 

can be transmitted through the solar cell, if the device is designed accordingly, to be harvested 

via an upconverter. An upconverter material can be applied to the rear side of the solar cell to 

convert two or more of the sub-bandgap photons into photons that possess more energy than 

the bandgap energy of the solar cell’s absorber material.1–12 These upconverted photons can 

then be utilized by the solar cell, as illustrated in Figure 1(b).  



 

Figure 1. Spectral losses and upconversion to enhance solar cell performance. a) Air-mass 1.5 
global (AM1.5G) standard solar spectrum with spectral losses indicated for a silicon solar cell. 
Around 50% of the energy from the sun reaching the earth’s surface is not effectively utilized in 
silicon solar cells due to thermalization and transmission losses. b) An upconverter on the rear 
side of a solar cell can minimize the transmission losses by absorbing two or more sub-bandgap 
photons and emitting a photon that can be utilized by the solar cell. The image shows a 2×2 cm2 
bifacial silicon solar cell with an upconverter applied to the rear side. This upconverter solar cell 
device (UCSCD) is illuminated with 1523 nm laser light, which is transmitted through the solar 

cell and upconverted by the -NaYF4:Er3+ upconverter material. The yellow-green upconversion 
is visible in the photograph by a reflection in a mirror. 

 

The challenges associated with upconversion of sub-bandgap photons lie in both the solar cell 

technology and the upconverter material side. The concept of upconversion requires that the 

upconverter material needs to be placed at the rear side of the solar cell, which means that the 

solar cell has to be transparent for the sub-bandgap photons. Such bifacial solar cells are not the 

standard way of designing highly efficient solar cells, which typically requires a highly-reflective 

back mirror for good photon management and therefore high-power conversion efficiencies 

(PCE). In addition, also anti-reflection coating on the front and rear side of the solar cell need to 



be optimized to enable high transmittance of near-infrared (NIR, >1000 nm) photons.13 On the 

material side, the main challenges of suitable upconverter materials are the weak and narrow 

absorption range in the NIR, the non-linear nature of the upconversion efficiency, as well as the 

too low upconversion quantum yield (UCQY) values. Photo-chemical upconversion using triplet-

triplet annihilation addresses some of the above mentioned limitations but typical materials are 

not very photostable and limited to absorption wavelengths far below 1000 nm and emit usually 

in the visible spectrum.14,15 Currently, the most efficient upconverter materials for silicon solar 

cells are purely Er3+-doped inorganic crystals with absorption around 1500 nm and emission 

around 980 nm. UCQY values above 10% have been reported for different microcrystalline and 

single crystal material system when using laser illumination with irradiances below 1 W/cm2.11,16–

20  

The upconversion process in Er3+ is well described in literature21–23 and the corresponding basic 

energy level diagram is shown in Figure 2a. In short, after ground state absorption (GSA) of 

photons with wavelengths of around 1500 nm (4I15/2→4I13/2) the excitation energy may hop 

around in the crystal via energy transfer from Er3+ ion to Er3+ ion. Energy transfer upconversion 

(ETU) occurs if two excited Er3+ ions in the 4I13/2 energy level are close to each other, resulting in 

one ion relaxing to the ground state 4I15/2 while the other one is promoted to the higher excited 

state 4I9/2. Via multi-phonon relaxation (MPR), the Er3+ ion relaxes from the 4I9/2 to the 4I11/2 state 

and the dominant emission around 980 nm occurs by spontaneous emission from 4I11/2→4I15/2. A 

typical emission spectrum of Er3+-doped upconverter materials under 4I15/2→4I13/2 excitation is 

shown in Figure 2b. UCQY values of the upconverter powders -NaYF4: 25% Er3+ and 

Gd2O2S:10% Er3+ of 7.5% and 12.0%, respectively, have been measured using laser irradiation 

with 0.11 W/cm2 (1100 W/m2).19  



 

Figure 2. Upconversion mechanism. a) Energy level diagram of Er3+ and illustration of 
processes involved in the upconversion mechanism. Ground state absorption (GSA) is followed 
by energy transfer upconversion (ETU) or with less probability excited state absorption (ESA). 
Typically, after multi-phonon relaxation (MPR) spontaneous emission (SPE) from the 4I11/2-Level 
occurs, resulting in the dominating upconversion emission at around 980 nm. b) Upconversion 
emission spectrum under 4I15/2→4I13/2 laser excitation around ~1500 nm using an irradiance of 

0.11 W/cm2 for two different upconverter materials, Gd2O2S: 10% Er3+ and -NaYF4: 25% Er3+. 

 

In the past, we have demonstrated an enhanced performance of bifacial silicon solar cells with 

Er3+-doped -NaYF4 and Gd2O2S upconverters attached on the rear side of solar cell using laser 

illumination6,24–26, broad-band excitation from a halogen lamp25,26, and concentrated light of a 

solar simulator24,25. To assess the suitability of an upconverter material for the application in 

photovoltaics, the material and UCSCDs should be characterized using a spectrally broad 

excitation source, which corresponds to the broad solar spectrum. Besides our previous works 

there is only a handful of this kind of characterization reported in literature 10,27–29 The highest 

performance enhancement due to upconversion in silicon solar cells was reported using a 

BaY2F8 single crystal doped with 30% Er3+.11 An additional current of 17.2 mA/cm2 was achieved 

under solar radiation concentrated geometrically by a factor of 94, which is typically referred to 

as a concentration of 94 suns. This constitutes relative enhancement of the solar cell’s short 

circuit current density by 0.55%. The measurements were performed using a solar simulator, 



which is designed to mimic the air-mass 1.5 global (AM1.5G) standard solar spectrum. However, 

the actual spectrum of a solar simulator is far from ideal in the wavelengths region where the 

upconverter operates of roughly 1400 nm to 1650 nm (see also Figure 5). Therefore, a spectral 

mismatch correction has to be applied addressing the mismatch of the spectrum from the solar 

simulator setup and the AM1.5G.11,26 However, the accuracy of this mismatch correction has 

never been demonstrated in the context of upconverter solar cell devices by comparison to real 

sunlight measurements. Therefore, in this paper we report for the first time upconversion 

enhanced solar cell performance in outdoor measurements using sunlight with concentrations up 

to 50 suns. In addition, we probe our spectral mismatch correction method for these highly non-

linear systems by comparing the measurements outdoor at real insolation conditions with 

sunlight to the ones using a solar simulator indoors with applied mismatch correction. This step 

is important because it validates the use of standardized measurement tools to predict the 

performance of UCSCDs in real world.  

Experimental Section 

Upconverter silicon solar cell devices were fabricated as described in previous literature.11,25,26 

Briefly, we used bifacial silicon solar cells with planar front and rear side for maximum 

transmission of sub-bandgap photons.13,30 While the anti-reflection coatings were optimized for 

sub-bandgap photon transmittance, the devices also exhibited PCEs above 16% when 

measured using a solar simulator and standard measurement conditions.13 These PCE values 

are fairly good considering the lack of a front-side texturing and a rear reflector. The 

microcrystalline upconverter materials -NaYF4: 25% Er3+ and Gd2O2S:10% Er3+ were previously 

identified as promising candidates for solar energy harvest of sub-bandgap photons.17,19 

Therefore, we explore these materials further in this study and embedded the powders in the 

polymer perfluorocyclobutan (PFCB) in disks with diameters of 12.6 mm and thickness of 

roughly 1 mm.16 The ratio of upconverter to polymer was 75.7 w/w% for -NaYF4: 25% Er3+
 and 

84.9 w/w% for Gd2O2S:10% Er3+.  

These upconverter disks were attached sequentially to the same solar cell with an index 

matching liquid (IML, Immersion oil, Type 300, Cargille). For easier handling the bifacial silicon 

solar cell was soldered onto a copper frame to form a rear contact. The front contacts were wire 

bonded onto larger contact pads. A reflector – that was made of highly reflective porous 

polytetrafluoroethylene (PTFE) – was placed behind the UCSCDs, as illustrated in Figure 3a. 

The indoor measurements were carried out as described in the literature.11,25 For easier handling 

and mounting the PTFE reflector was further embedded in a larger copper block for the outdoor 

measurements. This copper block was mounted on a solar tracker following the path of the sun 

to measure the short-circuit current in UCSCDs with sunlight of normal incidence during the 

whole measurement period. To determine precisely the additional current due to upconversion, 



in both experiments, we conducted reference measurements with disks of un-doped -NaYF4 

and Gd2O2S powders mixed with PFCB, which only scatter the light without upconverting it. 

The efficiency of solar cells is commonly measured under solar simulators. In solar simulators, 

different lamps in combination with lenses, mirrors, and filters are used to generate an artificial 

solar spectrum that is supposedly as close as possible to the AM1.5G. These are the most 

realistic approaches for investigating the performances of solar cells that are available under 

well-controlled and reproducible conditions. However, spectral mismatch corrections have to be 

applied to predict the performance of the solar cells under real operation. This is a standard 

procedure in photovoltaic calibration labs and when measuring solar cells. However, the non-

linear nature of the upconversion process for NIR light (compared to the linear response of the 

solar cell) complicates spectral mismatch corrections. In this work, we experimentally evaluate 

the spectral mismatch correction for highly-nonlinear materials that we developed in our previous 

studies.11,26 

Here, we measured UCSCDs under the concentrated radiation from a solar simulator (Wacom, 

WXS 150S-10, class A) with a Xe-lamp and in an outdoor experiment using concentrated 

sunlight. In these measurements, a Fresnel lens was used to focus either the light from the solar 

simulator or the light from the sun onto upconverter solar cell devices. The silicone Fresnel lens 

features a focal length of approximately 168 mm and a collecting area Alens of 100×100 mm2. 

The distance between the lens and the upconverter solar cell device hlens can be adjusted with a 

translation stage. Changing hlens alters the illuminated area on the solar cell Aspot, and 

consequently also the concentration of the radiation onto the sample.  

 

 

Figure 3. Schematic and photograph of the UCSCD and its characterization using solar 
radiation. a) The height of the lens above the UCSCD is altered thus changing the area of the 
light spot Aspot and consequently the concentration of the solar light on the sample. Twool long 
pass (LP) filters were used to block the fraction of the light that can be directly used by the 
silicon solar cell. The upconverter samples are attached by adhesion using an index matching 



liquid (IML). b) Picture of the setup for the outdoor measurements of upconverter solar cell 
devices. The rectangular light spot from the lens can be seen on the silicon wafer serving as a 
LP filter. 

 

A scheme of the setup is shown in Figure 3 together with a photograph of the outdoor 

experiment. Two filters were applied above the solar cell to block photons that otherwise could 

have been utilized directly by the silicon solar cell. This way the signal-to-noise ratio could be 

improved. Firstly, a polished monocrystalline 750 μm thick silicon wafer, which was coated on 

both sides with 120 nm magnesium difluoride (MgF2) on top of 120 nm titanium dioxide (TiO2) to 

enhance the transmittance of infrared photons. Secondly, a long pass filter (Edmund Optics, 

High Performance OD 4) with a cut-on wavelength of 1200 nm. The second filter served as an 

additional NIR filter for photons close to the band gap of silicon, which are transmitted through 

the silicon filter and would have been utilized by the solar cell.  

The Fresnel lens employed in this work was produced at Fraunhofer ISE by molding silicone. 

Because upconversion is a non-linear process, it is critical to know the exact irradiance or 

sunlight concentration ratio illuminating the sample. Therefore, the optical properties of the 

Fresnel lens were characterized in detail with the setup described in literature.31 In short, the 

light of a red light emitting diodes (LEDs) at 622 nm was modified with an collimator lens to 

mimic the divergence of sunlight. This light spot was concentrated by the Fresnel lens and 

measured with a cooled CCD sensor. The distance between the CCD sensor and the Fresnel 

lens can be precisely changed with a motorized translation stage. Figures 4a-c show pictures of 

the light spot for different distances between the Fresnel lens and the CCD sensor. Around the 

focal plane at hlens = 168 mm a circular spot was determined. For shorter distances, the light spot 

becomes rectangular and the irradiance distribution more inhomogeneous. The pixels with the 

largest irradiance were counted until 90% of the total light irradiance measured by the CCD 

sensor was obtained. From the dimensions of the single pixels and the number of counted 

pixels, the area of the light spot Aspot was calculated. The values of Aspot as a function of hlens are 

shown as symbols in Figure 4d. The homogeneity of the irradiance distribution of the area Aspot 

was determined by the standard deviation of the irradiance’s histogram, which was measured 

throughout the area Aspot. A standard deviation of around 2.7% was found. Furthermore, we 

calculated a value of 7.4% for the difference between the maximum intensity of a pixel and the 

mean value for all pixels contributing to Aspot. Therefore, we can conclude a fairly homogeneous 

irradiance distribution of the light spot Aspot, which is important to calculate the correct 

concentration of the incident illumination. The optical efficiency of the Fresnel lens lens is 

defined as the fraction of the total irradiance determined by the CCD sensor in the focal plane 

divided by the total irradiance on the Fresnel lens’ entrance aperture. An optical efficiency lens of 

87.2±2.0% was obtained. The losses are caused by reflection (roughly 8%) at the two glass 

surfaces of the Fresnel lens, and by scattering and absorption. 



 

Figure 4. Characterization of the Fresnel lens to determine the concentration of the solar 
radiation on the UCSCDs. a)-c) Images of the illuminated area and irradiance distribution for 
various distances between the lens and a CCD detector (hlens). d) The function defined in 
Equation 1 was fitted to the data in order to parameterize the illuminated area Aspot by hlens and 
further used to extrapolate the measurements to the larger areas that are used in this work. 

 

To extrapolate the data, the area of the light spot as a function of hlens was parameterized by  

 0

2

0lenslenslensspot )()( AhhchA   (1) 

with the constant clens, the focal length h0, and the light spot area at the focal length A0. The fitted 

function agrees well with the data. The parameters obtained are clens =0 .363±0.008, 

h0 = 168.4±0.2 mm, and A0 = 3.6±0.4 mm2. An indicator of the good fit quality is the minimal 

(3.1%) difference between the lens area and Aspot for an extrapolation to hlens = 0 mm. Using 

Equation 1, Aspot was calculated from the measured hlens and used to determine the solar 

concentration factor C of the AM1.5G standard solar spectrum 
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One has to note, however, that the parametrized spot size Aspot(h) is based on monochromatic 

measurements (i.e. 622nm), only. Nevertheless, we use this spot size as approximation also for 

the long wavelength side of the polychromatic irradiance we are interested in during the 

upconversion experiments, as typically chromatic aberration of a Fresnel lens is critical only for 

short wavelength. 

For the indoor measurements using the solar simulator, we need to consider the spectral 

mismatch correction factor 
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where AUC is the normalized absorption spectrum of the upconverter, Tcell is the transmittance of 

the solar cell, TFilter is the transmittance of all the optical components and filters used, and the 

photon flux densities of the standard solar spectrum AM1.5G as well as the experimental 

spectrum of the solar simulator exp. The integration limits are determined by the considered 

spectral range which is 1400 nm to 1650 nm in our case. The absorption spectra and photon flux 

densities used to calculate cmismatch are shown in Figure 5. We determined cmismatch values of 1.10 

for -NaYF4 and 1.14 for Gd2O2S using optical components used in this study. The outdoor 

measurements where conducted at a rooftop measurement platform at Fraunhofer ISE in 

Freiburg, Germany (48°00'34.3"N, 7°49'57.6"E), in the first week of July 2013 with clear sky. The 

Fresnel lens only concentrates the direct radiation. However, because of the low scattering of 

infrared light, there is no significant difference between the direct and the global solar spectrum 

in the wavelength range around 1500 nm. Nevertheless, the direct normal irradiance (DNI) from 

the sun fluctuated during the measurements due to a few cirrocumulus clouds and the varying 

position of the sun (air mass varied between roughly 1.1 and 1.7). To make the data comparable 

the concentration factor is corrected by the ratio of the DNI (IDNI), which was measured during 

each individual measurement, and the irradiance in the AM1.5G (IAM1.5G = 1000 W/cm2). We 

measured the DNI with a pyrheliometer (Kipp & Zonen) at the same time that the short-circuit 

current of the UCSCDs was measured. The DNI varied in the course of the measurements 

between 756W/m2 to 890W/m2. Despite the significant changes in DNI, the spectral shape 

relevant for the spectral mismatch correction does not change severely during the measurement 

time around noon. In consequence, no mismatch correction was applied to the outdoor 

measurements (cmismatch = 1) and the results were compared to the solar simulator 

measurements corrected for the mismatch to the AM1.5G spectrum.  



 

Figure 5. Considered spectra for the spectral mismatch correction. a) Difference in the 

normalized absorption spectra of the Er3+ 4I15/2 to 4I13/2 transition in the host lattices -NaYF4 and 
Gd2O2S. b) Illustration of the need for a spectral mismatch correction due to the differences 
between the photon flux density provided by the solar simulator and the standard AM1.5G solar 
spectrum. The cmismatch values for the UCSCDs used in this study are 1.10 for the upconverter 

with -NaYF4 host lattice and 1.14 for Gd2O2S, respectively. Note, the solar spectrum is blown-
up to only show the spectral range relevant for the spectral mismatch correction of the Er3+ 4I15/2 
to 4I13/2 transition. The sharp lines in the solar simulator spectrum originate from the Xe lamp. 

 

The additional short-circuit current density due to upconversion of sub-bandgap photons jSC,UC 

can be calculated by  
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using the short-circuit currents measured for the device with an upconverter iSC,UC, as well as for 

a sample with the pure host material without any upconversion that mimicks the reflection of the 

sample iSC,ref. Here, for Aspot values larger than the actual solar cell area Acell of 400 mm2, Acell is 

used instead of Aspot to calculate jSC,UC.  

The main error of the solar concentration factor originates from the determination of Aspot, or 

rather, from the precise measurement of hlens. For a typical uncertainty of 0.25 mm of the hlens 



measurement, the errors for Aspot range from roughly 7.8% for hlens = 130mm up to 9.9% for 

hlens = 160 mm. The errors in the solar concentration factor C and in the jSC,UC are higher than 

the ones for Aspot because of the additional errors in the current measurements, the spectral 

mismatch correction factor cmismatch, and the transmittance of the used optical components. 

Results and Discussion 

The jSC,UC values determined with the solar simulator with and without spectral mismatch 

correction are shown in Figure 6. The spectral mismatch correction results in higher current 

densities at lower solar concentrations for both the -NaYF4 and Gd2O2S host matrix. Therefore, 

without spectral mismatch correction the efficiency enhancement potential of these materials is 

underestimated given the specific set of solar simulator and used materials. This agrees with our 

previous results of these materials but is in contrast to other materials26, such as the single 

crystal BaY2F8 for which the correction yields lower current densities at higher solar 

concentrations.11 It is important to point out that the cmismatch values vary with different solar 

simulator spectra in the NIR and consequently vary with different solar simulator models. In our 

case, the strong peaks from the Xe lamp mainly determine the spectral mismatch correction 

values. 

 

Figure 6. Increase of the short-circuit current density due to upconversion of sub-bandgap 

photons jSC,UC. Due to the spectral mismatch correction, we determined higher jSC,UC values at 
lower solar concentration factors which is indicated by the black arrows. This trend is mostly 
caused by the strong peaks from the Xe lamp in the solar simulator spectrum as shown in 
Figure 5 which do not overlap significantly with the absorption spectrum of either one of the 
upconverter samples. Consequently, without mismatch correction the solar concentration is 
overestimated. The lines are fits to the data using Equation 5. 

 

The experimental data is well described by a power law  



 
bCaCj  )(UCSC,  (5) 

with the fitting parameters a and b. The parameters for the spectral mismatch correction 

modified data are a = 0.0081 mA/cm2 and b = 1.55 for the -NaYF4 and a = 0.0059 mA/cm2 and 

b = 1.59 for the Gd2O2S upconverter sample. For an ideal multi-photon process the exponent 

should be equal to the number of photons involved. However, we can see that the device as a 

whole does not behave as an ideal upconverter system for which we would expect a parameter 

b = 2. Nevertheless, an exponent higher than 1 and the lack of any saturation effect suggests 

that higher efficiency enhancements are achievable at higher solar concentrations. 

We used the fitting parameters to calculate the jSC,UC values at 94 suns for which the highest 

values are reported for the currently most efficient UCSCD. The UCSCDs reach jSC,UC values of 

9.4 mA/cm2 with -NaYF4 and 8.2 mA/cm2 with Gd2O2S. These values are much lower 

compared to the ones obtained for BaY2F8 of 17.2 mA/cm2. One important reason for the much 

better performance of the BaY2F8 single crystals is the absence of scattering in combination with 

the higher absorption by the single crystal sample. While we found that the BaY2F8 samples 

absorbs 94% at the peak in the absorption spectrum at 1520 nm, the -NaYF4 and Gd2O2S 

samples absorbed only 86% and 69% at their peak absorption at 1523 nm and 1511nm, 

respectively.26,32 Other parameters to consider in addition to the absorptance at a single 

wavelength are the shape and the width of the absorption spectrum. In this category, the -

NaYF4 and BaY2F8 outperform the Gd2O2S.11,26 

 

Figure 7. Comparison of jSC,UC measurements using sunlight and a solar simulator after 
applying a spectral mismatch correction. The results with spectral mismatch correction show 
very similar values to the measurements performed using real sunlight corrected by the actual 
DNI on the UCSCD. Therefore, we conclude that spectral mismatch correction corrected 
measurements predict the performance of highly non-linear solar devices very well. 

Next, we measured the same UCSCDs with the same Fresnel lenses outside with sunlight as 

described in the Experimental Section. The jSC,UC values are in good agreement with the results 



from solar simulator measurements with spectral mismatch correction applied as shown in 

Figure 7. Therefore, we can conclude that measurement using standard equipment, such as 

solar simulators, can be used to predict the performance of highly non-linear solar devices, 

provided a correct mismatch correction is applied.  

What is also clear from the measurement results, however, is that for a future application in 

photovoltaics, we still need to work on enhancing the UCQY and also decrease the irradiance 

necessary to achieve such high UCQY values. Our work revealed the need for upconverter 

materials that exhibit a broad and strong absorption spectrum. This is highlighted by the fact that 

although higher UCQY values have been achieved for Gd2O2S under monochromatic excitation 

the use of the -NaYF4 host matrix results in better UCSCD performance when broadband or 

solar radiation is used. In order to use the complete sub-bandgap region of the solar spectrum 

we need to couple upconverter materials to broadband downshifting materials as suggested 

before.10,33 This is one very promising approach to overcome the fairly narrow absorption range 

characteristic to the lanthanide elements used to build efficient NIR upconverter materials and 

one key step towards more efficient solar energy harvesting using upconverter materials. 

 

Conclusion & Outlook 

We fabricated upconverter solar cell devices for testing in a controlled environment using a solar 

simulator as well as in an outdoor experiment using sunlight with concentrations of up to around 

50 suns. We used the same bifacial silicon solar cell with four different samples attached to the 

rear side, which are the upconverting powders Gd2O2S:10% Er3+ and -NaYF4: 25% Er3+ as well 

as the un-doped powders Gd2O2S and -NaYF4 for reference measurements. The indoor 

measurements using a solar simulator showed a non-linear increase in the additional short-

circuit current density jSC,UC of the upconverter solar cell device (UCSCD) with solar 

concentration. We applied a spectral mismatch correction to correct for the differences between 

the standard solar spectrum and the spectrum of the solar simulator which changes both the 

equivalent solar concentration in suns as well as the efficiency of the upconverter itself. In the 

case of the upconverters Gd2O2S:10% Er3+ and -NaYF4: 25% Er3+, the jSC,UC are shifted to 

higher values at simultaneously lower solar concentrations due to the spectral mismatch 

correction.  

For the first time, we measured UCSCDs under realistic conditions in an outdoor experiment 

using sunlight. The corrected solar simulator measurements agree very well with the outdoor 

measurements. This demonstrates that our spectral mismatch approach can be used to predict 

the performance of highly non-linear solar devices for measurements performed on well-

controlled standard solar characterization equipment. 
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