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Abstract� Not all Electric Vehicle (EV) charging in future will 

take place at drivers� homes or on-street; at least some will take 

place at fast-charging �forecourts� analogous to today�s petrol 

stations. This paper presents a Monte Carlo (MC)-based method 

for the characterization of the likely demand profile of EV fast 

charging forecourts based on activity profiles of existing petrol 

stations, derived from smartphone users� anonymised positional 

data captured in the �Popular Times� feature in Google Maps. 

Unlike most academic works on the subject to date which rely on 

vehicle users� responses to surveys, these data represent 

individuals� actual movement patterns rather than how they might 

recall or divulge them. Other inputs to the model are generated 

from probability distributions derived from EV statistics in the 

UK and existing academic work. A queuing model is developed to 

simulate busy periods at charging forecourts. The output from the 

model is a set of expected time series of electrical demand for an 

EV forecourt and statistical analysis of the variation in results. 

Finally, a method is presented for the probabilistic evaluation of 

the combined loading of an EV forecourt and existing demand; 

this could be used to assess the sufficiency of existing network 

capacity and the potential for innovative smart grid technologies 

to facilitate increasing penetration of EVs. 

 

Index Terms � Electric Vehicles, Fast Charging, Monte Carlo 

I. INTRODUCTION 

A. Background 

There are around 31 million cars registered on the road in 

Great Britain [1]. The UK Government has pledged to outlaw 

the sale of purely petrol or diesel-powered cars by 2040 [2]. 

Therefore, a number approaching that scale of vehicles could 

be electric (either pure battery-powered vehicles or plug-in 

hybrids) within the next two to three decades. Compared to the 

current GB stock of around 125,000 electric vehicles [3], this is 

a monumental increase. While it is often assumed in the large 

amount of academic work on the subject that Electric Vehicles 

(EVs) will be charged overnight at home slowly at rates of 3-7 

kW, there are factors that bring this assumption into question: 

1) Lack of off-street parking: in a UK Department for 

Transport survey of 1,100 �representative adults�, only 57% had 

access to off-street parking. It is assumed that the remaining 

43% would have nowhere to install an EV charge point [4]. 

2) Range anxiety: as the range of electric vehicles is, to date, 

typically shorter than their fossil-fuelled counterparts, there is 

demand for rapid on-route charging facilities to enable long 

journeys or subsequent journeys with not enough time between 

them for sufficient slow charging. 

3) Changing car ownership: the UK Government�s 

innovation agency Innovate UK believes that more than 90% of 

EVs are �sold� under Personal Contract Plans [5]. Along with 

recent growth in car clubs [6], personal cars are increasingly 

effectively being rented; pushing the market to a mobility-as-a-

service environment. This could have an influence on charging 

behaviour; if the EV is not owned outright, users may be more 

likely to opt for fast charging to enhance convenience at a 

potential detriment to battery longevity [7]. 

These factors are contributing to the ongoing growth in EV 

fast charging infrastructure [8]. It is envisaged by National 

Grid, the GB Transmission System Operator, that dedicated EV 

�forecourts� with chargers rated in the hundreds of kilowatts 

that are able to fully recharge vehicles in a handful of minutes 

could be commonplace in the near future [9]. 

�Fit and forget� approaches to network reinforcement in the 

face of significant demand growth such as that presented by a 

rapid growth in EV fast charging infrastructure could lead to 

overinvestment in, and underutilization of, the network [10]. 

Instead, innovative smart grid technologies can be used to build 

active networks that exploit the inherent diversity and 

flexibility in electricity use; the aim being to spread energy use 

more evenly across the day, increasing network utilization and 

reducing the cost of energy delivered [11]. New planning tools 

based on probabilistic analysis of the temporal and spatial 

variation of demand are required in order for the potential 

benefits of these approaches to be evaluated.  

B. Objective 

The objective of this work was to develop a probabilistic 

method for the characterization of EV fast charging forecourts 

based on the activity of current UK petrol stations derived from 

smartphone users� anonymised positional data. Statistical 

comparison of the simulated EV forecourt demand to that of an 

existing distribution network is presented as an example of a 

method that could inform future network investment planning 

in high EV-uptake scenarios, including evaluation of smart grid 

technologies in enabling an economically efficient transition to 

an energy system that can support electrified transport.
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C. Literature Review 

Huang and Infield [12], Beltramo et al. [13] and Lojowska 

et al. [14] each present models for study of the impact of EV 

charging on distribution networks based on probabilistic 

approaches. All three studies are based on the use of transport 

survey data, which introduces unreliability inherent in self-

reported surveys. This work uses smartphone locational data, 

which represents users� actual movement patterns. 

Etezadi-Amoli et al. [15] present a case study on the impact 

of rapid-charge EV stations on a US distribution network, 

assuming that the stations� peak demand occur coincidentally 

with the current network peak. This may be unduly 

pessimistic; a more thorough analysis would consider the 

temporal variation in EV charging demand in relation to the 

existing network peak. 

Bae and Kwasinski [16] present a method for predicting the 

demand profile of a rapid EV charging station based on a 

multiple server, single queue Poisson-Arrival-Location Model 

(PALM) to simulate traffic flow. The paper presents an 

interesting model from the underlying assumption that EV 

fast-charging activity at any given time is primarily driven by 

traffic flow. In this paper, the authors suggest that the activity 

of such a forecourt is likely to be dependent on many other 

factors such as the time of day, the local employment patterns 

and proximity to other key infrastructure and points of interest. 

In this paper, the fast-charging behaviour of EV users is 

assumed to be the same as the fuelling behaviour of 

combustion engine vehicle users, hence the usage patterns of 

EV forecourts are assumed to be the same as existing petrol 

stations. 

D. Petrol Station Activity Data � Google Maps Popular 

Times 

In their Popular Times feature (visible on the Google Maps 

website or smartphone application), Google collects and stores 

anonymised positional data from their smartphone users to 

allow other users to see when a certain venue is likely to be 

busy [17]. The data provides an average popularity for each 

day of the week, as a percentage value of the peak popularity. 

An example is shown in Fig. 1. 

 
Figure 1. Example of Google Maps Popular Times curve for Wednesdays at 

a large, supermarket-based petrol station in Glasgow, Scotland [18] 

Popular Times data was retrieved for a sample of 2,256 

existing petrol stations in Great Britain in areas surrounding 

major cities (Scottish Central Belt, Glamorgan, Yorkshire, 

Greater London, Greater Manchester, West Midlands, Avon, 

Merseyside and Tyneside). Of the 2,256, 476 are supermarket-

owned, 1,694 are independent/oil company-owned and 86 are 

at motorway service stations. For comparison, there were 

8,476 petrol stations in the UK at the end of 2016 [19]: the 

sample used in this work makes up just over a quarter of the 

population. 

E. Limitations to the Data 

Firstly, the Google data is only captured from smartphone 

users who have the Google Maps application installed and 

have location history turned on (though this is the app�s default 

setting). While this method is likely to capture a great many 

users (81% of UK adults � 37 million people � were 

smartphone users in 2016 [20] and Google Maps was installed 

on 57% of US smartphones in 2017 [21]), this could introduce 

a selection bias in the results if those who are less likely to be 

captured in the data are more likely to visit petrol stations at 

certain times. 

Secondly, the petrol station popularity data is presented as 

an averaged percentage of the peak. This means that there is 

no indication of an absolute number of users; this paper 

assumes that the peak equates to all pumps being used in a 

petrol station. Also, no seasonal variation can be derived from 

the data. 

Despite these limitations, it is suggested that using 

smartphone locational data for petrol station activity holds 

distinct advantages over survey-based data or traffic flow data. 

II. METHOD 

A. Overview 

The MC-based method to characterise the demand profile of 

an EV forecourt is split into two parts: 

i. A state sampling simulation to derive the number of 

vehicle arrivals per hour for an EV forecourt on a 

given day, based on the assumption that their activity 

will be the same as those of existing petrol stations. 

ii. A time sequential simulation to characterise the 

power demand of the forecourt in allowing users to 

charge their EVs, given the arrival profile in (i), 

according to a set of parameters probabilistically 

assigned to each vehicle and a queueing model 

developed to simulate busy periods at the forecourt. 

B. State Sampling Simulation 

Using Google Maps Popular Times data (such as that in Fig. 

1) for all petrol stations in the sample for a selected day of the 

week, a Cumulative Distribution Function (CDF) such as that 

shown in Fig. 2 was formed for each hour of the selected day. 

 
Figure 2. CDF for all sampled petrol stations� popularity for 16:00-17:00, 

from Saturday popularity data 

Dashed line 

represents 

�100% busy� 



For each MC trial, these CDFs were sampled from to derive 

a popularity profile (%) for the simulated EV forecourt (Fig. 

3). 

 
Figure 3. Popularity profile for one MC trial based on petrol station 

popularity data for Saturday 

In 2013, the average number of pumps at a UK petrol station 

was 7.3 [19]. This was used to derive the hourly average 

forecourt occupancy by multiplying the popularity (%) by 7.3 

and rounding to the nearest integer. 

Little�s theorem (1) [22] was used to derive the average 

arrival rate ɉത for a given hour of petrol station activity, given 

an average number of agents in the system N (i.e. the forecourt 

occupancy) and an average service time T (i.e. the total time 

spent at the petrol station).  

 

 ܰ ൌ ɉതܶ (1) 

   

It was assumed that the petrol station activity could be 

represented by a multiple server, single queue problem with 

Poisson arrival process and deterministic service time (M/D/s 

in Kendall�s notation used in Queue Theory [22]). T was 

assumed as 5 minutes, which can be supported by calculation: 

according to [23], the average throughput through a UK petrol 

station in 2017 was 6 million liters. Assuming an average 

delivery of 30 liters, this implies 200,000 vehicles per petrol 

station per year, or around 550 vehicles per day. Using (1) on 

the petrol station data with T = 5 results in a similar number of 

arrivals per day. The arrival rate Ȝ for a given hour was then 

sampled from a Poisson distribution with mean ɉത. The arrival 

rate profile for the same MC trial in Fig. 3 is shown in Fig. 4. 

 
Figure 4. Arrivals per hour for one MC trial based on petrol station 

popularity data for Saturday 

The arrival rate profile (Fig. 4) was input into the time 

sequential simulation in order to derive a demand profile 

characterization of an EV fast charging forecourt. 

C. Time Sequential Simulation 

The time sequential simulation models the minute-to-

minute activity of the forecourt, which is then used to derive 

its demand profile. For each hour, an array of �car� objects 

equal to the number of arrivals in that hour (given by the height 

of the bars in Fig. 4) is instantiated and each car is assigned 

parameters which, along with the fixed forecourt parameters, 

will dictate the duration of each vehicle�s charge and hence the 

time series of demand at the forecourt. The forecourt and 

vehicle parameters are illustrated in Fig. 5 and discussed in 

subsections 1 and 2 below. 

         
 

Figure 5. EV and forecourt parameters for time sequential simulation � 

images from [24] (left) and [25] (right) 

1) Forecourt Parameters 

a) Number of charging stations 

The number of charging stations was selected as 8, based on 

the number of stations considered in the EV forecourt in [15].  

b) Power rating of chargers 

The power rating of fast EV charging infrastructure is a 

trade-off between convenience to the user, limitation of battery 

stress and cost versus the local demand for using them. If 

charging rates are too low, users would face perhaps an 

unacceptable amount of inconvenience as they wait for their 

vehicles to charge. If they are too high, users may be deterred 

from using them at their rated capacity out of concern for 

reductions in battery life; capital costs for their acquisition and 

connection will also increase with charger rating. In the 

literature, fast charging rates are in the range 100-350 kW [15], 

[16], [26]. The rating for this work was chosen to reflect a 

reasonable queue size (explained in more detail in subsection 

2), which was set such that the average maximum daily queue 

time of an 8-charging station forecourt over 10,000 trials based 

on Saturday data (the busiest day for UK petrol stations) would 

not exceed 2 minutes, in accordance with what would be 

considered normal at a current UK petrol station. For the �all 

EVs� case (Fig. 6), 100 kW gave an average maximum queue 

length of 2.0 minutes. For the �BEVs only� case, 200 kW gave 

an average maximum queue length of 1.9 minutes. The 

average time spent charging for both cases was less than 5 

minutes. 

Battery capacity State of charge 
(SoC) on arrival 

Charge to 

add, as a 
proportion 

of spare 

capacity 
Number of charging stations 

Charger 

power rating 

EV parameters 
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parameters 
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2) Vehicle Parameters 

a) Battery capacity 

A histogram showing the probability distribution of EV 

battery capacities (kWh) for UK sales in 2017 [3] is presented 

in Fig. 6, from which the simulated vehicle�s battery size was 

randomly sampled. Two series are shown; one being for all 

EVs (including Battery Electric Vehicles (BEVs) and Plug-in 

Hybrid Electric Vehicles (PHEVs)) and one for BEVs only. It 

is perhaps reasonable to suppose that, as PHEVs have an 

internal combustion engine to rely on, BEV users (who 

normally have larger batteries to charge) would be more likely 

to charge at EV forecourts.  

 
Figure 6. Histogram showing distribution of battery sizes for UK EV Sales, 

2017 � data from [3] 

If the �BEVs only� option is selected then the energy 

requirement of vehicles increases due to their larger battery 

capacities. For a given charger capacity and number of 

charging stations, this has the effect of lengthening the queue 

as previously discussed. However, by increasing the charger 

power the queue can be kept to a similar length and the overall 

demand profile will tend towards a scaled version of that for 

the �all EVs� case. Therefore, only results from the all EVs 

case are presented in this paper as an example of the method. 

b) State of Charge (SoC) on arrival and added 

charge as a proportion of empty capacity 

The SoC of a battery upon starting and finishing EV 

charging is often modelled by Gaussian distributions as 

exemplified by Qian et al [27]. However, Yi and Li [28] 

present Ȥ2 test results to argue that a Beta distribution offers a 

better goodness of fit to real charging behaviour than a 

Gaussian distribution does. According to Marra et al. [29], a 

Li-ion EV battery should ideally be cycled between 20% and 

90% SoC; this was used to inform the setting of Beta 

distribution parameters Į and ȕ. SoC on arrival was treated as 

an independent variable with Į = 2 and ȕ = 5, shown by the 

blue line in Fig. 7. This gives a modal SoC on arrival of 20% 

and a mean of 29%. The post-charging SoC was derived by 

sampling a Beta distribution describing the added charge as a 

proportion of empty capacity, to ensure the EV cannot charge 

to above 100% or below its SoC on arrival. Parameters for the 

added charge Beta distribution were tuned by taking one 

million samples from the SoC on arrival distribution (blue 

line) and the added charge distribution (green line) for various 

Į and ȕ to produce a histogram of post-charging SoC. The 

probability of an EV leaving the forecourt with an SoC above 

90% is less than 5%, which reflects the ideal charging 

behaviour in [29] but allows some users to violate it. The 

added charge Beta parameters were set as Į = 3.2, ȕ = 2.6.  

 
Figure 7. Beta distributions for SoC on arrival and added charge as a 

proportion of empty capacity 

c) Arrival time 

Within the hour, the vehicle�s arrival minute was randomly 

assigned as a random integer between 0 and 59.  

3) Queueing Model and Derivation of Demand Profile 

For each vehicle known to be using the forecourt on the 

simulated day, the charge duration tc can be calculated from 

(2), where Pc is the charger power (kW), Ca is the added charge 

as a proportion of the battery�s empty capacity and B is the 

EV�s battery capacity (kWh). Note that although all EVs� 

arrival times are fixed within the hour by the arrival profile 

derived in Fig. 4, their leave time can be within the next hour 

if their charge duration lasts to the next hour. 

 

ݐ  ൌ ሺͳ െ ܲܤܥሻܥܵ  

 

(2) 

The demand drawn by the forecourt at any given minute is 

equal to the number of cars connected multiplied by the 

charger power rating. To simulate busy periods at the 

forecourt, a queueing model was developed. Each time a car 

arrives it is assumed to begin charging immediately and leave 

when its charging time is finished, unless the number of 

vehicles connected is equal to the number of charging stations 

(i.e. the forecourt is full). In this case, the car must join a 

queue. The queue will continue to grow as more cars arrive 

and join the back of the queue. Cars will wait in the queue until 

the next vehicle leaves the forecourt, at which point the vehicle 

at the front of the queue connects to the free charger and their 

leave time is adjusted accordingly (their charge duration is 

assumed to be the same). It is assumed that vehicles join one 

queue for the forecourt and they take charging stations on a 

first come, first served basis. Once a vehicle joins the queue, it 

is committed to waiting to be charged and the queue length has 

no limit. At every minute, the number of cars connected 

multiplied by the charger power is equal to the electrical 

demand of the forecourt. Fig. 8 shows an example of the 

PHEVs 
Long 

range 

BEVs 

�Affordable� 

BEVs 

Į = 3.2, 

ȕ = 2.6 

Į = 2, 

ȕ = 5 



outputs for the same MC trial in Figs. 3 & 4; the demand 

profile (left) and the number of vehicles queueing (right) for 

an 8-station, 100 kW charger rating forecourt for the �all EVs� 

case (see Fig. 6). 

 
Figure 8. Expected load profile and queue length for one MC trial of an 

8x100 kW EV charging forecourt, Saturday 

III. RESULTS 

A. Monte Carlo Simulations of EV Forecourt Demand Profile 

The EV forecourt simulation described in Section II was run 

for 10,000 trials. A probability distribution of the demand time 

series produced is shown by a 3D histogram in Fig. 9. For a 

given time of day, the probability that a simulated EV 

forecourt will draw a particular power demand is given by the 

bar height. 

 
Figure 9. 3D histogram showing probability distribution of 10,000 trials of 

an 8 x 100 kW forecourt simulation based on Friday popularity data 

Fig. 9 shows that there is significant variation of the 

forecourt�s demand levels for most of the day. The discrete 

nature of the distribution is due to the constant-charging 

assumption used; as the distribution reflects forecourt 

occupancy, the total demand of the forecourt can only take one 

of nine levels between 0 and 800 kW. It is shown that 

probability reduces with increasing power, but there remains a 

~5-10% likelihood of peak demand in the mid-afternoon.  

B. Statistical Comparison with Existing Network Load 

To assess the impact of an EV rapid charging forecourt on 

an existing electricity system, system planners would need to 

know the combined loading of the existing load and that 

presented by the EV charging station. Traditionally, the 

maximum demand would be equal to the present maximum 

network loading plus the maximum demand drawn by the EV 

forecourt. However, probabilistic methods can be used to 

better assess the impact of new load based on their temporal 

variation. For example, if the EV charging load and present 

network loading were to peak at different times, or if the 

combined loading breaches network limits for only a small 

proportion of the time, then network reinforcement could 

potentially be deferred in favour of employing a number of 

�smart� grid technologies. 

An EV charging forecourt at a rating of 800 kW would 

likely be connected to a primary distribution feeder (6-11 kV), 

either directly or via a dedicated secondary transformer. To 

compare the EV forecourt demand characterization with that 

of a network on which it would typically be connected, 

secondary (11/0.4 kV) substation loading data from SP Energy 

Networks� Flexible Networks project [30] were used to 

construct a CDF (Fig. 10) of the combined loading of 10,000 

MC trials of an 8x100 kW EV forecourt based on Tuesday 

Popular Times data with all monitored winter weekdays in the 

period 2013-2015 for all secondary substations on an 11 kV 

feeder covering suburban areas and major roads in St 

Andrews, a town on Scotland�s East Coast. 

 
Figure 10. CDF of combined loading of 8x100 kW EV forecourt simulation 

(Tuesday) and St Andrews Feeder 24, winter weekdays 2013-2015 

The method demonstrated in Fig. 10 provides an estimate of 

the likelihood that the feeder peak, following the integration of 

an EV forecourt, will exceed a certain value on a given day. 

For example, it is shown that there is a 5% probability that the 

peak on a given Tuesday will exceed approximately 175% of 

the original peak at around 17:30. The method also allows 

quantification of the amount of time the feeder loading will 

likely be above a determined value. This temporal aspect 

would be valuable in assessing the suitability of smart grid 

technologies, which often exploit the inherent diversity and 

temporal variation in electricity demand. For example, real-

time ratings of assets could allow the system to exceed thermal 

ratings for a short time. Alternatively, a flexible connection 

could be given to the EV forecourt to enable its peak to be 

reduced in times of network peak and dynamic pricing could 

be used to encourage vehicle users to charge outside of times 

of network peak (e.g. in the morning) or at times of high local 

generation output. Furthermore, on-site battery storage could 

be employed at the EV forecourt to smooth out peaks in its 

demand. 

20% contour 

5% contour 

40% contour 



IV. CONCLUSION AND FURTHER WORK 

This paper has presented a characterization of electrical 

demand profiles of EV fast charging forecourts, which are 

likely to be commonplace in high EV-uptake scenarios. The 

characterization is based on current petrol station usage data 

derived from smartphone locational data collected by 

Google�s Popular Times feature.  

The fundamental assumption on which this paper is based, 

that EV charging is likely to be done in the same way as 

fuelling of petrol and diesel-powered cars, can of course be 

called into question. However, in a future scenario where rapid 

charging is preferred as a main charging method to at-home 

charging due to the reasons described in Section I-A, the two 

activities are essentially analogous. A high EV-uptake future 

is likely to include a mix of rapid charging (such as presented 

in this paper), destination charging (while users are parked at 

amenities such as supermarkets and gyms), and at-home 

charging. The methods presented in this paper can be used to 

evaluate how the rapid charging portion contributes to the total 

EV charging load. 

Following this assumption, there is likely to be significant 

variation in the demand of rapid EV charging forecourts. The 

method presented in Section III B could be used across an 

entire distribution network to model uptake of various modes 

of EV charging and how the temporal variations in their 

demand interact with one another. This could be used to assess 

the requirement for network reinforcement and evaluate the 

feasibility of �smart� alternatives in preparing distribution 

networks for the widespread electrification of transport at 

minimum possible cost. 

To improve the accuracy of the results, analysis of the petrol 

stations included in the data is recommended. It was suggested 

that vehicle fuelling activity is related to local employment 

patterns and proximity to key infrastructure; disaggregation on 

these factors and others would allow analysis on the basis of a 

number of more focused type-specific characterizations. 

Aside from rapid-charging forecourts, a similar method 

using Google Maps Popular Times data could be used to 

characterize destination charging at locations such as gyms, 

supermarkets, cinemas and shopping centres. This analysis 

could then be combined with analysis of rapid and at-home 

charging to give a complete picture of the demand increase 

presented by the electrification of transport. 
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