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Abstract 

Flood-induced scour is by far the leading cause of bridge failures, resulting in fatalities, 

traffic disruption and significant economic losses. In Scotland, there are around 2,000 

structures, considering both road and railway bridges, susceptible to scour. Scour 

assessments are currently based on visual inspections, which are expensive and time-

consuming. The two main transport agencies in Scotland, Transport Scotland (TS) and 

Network Rail (NR), spend £2m and £0.4m per annum, respectively, in routine 

inspections. Nowadays, sensor and communication technologies offer the possibility to 

assess in real-time the scour depth at critical bridge locations; yet monitoring an entire 

infrastructure network is not economically sustainable. This paper proposes a 

methodology overcoming this limitation, based on the installation of monitoring systems 

at critical locations, and the use a probabilistic approach to extend this information to the 

entire population of assets. The state of the bridge stock is represented through a set of 

random variables, and ad-hoc Bayesian networks (BNs) are used to describe their 

conditional dependencies. The BN can estimate, and continuously update, the present and 

future scour depth at bridge foundations using real-time information provided by the 

monitored scour depth and river flow characteristics. In the occurrence of a flood, 

monitoring observations are used to infer probabilistically the posterior distribution of the 

state variables, giving the real-time best estimate of the total scour depth. Bias, systematic 

and model uncertainties are modelled as nodes of the BN in such a way that the accuracy 

of predictions can be updated when information from scour monitoring systems is 

incorporated into the BN. The functioning and capabilities of the BN is illustrated by 

considering a small network of bridges managed by TS in south-west Scotland. They 

cross the same river (River Nith) and only one of them is instrumented with a scour 

monitoring system. 

1.  Introduction & Background 

1.1!Scour hazard 

Flood-induced scour is the principal cause of failure of bridges, resulting in significant 

loss of life, traffic disruption and economic losses (1). Scour can be defined as the 

excavation of material around bridge foundations as a result of the erosive action of 

flowing water. Scour processes are classified according to the circumstances and 

structures that have caused it. The different types of scour are general scour, constriction 

scour, and local scour (2). While the first type is associated to the natural evolution of the 

river bed, the two other types are associated with the presence of a bridge. Constriction 

scour is the result of confining the width of the river channel, for instance between bridge 

abutments and piers, while local scour is caused by the interference of individual 

structural elements, such as piers or abutments, with the flow. In particular, local scour is 
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characterised by the formation of scour holes only in the immediate vicinity of those 

elements (3). 

Scour processes occur naturally and are expected to occur at most bridges during their 

service life (4), since every hydraulic structure founded on river bed is prone to scour 

around its foundations. The scour mechanisms listed above work additively to give total 

scour (Figure 1), and a bridge may fail due to a combination of different scour types; 

however, one mechanism is often the major cause to bridge failure. When the depth of 

scour becomes significant, the capacity of abutment or pier foundations may be severely 

compromised, leading to structural instability and ultimately catastrophic failure.  

 
Figure 1. Schematic illustrating total scour (2) 

In the UK, there are more than 9,000 major bridges over waterways. According to (5), 

abutment and pier scour was identified as the most common cause of 138 rail bridge 

failures during the period 1846-2013. Almost 95,000 bridge spans and culverts are 

susceptible to scour processes. Reviews of 1,502 river crossing failures that occurred in 

the United States in the period 1966 - 2005 revealed flooding and scour were the cause 

of 58% of the recorded failures (6). Following record daily rainfalls for the UK in 

November 2009, 20 road bridges across Cumbria were damaged or destroyed and the 

town of Workington was severed (7). Furthermore, the Winter storms of 2015 resulted in 

serious damage/destruction to bridges across Scotland and the north of England (8). This 

included the Lamington viaduct, which resulted in the closure of the West Coast mainline 

between Glasgow and London for nearly three months (9). 

NR owns and operates around 19,000 underline bridges nationally: 8,700 of these 

structures are held within a National Scour Database and the projected spend on scour 

protective works from 2014-2019 is in the region of £27m. For the Scotland Route only, 

1,750 structures are routinely inspected for scour and 58 are considered to be at high risk. 

TS is responsible for the Scottish trunk road network including 1,567 bridges or culverts 

over water. Of these, around 8% are currently classified as needing detailed consideration, 

including possible monitoring and scour protection measures. TS is currently aware of 

about £3.5m of known scour repairs and scour resilience works to carry out. 

1.2!Scour risk assessment  

The current practice for bridge scour inspection depends on visual checks at regular 

intervals. TS and NR assess the risks associated with scour on highway and railway 

structures during floods using the Procedures BD 97/12 (10) and EX2502 (11), 

respectively. They both provide a scour vulnerability index (SVI), based on value of total 

scour depth DT and foundation depth DF, in order to obtain a rating for the prioritisation 

of bridge intervention after a hazardous event or in advance of a predicted extreme flood 

event. The former procedure is based on a two-level assessment. The first level consists 

zz

zz

zz
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of visual checks to identify structures that are not at risk from scour. When this condition 

is not met, a Level 2 Assessment is performed; it includes a framework for estimating 

scour depth at bridge locations, which eventually provides the SVI. In the latter 

procedure, visual inspections are instead used to assess existing conditions at bridges and 

river history before computing the SVI. The total NR Scotland Route spend on scour 

assessments in 2017 was approximately £440,000. Similarly, TS spends £2m per annum 

on routine inspections of bridges and one-third of its total assets are inspected each year. 

In addition, all bridges over water are visually inspected for scour effects following 

periods of heavy rainfall and underwater visual inspections are even more expensive. 

In general, the evaluation of the risk of a structure should combine information on the 

hazard, the vulnerability, and the consequences of failure. The first examples of structural 

risk assessment frameworks have been developed in the context of seismic engineering 

(12), but in the recent years probabilistic frameworks have been proposed also for flood 

and coastal engineering (13) as well as hurricane engineering (14), The applications to 

the problem of scour are rather limited (15, 16). 

Vulnerability (or fragility) analysis is an important component of any structural risk 

assessment because it allows to define how a structure is likely to fail given the occurrence 

of a hazardous event (15). In general, the vulnerability of a structural system such as a 

building or a bridge can be expressed by means of fragility functions or hazard indexes 

(17). Few studies have analysed the vulnerability of bridges to scour, and in the literature, 

it is possible to find three different approaches:  

(i) Numerical approaches involving finite element analyses of the soil-foundation-

bridge components (18, 19, 20); 

(ii) Analytical approaches considering the reduction of bearing capacity of bridge 

foundations due to scour (21); 

(iii) Empirical approaches based on an SVI, typically defined as the ratio between total 

scour depth at the pier and foundation depth (22). 

In this paper, a scour hazard model is developed by building a BN able to estimate the 

depth of scour in the surrounding of bridge foundations. In particular, the BN can 

estimate, and update, the present and future scour depth using information from the 

continuously monitored scour depth and river flow characteristics. Once a new 

observation is available, it is spread across the network, thus appraising and updating 

scour at unmonitored bridges. Then, the bridge vulnerability analysis based on an SVI is 

performed. This work is the first application of BNs to bridge scour risk management, 

and the first implemented case where updating of the network is based on real-time 

information from a monitoring system. 

In section 2, we describe the developed BN for scour depth prediction and the two 

numerical algorithms employed to update the variables involved. Section 3 presents the 

small bridge network consisting of bridges managed by TS in south-west Scotland. It was 

built by choosing bridges over the same river (River Nith) in order to demonstrate the 

functioning of the BN. Only one bridge is instrumented with a scour monitoring system. 

In section 4, the results obtained with the two algorithms are reported. 

2.  Methodology 

Sensor and communication technologies offer nowadays the possibility to monitor in real-

time every change in characteristics of a bridge; yet monitoring an entire infrastructure 
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network is economically unsustainable. A way to overcome this limitation is to install 

monitoring systems at critical locations and use a probabilistic approach to extend this 

information to the entire asset. The idea is to represent the state of the bridge stock through 

a set of random variables and to use a BN to describe their conditional dependencies. 

A BN, depicted in Figure 2, is a probabilistic graphical model that represents a set of 

random variables and their conditional dependencies via a directed acyclic graph 

comprised of nodes and links (30). The presence of a link between two nodes means that 

the node that appears earlier in the chain has a direct influence on the other connected 

node. Each node represents a random variable in the Bayesian sense, i.e., the relation 

between the variables is always given by the Bayes’ rule: 

  (1) 

where  is the probability distribution function (pdf) known as the likelihood of 

the observed data ! given the parameter! θ,  is the prior pdf of parameter θ, 

 is called the posterior probability of θ, and the dominator  is a 

normalising factor called evidence. Bayes’ rule describes how the probability of 

parameter θ changes given information gained from measured data . In Bayesian 

network terminology, a node is a parent of a child if there is a link from the former to the 

latter. 

 
Figure 2. An example of a Bayesian Network 

Probabilistic inference in BNs takes two forms: forward (predictive) analysis and 

backward (diagnostic) analysis. The former type of analysis for the node Xi is based on 

evidence nodes connected to Xi through its parent nodes. Instead, the diagnostic analysis 

for the node Xi is based on evidence nodes connected to Xi through its child nodes (24). 

This backward analysis is called Bayesian learning as well.  

The true power in using BNs comes from the ease with which they facilitate information 

updating when a new observation becomes available (23). When evidence (e.g., 

information that a node is in a particular state) on one or more variables is entered into 

the BN, the information propagates through the network to yield updated probabilities in 

light of the new observations. 

For these reasons, BN frameworks can be merged with monitoring systems to update the 

risk map of infrastructure systems. This capability of updating is particularly 

advantageous when information is evolving, as in the case of a real-time monitoring 

system. If we consider the bridge scour problem, in the occurrence of a flood, monitoring 

observations are used to probabilistically infer the posterior distribution of all the parent 

nodes of the network by exploiting features of Bayesian Learning, and to give in real-

time the best estimate of scour depth, even in unmonitored bridges.  
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2.1 Bayesian Network for scour depth estimation 

The BN employed in the scour hazard model is developed according to the Procedure BD 

97/12, called just BD 97/12 for brevity. Figure 3a depicts the probabilistic correlation 

among variables involved in the appraisal of total scour depth DT. Starting from the river 

flow characteristics (such as assessment flow QA and river level yB) it is possible to 

estimate the depth of the two components of scour, constriction (DC) and local scour (DL), 

whose sum is equal to the total scour depth.  The appraisal of the former type involves 

variables like mean threshold velocity vB,C below which scour does not occur and type of 

bed material. Constriction scour leads to an increase ΔA in cross-section area of flow that 

allows estimating an average value, DC,ave. The variable DC refers to the depth at the 

location of interest. Local scour principally depends on the shape and width of the pier. 

The factor fy, called depth factor, takes into account the relative depth of the approach 

flow to the pier width and, for this reason, it depends on the depth of constriction scour 

DC itself. 

                  
 

Figure 3. BN for scour depth prediction based on BD 97/12 (a), and the simplified version (b) 

The models employed in the BN can utilise two types of variables relationships: 

deterministic and probabilistic. The former correlations consist of well-established 

models. The latter ones, for their probabilistic nature, must always deal with uncertainties 

and errors. Models are nothing more than a simplification of the reality, but the “perfect” 

model does not exist. Therefore, a modified version of the BN is shown in Figure 3b.  

Let us focus on the quantities that can be monitored, that is, river level and depths of 

scour, and the utilised models. The water level yB is measured by gauging stations; an 

observation of yB updates the water flow QA. The model employed is assumed to be 

deterministic using the well-known Manning’s equation. A scour monitoring system can 

provide data about scour depth, for instance, in the middle of the channel (constriction 

scour, D*
C) and at the pier (total scour, DT). Observations of these variables cannot update 

QA because the path is blocked by observations of yB. In order to exploit these scour 

observations within the BN, two new variables, θDC,ave and θDL, were included; they are 

model uncertainties added to the mathematical models used to estimate the variables 

DC,ave and DL, respectively. These new absolute parent nodes are named not-fixed model 

uncertainty because they are updated every time new observation of D*
C and DT enter the 

network. Through their employment, the value of scour depths obtained with the 
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empirical formulas provided by BD 97/12 is corrected thanks to observations from scour 

monitoring system. 

Let us summarise the three steps for solving the network and updating the posterior pdfs 

of the nodes once observation about some variables become available: 

(i) the BN starts with the prior pdfs of the parent nodes: flow QA and the not-fixed 

model uncertainties θDC,ave and θDL. Observations of river level yB, constriction scour 

in the middle of the river D*
C and total scour DT enter into the network (Figure 4a); 

(ii) the BN is figuratively split into three sub-networks because there are three different 

updates: the observation of yB updates QA; the observation of D*
C and the updated 

pdf of yB update θDC,ave; and the observation of DT, the updated pdf of yB and DC,pier 

update θDL (Figure 4b); 

(iii) descendant nodes are updated through the models provided by BD 97/12 exploiting 

updated information given by evidence on the parent nodes (Figure 4c). 

Figure 4. Starting with prior pdfs (a), updating of parent (b) and descendant nodes (c) 

By following the same stages described above in the construction of the BN, a network 

on a bigger scale can be developed. For instance, Figure 5 shows a BN for correlating the 

total scour depth prediction at two different bridges, each of them with N piers. The 

estimation of the scour at the second bridge is based on the models corrected by the model 

uncertainty variables updated by direct observations of D*
C and DT at the first bridge. The 

two not-fixed model uncertainties are parent nodes of both sub-network because the 

models between the variables to estimate scour depth are the same for any bridge. 

Consequently, uncertainties and error are correlated at all bridges. 

 
Figure 5. Bayesian Network for two different bridges, both with N piers 
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2.2 Numerical algorithms for model updating 

Correlations present in a BN are expressed in Bayesian terms, so Eq. 1 is always the basis 

of Bayesian statistic inference, but a closed form to calculate it exists only in a few simple 

cases. To solve Eq. 1 and find the shape and estimators of posterior pdf we need a 

numerical algorithm for Bayesian inference. In the past few years, computer algorithms 

have been developed to draw a random sample from the posterior pdf, without having to 

completely evaluate it. Examples of sampling methods are the Markov Chain Monte 

Carlo (MCMC) and the Metropolis-Hasting (MH). 

In this section we will present two different algorithms to solve numerically Eq. 1 into a 

BN. The two numerical algorithms are based on the Hessian Matrix method and the 

Transitional Markov Chain Monte Carlo (TMCMC) method, respectively.  

2.2.1 Linear Gaussian Bayesian Networks 

The first developed algorithm can solve any Linear Gaussian Bayesian Network (LGBN) 

by updating parent nodes’ pdfs when data or observations about one of their child nodes 

enter into the BN. LGBN involves variables that can be described only by Normal 

(Gaussian) or Log-Normal pdfs and with linear relationships among them. 

In mathematics, the Hessian matrix or Hessian (H) is a square matrix of second-order 

partial derivatives of a scalar-valued function. This algorithm is based on another 

definition of H: by defining the variable LH as the negative logarithm of the likelihood, 

in the word of statistics H is the inverse of likelihood covariance matrix. The basic 

equations to calculate estimators of posterior  are given below: 

  (2) 

 
 (3) 

  (4) 

  (5) 

where estimators with  as a subscript refer to the posterior pdf, with 
 
to the prior 

pdf, with 
 
to the likelihood, and 

 
indicates the likelihood function. 

2.2.2 Transitional Markov Chain Monte Carlo method 

The MCMC method can simulate random samples from a target pdf that can only be 

evaluated up to a scaling constant. From the Bayesian point of view, the target pdf is the 

posterior pdf, and the scaling constant, i.e., the evidence that appears at the denominator 

of Bayes’ Theorem. The most popular MCMC method is the MH algorithm. MH 

algorithm can draw samples from the target pdf without knowing the model evidence, but 

it cannot evaluate it (25).  

In 2007, a modified version of the MCMC method was proposed, called the transitional 

Markov chain Monte Carlo (TMCMC) algorithm (26). The TMCMC algorithm is a 

marriage between the MH algorithm and the sampling-importance-resampling (SIR) 

method and it was motivated by the Adaptive MCMC (27). Similar to the MH algorithm, 

the TMCMC algorithm can draw samples from the target pdf without the knowledge of 

the model evidence. Nonetheless, it can estimate the model evidence, without extra 
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computation cost. TMCMC algorithm is more complicated to implement than the MH 

algorithm, but there is no need to specify the proposal pdf, no need to determine the burn-

in period, the convergence issue is minimised, and the computational time is extremely 

reduced (25, 26). 

3.  Case studies 

The functioning of the developed BN is demonstrated using a small bridge network, 

consisting of bridges managed by TS in south-west Scotland (Figure 6). It is built by 

bridges over the same river (River Nith) and only the first bridge is instrumented with a 

scour monitoring system. The aim is to exploit observations on Bridge 1 in order to 

predict scour depth at other bridge locations.  

 

Figure 6. Network of bridges over the River Nith. Red circles represent SEPA’s gauging stations  

Three bridges were chosen from the TS scour database because they all have experienced 

significant scour events in the past. In the following, some information and details about 

the three bridges are reported: 

§ Bridge 1: A76 200 Bridge in New Cumnock. It is a 3-span (9.1m, 10.7 m and 9.1 m) 

masonry arch bridge, with two piers in the riverbed.  

§ Bridge 2: A76 120 Guildhall bridge in Kirkconnel. It is a 3-span (8.8m, 11.3 m and 

11.3 m) masonry arch bridge, with one pier in the riverbed. 

§ Bridge 3: A75 300 Dalscone bridge in Dumfries. It is a 7-span (spans of 35 m and two 

of 28 m) steel-concrete composite bridge, with three piers in the riverbed.  

   
               

Figure 7. A76 200 Bridge (a), A76 120 Guildhall bridge (b) and A75 300 Dalscone bridge (c) 

Abutments and piers of the three bridges are founded on spread footings on the natural 

ground except Dalscone bridge’s abutments that are founded on made up ground. 

The river discharge is certainly correlated at all bridges since they cross the same river, 

but, given that SEPA’s gauging station precedes every bridge of the network, there is no 

(a) (b) (c) 
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need to set QA as an absolute parent node in common for all the bridges. The whole BN 

for the estimation of scour depth at every pier of A76, Guildhall and Dalscone bridge is 

depicted in Figure 10. 

 
Figure 10. Final BN for depth of scour estimation at three bridges in the south-west of Scotland 

4.  Results 

Normal distributions were employed for every variable except for the river flow; a log-

normal distribution was adopted because the discharge cannot be negative. The pdfs of 

the not-fixed model uncertainties were set as Normal distributions with zero mean and a 

standard deviation of 1 m. The parameters of the Log-Normal pdf were obtained from the 

data recorded by SEPA’s gauging station of last ten years. 

Let us focus now on the observations collected from monitoring systems that are entering 

the BN. Scour is induced by a flood event, consequently, the peak value of river level was 

chosen to simulate a heavy river flood condition. Table 1 shows these peak values. 

Table 1. Case scenario for river level observations 

SEPA’s station Bridge 
Water level [m] 

30/12/2013 

Dalgig A76 1.879 

Hall Bridge Guildhall 3.015 

Friar’s carse Dalscone 1.512 

The scour data entering the network were hypothesised to mimic a critical situation since 

the monitoring system had not yet been installed at the time of this analysis. The 

hypothesised values are 20 cm for constriction scour D*
C and 45 cm for total scour DT. 

4.1 Linear gaussian Bayesian network 

The employed models have to be linearised in order to apply the algorithm that solves 

LGBN. The variable scale was changed to logarithm scale, which allows overcoming 

problems with exponents or products. To linearise more complicated models, such as the 

relationship between DC and yB shown in Eq. (6), a simple linear regression was 

performed to finds the linear function that predicts the dependent variable values (DC) as 

Variables observed by a 

monitoring system
Parent node

ϑDC,ave ϑDL

yGuilDhall

DC,ave2

DC,pier2
1DL2

1

DT2
1

QGuildhall

QDalgig

yB1

DC,ave1

D*C

DC,pier1
1DL1

1

DT1
1

DC,pier2
2 DL2

2

DT2
2

yDalgig

QDalscone

yDalscone

DC,ave3

DC,pier3
1DL3

1

DT3
1

DC,pier3
2 DL3

2

DT3
2

DC,pier3
3 DL3

3

DT3
3

A76 BRIDGE GUILDHALL BRIDGE DALSCONE BRIDGE



 10 

a function of the independent variable (yB). In Eq. (6), which is provided by BD 97/12, 

Manning’s equation was employed to describe QA as a function of yB, while the mean 

threshold velocity vB,C was calculated using the Colebrook-White equation (2). 

 

 
(6) 

Table 2 depicts the results obtained by solving the LGBN. Mean values and standard 

deviations of DC and DT at piers of every bridge are reported. It is worth recalling that the 

BN starts from observations about D*
C and DT on Pier 1 of A76 200 bridge. 

Table 2. Mean values and standard deviations of scour depth obtained by solving the LGBN 

 A76 200 Guildhall Dalscone  

 
Pier 1  

(Μ) 

Pier 2  

(Ε) 

Pier 1  

(Ε) 

Pier 1  

(Ε) 

Pier 2  

(Ε) 

Pier 3  

(Ε) 

μDC [m] 0.20 0.191 0.654 0.478 0.464 0.471 

σDC [m] - 0.247 0.609 0.621 0.614 0.619 

μDT [m] 0.45 0.438 0.953 0.791 0.807 0.794 

σDT [m] - 0.436 0.632 0.763 0.761 0.758 

M: Measured, E: Estimated 

4.2 TMCMC 

The prior pdfs and the hypothesised values chosen were the same used with the previous 

method. Table 3 shows the results obtained in the form of mean values and standard 

deviations of constriction and total scour depth. 

Table 3. Mean values and standard deviations of scour depth obtained with TMCMC 

 A76 200 Guildhall Dalscone  

 
Pier 1  

(Μ) 

Pier 2  

(Ε) 

Pier 1  

(Ε) 

Pier 1  

(Ε) 

Pier 2  

(Ε) 

Pier 3  

(Ε) 

μDC [m] 0.20 0.199 0.607 0.421 0.420 0.432 

σDC [m] - 0.137 0.225 0.192 0.190 0.187 

μDT [m] 0.45 0.452 0.932 0.802 0.798 0.805 

σDT [m] - 0.194 0.248 0.243 0.240 0.238 

M: Measured, E: Estimated 

Estimations of mean values of scour depth are consistent between the two algorithms 

whereas the TMCMC method obtains lower values (from 45% to 65% lower than LGBN 

results) of standard deviations. This can be explained by TMCMC algorithm’s capacity 

to handle non-linear models and relationships among variables; the need to linearise 

robust non-linear models in order to build a LGBN has significantly increased the 

uncertainties and reduced the accuracy of variable estimations. 

5.  Conclusions 

In this paper, a BN able to estimate the depth of scour at the foundations of a bridge 

network is presented. In particular, the BN can estimate, and continuously update, the 

present and future scour depth using real-time information from monitoring of scour 

depth and river flow characteristics. Once an observation collected from a scour 

monitoring system installed on a critical bridge enters into the BN, its information can be 
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spread across the network thus appraising and updating scour depth at unmonitored 

bridges. This work is the first application of BNs to bridge scour risk management, and 

also the first implemented case where updating of the network is based on real-time 

information from a monitoring system. 

The resolution of the BN starts by defining the prior pdfs of parent nodes. The parent 

nodes consist of the uncertainty of the model for the prediction of total scour depth so that 

they can guarantee correlations among every bridge since the estimation models are 

employed for every bridge of the network. In order to make inference by updating the 

parent nodes, observations of river level and data of scour depths are entered into the BN.  

Two different algorithms were developed to solve the Bayes’ rule, the basis of Bayesian 

statistic inference and, in turn, of BN. The two numerical algorithms are based on, 

respectively, the Hessian Matrix method and the TMCMC method. 

The functioning of the developed BN was demonstrated using a small bridge network, 

consisted of three bridges managed by TS in south-west Scotland. They cross the same 

river, with only the first bridge being instrumented with a scour monitoring system. A 

flood event was simulated using river level data from SEPA’s gauging stations. Scour 

depth values were instead hypothesised since the monitoring system had not yet been 

installed at the time of this analysis.  

Both methods led to same results of the first estimator (i.e., mean value) of scour depth 

posterior pdfs. In contrast, using the TMCMC algorithm results in lower values of 

standard deviations (the second estimators) for all the cases because it allows the 

implementation of any models and variable relationships (i.e., linear and non-linear). This 

decrease ranges from 45% to 65% with respect to LGBN results. A lower value of 

standard deviation means a higher accuracy in the estimation of the variable. 
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