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ABSTRACT 

This paper is about a new approach for concurrent 

design based on collaborative optimization, a distributed 

optimization method for multidisciplinary designs. The 

key idea of the proposed method is to consider the 

global objective in each subspace optimization problem 

with an additional interaction channel for coupling 

variables, while maintaining an easy coordination of 

design variables for system level problem. The 

improved collaborative optimisation is applied to two 

academic test cases to demonstrate its feasibility and 

validity. 

 

1. INTRODUCTION 

In their review about Multidisciplinary Design 

Optimization (MDO), Joaquim and Andrew [1] propose 

to define it as a field of engineering that focuses on the 

use of numerical optimization for the design of systems 

that involve a number of disciplines or subsystems.  

Designers have to simultaneously consider different 

disciplines, because the performance of a 

multidisciplinary system is influenced not only by the 

performance of the individual discipline but also by 

their interactions. In this context, a simple single-level 

method (centralized controller) can struggle or fail to 

handle complexity of the system/problem. Currently, 

MDO problems are better handled via more 

sophisticated distributed strategies that allow designers 

to deal with the involved optimization problems 

independently via their own prefer optimization tools, 

maintaining coherency among shared variables. Since 

with the concurrent increase of complexity of different 

disciplines, each discipline is going to be a black-box 

for other disciplines and even for the system, a bottom-

up approach can be much more appropriate to ensure 

the concurrent cooperation among the different 

disciplines. 

 

Collaborative Optimization (CO) is quite a popular 

distributed method for the design of multidisciplinary 

systems that was first formulated and proposed in 1994 

[2]. The standard collaborative optimization 

decomposes the MDO problem into the single 

disciplines, providing a significant degree of 

independence for each discipline, leading to the 

disciplinary subspaces with an unusually high level of 

autonomy, and the MDO problem is reformulated as a 

two-level optimization. The system level is responsible 

for the coordination by determining targets for each 

subspace responses with compatibility constraints. The 

objective of subspace level is to match the targets from 

system level as closely as possible while satisfying the 

local constraints. CO has been successfully used in 

many academic examples and practical engineering 

design problems, such as the design of launch vehicles 

[3], rocket engines [4], aircraft family design [5]. 

However, CO has major limitations that in practice lead 

to poor computational performance and convergence 

characteristics. It is understood that the reason of the 

issues is the use of equality form for the compatibility 

constraints in system level, which makes it hard to 

satisfy the Karush-Kuhn-Tucker (KKT) conditions [6]. 

To alleviate the issues, the response surface technology 

was used to approximately estimate the system level 

compatibility constraint, which improved the 

convergence problem to some extent [7]. Another 

approach is using relaxation method to improve the 

convergence problem and poor efficiency, where the 

system level compatibility constraint is used by 

inequality form instead of equality form through a 

relaxation factor [6]. These methods improve the 

convergence problem to some extent, but the objective 

function is still presented in the system level only, 

meaning that the subspace has weak design authority. 

Brain and Kroo [8] proposed an enhanced collaborative 

optimization (ECO), which allows each subspace to 

have the prior knowledge of all other subspaces’ 
constraints and global objective function. This enables 

the subspace to be the main decision-maker, while 

maintaining the low dimensionality of the system level 

problem. Although the efficiency and robustness were 

enhanced by modelling all the preference of other 

subspaces’ constraints in each subspace, the trade-off is 

in the additional time required to build and update the 

model for each subspace. In addition, although the 

information interaction among subspaces is also 

enhanced, it looks like ECO is contrary to the original 

intention of CO, because it is not expected for each 

subspace to have all other subspaces’ preferences 
beforehand. In contrast to the simplified solution of the 

decomposed optimization problems, each subspace in 

ECO has the same number of constraints like the All-in-

One method description, which is not practical. 

Considering the information interaction among 

subspaces, in the collaborative optimization, each 

subspace has very limited knowledge of the preference 

and constraints of other subspaces. Information is only 



 

shared indirectly via the system level targets. This 

provides a significant freedom for each subspace to 

handle the problem, enabling disciplinary designers to 

make the optimization independently, but on the other 

hand, leading to a low efficiency of convergence.  

This paper focuses on the enhancement of subspace 

design authority and information interaction among 

subspaces. We propose an improved collaborative 

optimization (ICO) based on the original CO and ECO. 

The key idea in ICO is to consider the global objective 

in each subspace optimization problem with an 

additional interaction channel for coupling variables, 

while maintaining an easy coordination of design 

variables for system level problem. The improved 

collaborative optimization has two main contributions. 

Firstly, ICO enhances the subspace design authority. It 

can be assumed that each subspace knows the relevant 

portions of the global objective rather than tries to best 

match some set of targets. Each subspace should solve 

the optimization problem while considering the local 

objective and the local constraints. That is, the 

subspaces are responsible for most of the design 

decisions and the system is limited to providing 

dynamic ‘moving limits’. The moving limits ensure that 

the design variables converge in the right direction and 

will not take large steps in the wrong direction. 

Transferring the global objective from the system level 

into subspace level is an important improvement, 

because it pays more attention to the individual rather 

than the system. Secondly, In most works, there is no 

direct interaction among subspaces [8]. Information of 

each subspace (discipline or constraints) is only shared 

indirectly via the system optimization results. This 

indirect information may slow down the convergence. 

In the proposed approach, a public memory space for 

coupling variables is proposed, making it possible for 

each subspace to call the relevant coupling variables 

directly. The exchange of state (coupling) variables has 

the added benefit that it exchanges the connotative 

constraints of each discipline, leading to a more 

efficient compatibility. A simple framework with added 

exchange channel in a two-discipline example is shown 

in Fig. 1. 

 

This paper is organized as follows. Section 2 provides 

the compact mathematical description of MDO and CO. 

Section 3 provides a detailed description of the 

proposed method ICO. Section 4 illustrates the 

application of ICO to some examples, followed by 

conclusions in Section 5. 

 
Figure 1. ICO with two disciplines 

2. MDO and CO 

An overview of MDO problem and the typical 

decomposition method CO are presented in this section. 

The improved collaborative optimization is shown in 

the next section with the comparison of CO. 

 

In MDO problems, each discipline has a certain degree 

of independence but also communicate with other 

disciplines through coupling variables. The outputs of 

one discipline may depend on its design variables and 

the other subspaces’ state variables. The formulation of 
MDO problem is defined as 
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where f  is objective function. 
i

g  is local constraint. 

i
D  is the discipline. 

s
x  and 

i
x  are shared design 

variable and local design variable. 
i

y  is state/coupling 

variable. 

 

CO is one of decomposition-based methods that divide a 

design problem into system level problem and subspace 

level problem. The objective function is only presented 

in the system level. The optimization results of each 

subspace are considered by constraints in system level. 

The system level is illustrated as: 
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where 
*

s
x  are subspace target responses that provide 

each subspace's best attempt to meet the system level 

targets z  . 

 

The constraint of system level 
i

J  is the compatibility 

term, which is presented as entirely objective function 

of subspace level. The subspace tries its best to match 

the targets for shared variables (here the shared 

variables includes shared design variables and 

state/coupling variables) that have been sent by the 

system level, while satisfying the local constraints. The 

subspace level is illustrated as: 
2
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Note that, the 
*

s
x  are treated as dependent variables, 

which demands that the subspace must be re-optimized 

each time when the system level evaluates its 

constraints. This increases the burden on computation. 

In addition, the number of shared variables (shared 

design variables and coupling variables) has a negative 

impact on the computational efficiency, which means 

decreasing the number variables can improve the 

convergence efficiency. 
 

3. IMPROVED COLLABORATIVE 

OPTIMIZATION METHOD  

3.1 System level problem 

Similar to the basic CO, the improved collaborative 

optimization is also composed of two levels. The system 

level is an unconstrained minimization problem with a 

memory of coupling variables. The system is defined as 

    

2
*

s y s
m in ( ) , s to ( )

s . t . N o c o n s t r a in ts

s
J   z x y

     (1) 

where z  is the system level target for shared design 

variable. 
*

s
x is each subspace’s best attempt to match the 

system level target while satisfying local constraints, 

and s to  ( )y  is a storage of coupling variables.  

 

The objective of unconstrained minimization is to 

ensure that all subspaces converge to the same values of 

shared design variables 
*

s
x  while satisfying their local 

constraints. The memory of coupling variables 

s to ( )  y collected from each subspace produces a route 

for each subspace to call corresponding coupling 

variables directly if needed. The inputs of system level 

contain 
*

s
x and y . 

*

s
x  are subspace target responses 

providing each subspace’s best attempt to achieve 

compatibility. y  are coupling variables providing each 

subspace’s best result while considering its own 
boundary condition and the coupling variables provided 

by other subspaces. The outputs are new targets (i.e., 

shared design variables z  and all coupling variables y . 

 

3.2 Subspace level problem 

The subspace level is an independent optimization 

problem that is responsible for most of design decisions. 

The objective function includes two components: a 

portion of global objective and a quadratic measure of 

compatibility. The subspace level is defined as follows. 
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where ( )F x  is the model of global objective. 
i

g  is the 

local inequality constraint. 
i

D  is the analysis or 

equality constraint. 
i

y  and 
j

y  are the coupling 

variables (responses of the discipline analysis). 
c

  is 

the penalty parameter. n  is the number of subspaces. 

 

The global objective function is presented in the 

subspace level rather than the system level. This allows 

the subspace to have more dependable information to 

design the MDO variables. In addition, the 

compatibility of design variables (i.e., 
s

x ) are used to 

match the system level targets. The coupling variables 

(i.e., y ) are not considered in the compatibility. They 

are obtained only by each subspace’s discipline (the 
input coupling variables could be taken out from the 

system level memory directly) while satisfying 

corresponding boundary conditions. The inputs of 

subspace level contain system level targets z and 

necessary coupling variables
j

y . The outputs are target 

responses, design variables 
s

x  and coupling 

variables
i

y . 

 

Note that each subspace does not require models of the 

constraints from all other subspaces. Besides, the 

information is not only shared indirectly through the 

system level targets, but also shared directly through the 

public storage of coupling variables. This direct 

interaction is easy to perform but has great valuable to 

improve the convergence efficiency, because the 

discipline i obtains its state variables by considering 

other disciplines’ coupling variables, which carry the 
local constraints information of other disciplines (It 

shows the best attempt other discipline can provide). 

This additional information exchange performs better 

than CO with regards to cooperation. In CO, each 

subspace regards the coupling variables as 

unconstrained and leaves all the design variables and 

state variables to the system level to compromise. Fig. 2 

shows the framework of ICO. 

 

 

Figure 2. ICO framework 

 

3.3 Solution process 

This section presents the solution process of ICO 

(Improved Collaborative Optimization). ICO requires a 

two-step process to solve the MDO problem. In the first 



 

step, the initial system level targets z for shared 

variables and a set of initial coupling variables y  are 

sent to each subspace. The subspace i  treats the targets 

z  and necessary coupling variable ( )
j

i jy  as 

parameters, allowing it to solve its optimization problem 

without requiring other subspaces’ constraints or 
analysis information. The subspace i returns target 

responses 
*

s
x  and the output of discipline analysis 

(coupling variable/state variable) ( )
i

i jy  to the 

system level. In the second step, the system level 

obtains the average of the target responses returned 

from the subspaces. Besides, it stores the coupling 

variables provided by the subspaces directly. The targets 

z  and coupling variables y  are then updated. The 

process is repeated until compatibility is realized. 

 

4. APPLICATIONS 

In this section, two examples are implemented to show 

the application of the proposed method. The efficiency 

and accuracy of the proposed method are compared with 

MDF and CO. All optimization problems are 

implemented by the standard Particle Swarm 

Optimization (PSO) method [9].  

 

4.1 Example 1 

The first example is taken from an academic case in 

literature by Alexandrov et al. [6]. This simple academic 

example shows some basic features of MDO problems, 

such as multiple interdependent disciplines and 

constraints. This example was used to present some 

properties of original collaborative optimization. The 

proposed method is evaluated and compared with 

collaborative optimization via this example. The 

formulation of problem is:  
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The test case has three design variables (two local 

design variables 
1 2
,x x  and one shared design variable 

3
x  ) and two coupling variables (

1 2
,y y  ). The problem 

can be reformulated by ICO as follows: 

 

System level optimization: 
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Subspace 2: 

2 2 2

2 1 2 3

2

3 3

2 2 3

2 2 1

1
m in [ ( 1 0 5 ( 3 ) ) ]

2

( )

. 2 0

1
A n a ly s is ( )

2

c

f y y x

x z

s t g x x

y x y



   

 

   

 

(6) 

The optimization results are shown in Tab. 1. The 

optimization results by three methods are similar. 

However, the system iterations highlight great 

computational savings of 98% over the CO method. The 

ICO also converges more effectively than that of MDF, 

80% computational savings. On the other hand, the 

number of design variables for the two decomposition 

methods are shown in Tab. 2. Compared with the design 

variables defined in CO, the ICO reduces the design 

variables by 8 (4 for system level and 2 for each 

subspace level). In summary, ICO method efficiently 

solves this test case while designing fewer variables for 

system and subspaces.  

 

Table 1 Optimization results for example 1. 

0 .0 0 1   

0 .1
c

   

Initial 

value 

MDF CO ICO 

1
x  

1 -1.9013 -1.9016 -1.9115 

2
x  

6 -1.009 -1.0133 -0.9550 

3
x  

-2 2.9301 2.9156 2.9549 

1
y  

3 -0.9017 -0.8977 -0.9557 

2
y  

-10 -0.9557 -0.0428 0.0000 

f  567 0.4337 0.4299 0.4562 

System 

iterations 

 31 483 6 

 

 

Table 2 The number of design variables for example 1. 

 
CO ICO 

System 5 2 

Subspace 1 4 3 

Subspace 2 3 2 



 

4.2 Example 2 

The second example is another typical test case which is 

widely used for evaluation of different decomposition 

MDO algorithms. It was first introduced by Sellar .et al. 

[10]. The test case can be described as follows 
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(7) 

The test case has been successfully solved by using 

ICO.  In this MDO problem, there are three shared 

design variables and two coupling variables, while it has 

no local variables in the subspaces. The problem can be 

reformulated by ICO as follows: 

System level optimization: 
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The optimization results by three methods are compared 

in Tab. 3. The solutions of CO and ICO have the same 

accuracy. However, the number of system iterations 

using ICO is less than that using CO and MDF (98% 

over the CO and 67% over MDF). The reason is that 

two subspaces in ICO communicate with each other by 

exchanging coupling variables, which contains the local 

constraints information. Besides, each subspace has the 

global objective function in its optimization problem, 

leading a great efficiency to solve the problem 

synchronously. The number of design variables for CO 

and ICO methods are shown in Tab. 4. Compared with 

the design variables defined in CO, the ICO reduces the 

design variables by 4 (2 for system level and 1 for each 

subspace level).  

 

Table 3 Optimization results for example 2. 

0 .0 0 1   

0 .1
c

   

Initial 

value 

MDF CO ICO 

1
x  

1 3.0269 3.0235 3.0375 

2
x  

0 0.0087 0.0058 0.0146 

3
x  

5 0.0000 0.0696 0.0000 

1
y  

5 8.0000 8.0000 8.0000 

2
y  

0 5.8554 5.7411 5.8788 

f  11 8.0029 8.0728 8.0029 

System 

iterations 

 30 500 10 

 

Table 4 The number of design variables for example 2. 

Column 1 CO ICO 

System 5 3 

Subspace 1 4 3 

Subspace 2 3 2 

 

5. CONCLUSIONS 

This paper introduces the improved collaborative 

optimization (ICO).  ICO builds on existing 

decomposition methods such as collaborative 

optimization and enhanced collaborative optimization. 

Compared with the standard CO and more advanced 

ECO methods, there are two improvements in ICO. One 



 

is that ICO enhances the subspace design authority. The 

relevant portions of the global objective are transmitted 

into each subspace. The subspaces are then responsible 

for most of the design decisions and the system is 

limited to providing dynamic ‘moving limits’ for shared 
variables. This improvement enhances the design 

authority of individual, while maintaining an easy 

coordination of design variables for system level 

problem. The other is that, ICO provides an additional 

direct interaction channel for information interaction 

among subspaces. Compared with original formulation 

of CO, information is only shared indirectly through the 

system level targets. Each subspace has no direct 

information exchange among other subspaces.  This 

mere system-subsystem information flow causes low 

efficiency for complex MDO problems, especially when 

coupling variables increase. Compared with formulation 

of ECO, each subspace requires the models of all other 

subspaces’ constraints, which seems impractical for 
information interaction among subspaces. Building the 

models of other subspaces’ constraints before each 
iteration is also a waste of time and computational 

source. However, ICO provides an additional 

information channel for each subspace to exchange the 

coupling variables. This new information flow allows 

each subspace has some knowledge of other subspaces’ 
constraints and disciplines, helping the subspace 

discipline to make more reasonable attempts for the 

targets. This leads to great computational savings for 

MDO problems. Results from examples suggest that 

ICO yields significant computational savings and 

simplicity, relative to collaborative optimization and 

enhanced collaborative optimization. 
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