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Abstract 

Methods for breath sampling and analysis require robust quality assessment to minimise the risk of false 

discoveries. Planning large scale multi-site breath metabolite profiling studies also requires careful 

consideration of systematic and random variation as a result of sampling and analysis techniques. In this 

study we use breath sample data from the recent U-BIOPRED cohort to evaluate and discuss some important 

methodological considerations such as batch variation and correction, variation between sites, storage and 
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transportation, and inter-instrument analytical differences. Based on this we provide a summary of 

recommended best practices for new large scale multi-site studies. 
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1. Introduction 

Studies where ‘omics technologies are employed have proven valuable in unravelling complex biological 

mechanisms and for the discovery of important markers for inflammatory lung disease[1]. However, for 

studies to produce clinically meaningful results, a large number of samples are typically required to provide 

statistical power and hence reduce risk of false discoveries[2]. Robust sampling and analysis methods are 

equally important, especially where additional sites and instruments will be prone to increased systematic 

variation. 

In metabolomic studies, a standardised and well-controlled sampling and analysis approach must be adopted 

throughout the experimental pipeline [3–6]. The use of metabolomic workflows in breath research is 

challenging as breath samples typically contain high intra- and inter-sample variation, a number of sampling 

variables (such as diet and medical history), and the presence of exogenous artefact or contaminant 

metabolites. As a result, and because of limited long term storage options, it is usually not possible to form 

pooled quality control samples of breath to evaluate analytical variation. In addition, breath sample analysis 

can result in a high number of features which often exceeds the number of samples. This dominant effect, 

which may be specific to a single site or instrument, can influence downstream data analysis[7]. It is 

therefore important to consider additional quality assessment procedures in breath research where large 

samples sizes are used. Studies with multiple sites can introduce new variation from inconsistent sampling 

techniques, sample storage and transportation, and lack of control samples. Methodological considerations 

have previously been reported for the collection and analysis of breath samples, and international task 



forces have recommended breath sampling and analysis standardisation[8–12]. However, specific guidance 

for large scale multi-site studies remains limited. 

In this work we aim to address methodological considerations for large scale multi-site studies that may 

otherwise be overlooked throughout collection and analysis of breath samples, and illustrate these using 

data from the U-BIOPRED (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes) severe 

asthma cohort study. Specifically, we will investigate methods to correct for batch effects, variation due to 

confounding factors using known asthma volatile organic compounds (VOCs), and congruence between 

instrument data.  

 

2. Materials and Methods 

2.1. Study information 

The U-BIOPRED study is a large scale European multi-site study with the objective to reveal novel 

phenotypes and therapeutic targets in severe asthma[13]. Several ‘omics technologies were employed in a 

systems biology approach using samples including blood, urine, and breath from adult and paediatric 

(school-aged and pre-school children) patient cohorts. Extensive clinical data and patient-reported outcomes 

were also collected. In this work we will focus on data from the breath volatilomics part of the study. 

2.2. Breath sampling and analysis  

After five minutes breathing room air through a VOC filter (A2, North Safety, Middelburg, Netherlands), 

participants were asked to breathe a single vital capacity into a ten litre Tedlar® bag (SKC Inc, Eighty Four, 

PA, United States) via a three way valve[14]. Within ten minutes, the mixed expiratory breath sample was 

sequentially purged onto two sorbent tubes containing Tenax GR (stainless steel, 6mm x 7", Gerstel, 

Mülheim an der Ruhr, Germany) by using a peristaltic pump at a flow rate of 250 ml/min. After local 

sampling, the tubes were transported by air or road to the Academic Medical Centre Amsterdam for central 

analysis and distribution.  



The first sample was used for eNose analysis. VOCs were released from the sorbent tube using a thermal 

desorption oven (TDS 3, Gerstel, Mülheim an der Ruhr, Germany), after which the sample was transferred 

into a Tedlar bag with nitrogen as carrier gas. Subsequent analysis was carried out by a composite eNose 

platform. The eNose platform consisted of four eNoses from four different brands, using distinct sensor 

technologies: 1) Cyranose C320 using carbon black-polymer sensors[15], 2) Tor Vergata eNose using quartz 

crystal microbalances (QMB) covered with metalloporphyrins[16], 3) Common Invent eNose using metal 

oxide semiconductor sensors[17], and 4) Owlstone Lonestar based on field asymmetric ion mobility 

spectrometry[18]. The overall system included of a collective total of 190 sensors. 

The second sorbent tube was sent to Philips Research laboratories in Eindhoven, in order to be analysed 

centrally by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Samples underwent 

automated TD (Gerstel, Mülheim an der Ruhr, Germany) using helium as the carrier gas. The sample was 

then purged onto a packed liner, heated to 300 °C for 3 min, and subsequently transferred to a Tenax TA 

cold trap (kept at -150 °C) for 2 minutes. The cold trap was then heated to 280°C at 20°C/s, after which the 

sample was injected into the GC column (VF1-ms, 30 m × 0.25 mm, 1 µm, 100% dimethylpolysiloxane, Varian 

Chrompack, Middelburg, The Netherlands) using a splitless injection method with helium as a carrier gas at a 

flow rate of 1.2 mL/min. The GC oven (7890 N GC, Agilent, Santa Clara, CA, USA) was set to a ramped 

temperature programme with the following parameters: 40 °C (5 min hold), ramp to 300 °C at 10 °C/min (5 

min hold). Compounds were then transferred to a MS with a Time-of-Flight mass analyser (LECO Pegasus 4D, 

LECO, Sint Joseph, MI, USA) in electron ionization positive mode (70eV), with a mass spectral acquisition 

range between 29 to 450 Da. 

2.3. Data pre-processing and treatment 

Raw GC-MS files were converted to netCDF files. Both pre-processing and statistical analyses were 

performed in the R software environment (R Development Core Team 2017, version 3.4.2) using relevant R 

packages (XCMS, BatchCorrMetabolomics, and Vegan) described in detail previously [19–21]. GC-MS samples 

were pre-processed to create an ion fragment data matrix for further analysis and extraction of known VOCs.  



Several putative asthma-related VOCs (and other commonly reported VOCs such as C5 to C15 alkanes, 

acetone, isoprene, toluene, and internal standards) [22–27] were targeted for further assessment, based on 

predicted retention indices (using cubic spline interpolation within a retention index error threshold of ± 20) 

and mass fragments (extracted from Pubchem and NIST online chemical databases). The identity of 

compounds that met these search criteria were then confirmed by pre-processing chromatograms using 

AMDIS (version 2.72) and subsequently NIST14 library search. 

Data from e-nose instruments were mean centred (mean = 0, standard deviation = 1). MS data were 

normalised by the internal standard toluene-d8, and features were range scaled. Missing values (i.e. zero 

values) within the GC-MS data matrix were imputed using random forest proximity[28] for multivariate 

analyses and samples with more than 70% missing values removed.  

2.3.1. Univariate and multivariate analysis 

To assess the significance of variation of VOCs between groups, non-parametric Kruskal-Wallis test was used, 

and if statistically significant, a post-hoc test was performed consisting of a Mann–Whitney U test between 

two groups with Bonferroni correction. The Kruskal-Wallis test was also used to assess the influence of 

sample storage on sorbent tubes for TD-GC-MS analysis. To assess variation without influence of patient 

factors or site variation, samples were limited to the Amsterdam site, and adults with severe asthma. These 

samples had a maximum storage time of 39 days.  

To measure and compare the effectiveness of common batch correction methods, a distance matrix 

calculated using Bhattacharyya distance measure was used in principal component analysis (PCA), retaining 

the first 3 PCs based on scree plot analysis, where the resulting inter-batch metric was the mean 

Bhattacharyya distance (0 equal to no batch effect). The metric was adopted from and described in more 

detail by Wehrens et al.[21].  

To measure and compare dissimilarity between instruments (i.e. pairwise analysis of GC-MS versus e-nose, 

and e-nose versus e-nose), a Procrustes test with principal coordinates analysis (PCoA) was performed. In 

summary, each instrument feature matrix for comparison (with aligned sample identifications) was 

converted to a distance matrix based the Jaccard measure, as described in previous studies[29,30]. Principal 



coordinates analysis (PCoA) was then performed on the distance matrices retaining the first 3 PCs which 

explained the most variance based on scree plot analysis. As it is important to correct for the occurrence of 

any negative eigenvalues when using the Jaccard measure (non-Euclidean) with PCoA (Euclidean)[29], we 

used the Lingoes correction method to convert negative eigenvalues to non-negative where a constant value 

double the value of negative eigenvalues, and added to all eigenvalues resulting in a corrected non-negative 

eigenvector[31]. 

Pairwise congruence between two instruments for the same patient sample was assessed using Procrustes 

analysis. Briefly, an input matrix is geometrically transformed (i.e. rotating and stretching/shrinking) to find 

the optimal superimposition on a target matrix, and such that the sum of squared distances (m2) is 

minimised (where 1 = data are different, and 0 = data are the same). In order to remove bias from a single 

Procrustes superimposition (non-symmetric), a Procrustean test with 1000 permutations is performed to 

assess the significance of the superimposition, where the correlation in Procrustes rotation is derived from 

the permuted symmetric Procrustes rotation (r = √(1 – m2)). Detailed explanations and considerations of the 

procrustean test applied to MS data have been published [32,33]. 

 

3. Results 

3.1. Sample and metadata description 

A total of 298 breath samples were collected in the study, of which 164 were first visit (baseline) samples 

and used in this work, each sample comprising breath from a single patient, thereby reducing any 

confounding effect from longitudinal samples. Baseline samples included adults with mild/moderate asthma 

(n = 11), and severe asthma (n = 42); school aged children with mild/moderate asthma (n = 15), and severe 

asthma (n = 37); and pre-school aged children with mild/moderate wheeze (n = 21), and severe wheeze (n = 

32). Clinical characteristics and definitions of asthma severity from within the U-BIOPRED consortium are 

described elsewhere[34]. The remaining samples were from healthy subjects (n = 6). Breath samples were 

collected at the following sites: Amsterdam, The Netherlands (n = 78); Copenhagen, Denmark (n = 19), and 

London, (n = 47), Manchester (n = 12), and Southampton (n = 8), United Kingdom.  With the exception of 



Copenhagen and Southampton sites, which comprised breath samples solely from children and adults 

(respectively), all sites provided a mixture of age and asthma subtype groups. 

3.2. Identification of VOCs associated with asthma 

To assess the variation of VOCs using sample groups (i.e. by age, site, asthma severity), we first identified 

known breath VOCs (acetone, isoprene, and toluene), C5-15 alkanes, and putative asthma VOCs compiled 

from selected studies using TD-GC-MS profiling techniques. A final target list of 53 asthma VOCs was used to 

search the U-BIOPRED ion fragment matrix. From this search, 42 VOCs were extracted, of which 16 had 

identification confirmed (see table 1 and supplementary information S1). Confirmed VOCs were classed as 

aldehydes (n = 2), ketone (n = 1), sulphide (n = 1), furan (n = 2), and hydrocarbons (n = 10), of which seven 

were branched hydrocarbons.  

 

  



Table 1. A list of VOCs putatively identified as biomarkers of asthma and extracted from U-BIOPRED breath 

sample GC-MS data. Also shown are their average molecular weight, base peak mass fragment, the predicted 

retention index, the KEGG description of that VOC, and the reference from which they were putatively 

identified. 

VOC 
Molecular Weight 

(g/mol) 
Extracted MS 

fragments 
Predicted RI KEGG description Reference 

Carbon disulfide 76.13 44, 76 537 Non-specific [24] 

2-butanone 72.11 43, 57, 72 577 Non-specific [26] 

2-methylpentane 86.18 57, 86 584 Lipid peroxidation [23] 

2-methylfuran 82.10 39, 53 588 Carcinogen [22] 

3-methylfuran 82.10 39, 53, 82 608 Carcinogen [22] 

Benzene 78.11 51, 78 660 Xenobiotic [25,27] 

2-methylhexane 100.20 85, 100 677 Lipid peroxidation [23] 

Octane 114.23 43, 57, 114 800 Lipid peroxidation [23] 

p-xylene 106.17 91, 106 872 Non-specific [24,25] 

Cumene 120.20 105, 120 928 Carcinogen [24] 

Octanal 128.22 128 978 Lipid peroxidation [22] 

2-methyldecane 156.31 43, 57, 128, 156 1061 Lipid peroxidation [26] 

Nonanal 142.24 57 1084 Lipid peroxidation [22] 

Dodecane 170.34 170 1200 Lipid peroxidation [27] 

2,6,11-
trimethyldodecane 

212.42 57, 71, 212 1275 Lipid peroxidation [26] 

2,6,10-
trimethyldodecane 

212.42 57, 71 1332 Lipid peroxidation [23,26] 

 

Known analytical artefacts including polydimethylsiloxanes, phenol, and N,N-dimethylacetamide were 

identified. Figure 1 shows a combined mass spectrum highlighting sampling and instrument artefacts using 



the mean of sample intensities. Reproducible and stable artefact peaks have been used to calibrate an 

instrument for qualitative analysis, as previously shown[35].  

 

 

Figure 1. A combined mass spectrum of all sample mass fragments within the MS acquisition range (29-400 

Da) and their mean abundance for all samples scaled to percentage, normalised to the most abundant peak. 

Highlighted are Tedlar bag sampling artefacts (phenol, and DMAC), and instrument artefacts 

(polydimethylsiloxane). 

 

3.3. Patient factors and variation between sites. 

Out of the previously identified VOCs, we found an increased response for dodecane (figure 2a) for the 

London site (adults = 4, school =16, pre-school = 20), in comparison to the Amsterdam (adults = 14, school 

=11, pre-school = 10) and Manchester (adults = 8, school =3, pre-school = 1) (Kruskal-Wallis p < 0.001). 

Similarly, pentane (shown in figure 2b) has shown difference (Kruskal-Wallis p = 0.029) in intensity between 

London and Copenhagen sites (Mann–Whitney U, Bonferroni corrected p = 0.027) within the pre-school 

cohort only.  

 

 



 

 

Figure 2. Relative mass fragment intensities in patient breath samples for (a) dodecane across three sites 

including Amsterdam (n = 35), London (n = 40), and Manchester (n = 12), and (b) pentane across three sites 

including Amsterdam (n = 10), Copenhagen (n = 16), and London (n = 20). Significance between these groups 

are highlighted by asterisks or no significance (NS) after a Kruskal-Wallis test followed by a Mann-Whitney-U 

test with Bonferroni correction. Also shown for dodecane (a) are patient age groups (where i = adults, j = 

school children, and k = pre-school children) within each site.  

Asthma subtype was categorised as either mild/moderate or severe, as defined by IMI[34]. Using the adult 

cohort only, we found octanal to be increased (Mann–Whitney U p = 0.048) for patients with mild-to-

moderate asthma (n = 11) when compared to patients with severe asthma (n = 22), as shown in figure 3.    

 

a) b) 



 

Figure 3. Relative mass fragment intensity showing increased octanal in patient breath samples for moderate 

(n = 11) compared to severe (n = 22) asthma subtypes, with a significance of p = 0.049 after a Mann-Whitney-

U test.  

3.4. Variation from sample storage 

After analysis of storage variation, we found no significant variation for breath samples stored for up to 39 

days (Kruskal-Wallis p = 0.514). Figure 4 illustrates variation of the sample total ion count across storage 

duration.  

 

 

 



 

Figure 4. Total ion count (normalised and log scaled) for samples stored for up to 39 days. Samples included 

severe asthma adult patients from the Amsterdam site. 

3.5. Batch correction method comparison 

To compare correction methods of these batches, we adopted a method described by Wehrens et al.[21]  In 

the U-BIOPRED study, breath was sampled in uncontrolled batches, where one batch may be associated to 

one site within a patient visit period. Samples were then analysed in controlled batches, and each sample 

was spiked with a four-component deuterated internal standard mixture. Mean inter-batch distances (IBD) 

are shown in table 2.  

 

 

 

 

 

 



Table 2. Comparison of selected normalisation methods using the mean Bhattacharyya distance within 

sampling and analytical batches, where low inter-batch distance indicates larger point cloud overlap between 

batches, which in turn means an overall low batch effect.  

Normalisation method 
Analytical batch 

distance 

Sample batch 
distance 

Combined average 

No normalisation 0.75 0.69 0.72 

Toluene-d8 0.43 0.54 0.49 

Acetone-d6 2.52 2.91 2.72 

Sum 0.79 0.63 0.71 

Mean 0.79 0.63 0.71 

Median 0.78 0.75 0.77 

Sum of squares 0.87 0.90 0.89 

 

When compared to untransformed data (combined IBD = 0.72), we show that using an internal standard 

(toluene-d8) improved batch correction (0.49) more than using scaling factors (between 0.71 and 0.89). In 

our case, scaling factors such as normalisation by sample sum or sample mean (0.71) performed better than 

normalisation by sample median (0.77) or sample variation (0.89). The combined IBD for acetone-d6 was 

2.72. Figure 5 illustrates the sampling batch distance for data normalised by acetone-d6 (figure 5a), and 

toluene-d8 (figure 5b).  

 



 

Figure 5. Visual representations of GC-MS data normalised by internal standards a) acetone-d6, and b) 

toluene-d8, where batches are represented with the same colour and shape. The mean inter-batch 

Bhattacharyya distance is shown for each scores plot. 

 

3.6. Comparison between instruments 

After central analysis by TD-GC-MS and an e-nose platform, Procrustes analysis was performed. Table 3 

shows a pairwise matrix of correlations between instruments (Procrustes error m2 and 95% confidence 

intervals shown in S2).  

Table 3. Pairwise matrix of similarity correlations derived from the Procrustes test, between GC-MS and e-

nose instruments.   

 
GC-ToF-MS Lonestar Cyranose Tor Vergata Comon Invent 

GC-ToF-MS – 
    

Lonestar 
R 0.252 

(p = 0.132) 
– 

   

Cyranose 
R 0.112 

(p = 0.878) 
R 0.183 

(p = 0.204) 
– 

  

Tor Vergata 
R 0.211  

(p = 0.255) 
R 0.189 

(p = 0.397) 
R 0.745 

(p = 0.001) 
– 

 

Comon Invent 
R 0.173  

(p = 0.525) 
R 0.355 

(p = 0.003) 
R 0.392 

(p = 0.003) 
R 0.216 

(p = 0.184) 
– 

 



No significant similarities were found between GC-MS and e-nose data. For e-nose comparisons, Cyranose 

and Tor Vergatta instruments showed correlation (r = 0.745, p = 0.001). Less strong correlations were found 

between Lonestar and Comon Invent (r = 0.355, p = 0.003), and between Cyranose and Comon Invent (r = 

0.392, p = 0.003). To illustrate this Procrustes rotation, Figure 6 shows an example of a Procrustes 

superimposition plot for dissimilarity – between GC-MS and Lonestar instruments, and similarity – between 

Cyranose and Tor Vergatta instruments.  

 

 

Figure 6. Procrustes superimposition plots using distance matrices of aligned samples where a) Lonestar data 

(red) rotated onto GC-MS data (blue), and b) Cyranose e-nose data (red) rotated onto Tor Vergata e-nose 

data. 

 

4. Discussion 

4.1. Summary of findings 

In this study, we have assessed breath sample data from the recent U-BIOPRED severe asthma cohort study, 

and have shown possible sources of variation which must be considered when planning a large scale or 

multi-site study.  



To achieve this, we used a targeted approach, where VOCs have been described in literature and linked to 

asthma, and used the KEGG database to search for their metabolic origins. It is important to stress that KEGG 

is curated by experts and links several chemical, biological, and pathway databases, however information of 

breath metabolites may be restricted as there are few databases that provide this information and feed into 

KEGG. With regard to VOCs found within U-BIOPRED breath data, hydrocarbons may have an exogenous 

source and not be linked to internal metabolism, as are many VOCs found in breath samples. A KEGG search 

for benzene and p-xylene revealed these VOCs as xenobiotic. Furan based cyclic compounds such as 2- and 

3-methylfuran and cumene were described in KEGG as carcinogenic. These previously identified compounds 

may not be directly related to asthma, but may constitute epiphenomena such as differing exposures or 

dietary influence. Carbon disulphide, p-xylene, and 2-butanone are non-specific as they have multiple origins 

other than host inflammation, such as products of microbial metabolism.  

Data from both KEGG and the selected studies suggest that alkanes (both saturated and unsaturated) are 

associated with lipid peroxidation, a hallmark of host inflammation, where volatile alkanes would be 

breakdown products of fatty acids (FAs). In addition, volatile aldehydes or ketones are also linked to lipid 

peroxidation, as carbonyl group breakdown products of FAs. Patients with severe asthma had an increased 

daily dose of corticosteroids, and their lower abundance of octanal when compared to mild/moderate 

(Figure 3) may be linked to suppression of lipid peroxidation. Although octanal may arise from other latent 

factors such as diet or age differences, this suppression is also evident in a previous study investigating 

breath VOCs from patients with COPD – which shares some clinical characteristics with severe asthma (such 

as airflow obstruction, frequent exacerbations, and high doses of inhaled steroids) – where a lower number 

of heavier VOCs were identified in comparison to non-COPD controls[36]. 

Similar volatile metabolic products, such as 2,6,11,15-tetramethyl-hexadecane and nonanal, have also been 

found in breath VOC profiles for patients with lower respiratory tract infections [37]. This may indicate the 

increased production of long chain unsaturated FAs due to a change in membrane fluidity, or defective 

efferocytosis in asthmatic patients [38]. Additionally, unsaturated FAs have been found not to induce 

cytokine release in vitro when compared to saturated FAs [39]. Shorter methylated alkanes, such as 2-

methylhexane, may arise as breakdown products. It was not possible to NIST-match several methylated 



alkanes because many share similar mass fragments and retention time, and therefore requires targeted 

analysis for accurate identification.  

Sampling devices may introduce artefact VOCs depending on the type of material used, for example gas 

sampling bag contaminants such as phenol and N,N-dimethylacetamide [40]. Both the latter compounds 

were found in breath samples in this study, as breath was collected using Tedlar bags, and were removed to 

prevent a confounding effect during statistical analyses. Latent variables and confounders must be 

considered in multi-site studies, and it is important to assess any variation due to patient factors, asthma 

subtype, and sampling sites. Previous studies have shown variation in breath profiles due to geographical 

location[41,42], and these findings are supported by our analysis, where we found significant differences in 

levels of pentane and dodecane between Copenhagen and London sites.  It is likely that the difference may 

be due to exogenous alkanes from the surrounding environment, but this potential contamination is 

especially relevant as these VOCs may also be linked to lipid peroxidation. Variation between sites can also 

occur from differences in sampling methods or patient demographics such as age[43], or gender[44]. In the 

example shown for dodecane, responses for pre-school and school aged children were increased compared 

to adults, and therefore age may be main contributing variable rather than a method-related effect, as the 

majority of school-aged patients used the same method as adult patients. 

Several studies have investigated sorbent tube sample storage. We found no significant differences in our 

results for up to 39 days in storage, using the total ion count is a basic measurement, and we suggest using 

quality control samples which include known breath compounds (stored and analysed alongside breath 

samples) to measure variation by sample storage. Using e-nose devices to measure variation, van der Schee 

et al. found no variation where breath samples were stored for up to two weeks[45]. Kang et al. further 

investigated breath sample storage for a longer duration analysed using TD-GC-MS. They recommended 

storage duration may be extended up to 1.5 months[46], however this was specific to samples frozen at -

80˚C and therefore not comparable to other studies where samples were refrigerated or stored at room 

temperature. In metabolomic experiments, -80 ˚C is recommended as metabolites do not react with each 

other, however this is dependent on the type of metabolites within a sample[4], and the time taken after 

freeze thaw and before thermal desorption. 



In metabolomic studies, batch variation is intrinsic to sampling and analysis, especially for longitudinal 

studies. Data were batch corrected using normalisation to the internal standard. In our test we found the 

worst performing method was normalisation by an internal standard (acetone-d6, figure 5a) unsuitable for 

the sorbent material used in our analysis, as it characteristics mean it is outside the ideal Tenax GR capture 

range. This indicating significant “over-normalisation” of data, thereby producing a false batch effect. It is 

important to monitor any batch variation effect to prevent misclassification. A common batch correction 

method is to normalise samples by an internal standard or scaling factors[21,47]. Other methods such as 

ComBat or retention time alignment may also help to correct known batch variation[48]. 

Breath samples may be analysed centrally or on-site (i.e. near patient analysis), therefore it is useful to 

assess intra-sample similarity between different instruments. The expectation is instruments should show 

similar results for the same sample, however the instrument mechanism may overshadow any sample 

comparability. Compared to e-nose instruments, analysis by GC-MS produces highly resolved data based on 

ion fragments specific to VOCs. In contrast, e-nose data is limited to the response to several sensors and not 

individual VOCs. This is shown in Figure 6a, where GC-MS form additional clusters of data compared to the 

Lonestar instrument. Regarding e-nose comparisons, although e-nose sensing mechanisms are different, we 

have shown good superimposition (and therefore similarity) between Cyranose and Torr Vergata, where the 

reactive layer of both sensors may have similar sensing properties. We have shown that the sensing 

mechanism may overshadow biological differences, however further controlled experiments are required to 

confirm this.  

4.2. Recommendations for future research 

Based on our data, we provide several recommendations for breath volatile analysis for large-scale and 

multi-site studies from study initiation, sample collection, and sample analysis.  

 To minimise variation between all sampling and analysis sites, quality assurance procedures should 

be incorporated into a study design. Such measures may include instrument calibration or 

maintenance schedule, quality monitoring, data auditing at predefined intervals with open access to 

metadata, and regular staff training events. 



 Sampling devices (e.g. phenol and DMAC from Tedlar bags) or instrument connections (e.g. system 

leaks, loose connections) can be prone to contamination and therefore must be regularly serviced 

and/or cleaned. 

 Strict storage and transportation methods should be in place where samples are stored consistently 

across sites without long-term storage.  

 Compare data from multiple instruments to investigate similarities and differences in the analytical 

methods used.  

Additional recommendations influenced from metabolomics-based literature useful for future studies are as 

follows: 

 Perform regular instrument proficiency testing and use quality control samples to assess variation 

between instruments, as in previous studies[49,50]. 

 Consider data pre-treatment methods, for example, log transformation is not suitable for high RSD 

or missing values, and pareto-scaling can be sensitive to high sample variance[51], a common 

occurrence in breath analysis[7]. 

 Consider several models for multivariate analysis, especially for e-nose data analysis, as shown by 

Gromski et al. and Leopold et al. [52,53].  

 Breath samples analysed with GC-MS are known to contain high multicollinearity, and any 

multivariate models must be optimised and validated prior to reporting[2,54,55]. 

 Consider using multiple databases, as highlighted by Vinaixa et al.[56] and the use of external 

standards, as recommended by the metabolomic standards initiative [57,58], to verify the 

identification of a VOC.  

 

5. Conclusions 

We have explored issues that may affect the results and interpretation of large-scale multi-site breath 

analysis studies. By using examples from the recent U-BIOPRED severe asthma study, we have shown the 



importance of assessing variation which may arise between sites, patients, and instruments, with the overall 

aim to reduce the risk of false discoveries when interpreting results. 
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