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Abstract

Advanced modelling of electro-mechanical systems for energy harvesting (EH) and sensing
is important to develop reliable self-powered autonomous electronic devices and for structural
health monitoring (SHM). In this perspective, a novel computational approach is here proposed
for both real-time and off-line parameter identification (PI). The system response is governed
by a set of four partial differential equations (PDE) where the three displacement components
and the electrical potential are the unknowns. Firstly, the finite element (FE) method is used
to reduce the PDE problem into a set of ordinary differential equations (ODE). Then, a state-
space model is derived with the aim to limit the PI problem to a subset of unknowns. After
that, an identification error is introduced and the Lyapunov theory is used to derive the PI
algorithm. The numerical implementation is based on a sensitivity analysis feedback block.
The overall proposed computational strategy is robust and results in an exponential asymptotic
convergence. The accuracy of the PI method is demonstrated by analysing the time–domain
response of an array of piezoelectric bimorphs subjected to low–frequency structural random
vibrations. The selected case–study is an existing cable–stayed bridge, for which an extensive
dynamic monitoring campaign has provided the experimental data. Once time histories of the
device response are obtained through time–dependent dynamic FE simulations, the PI algorithm
is used to determine the unknown lumped coefficients of the state-space model. The comparison
between FE method and lumped parameters model in terms of tip displacement and output
voltage demonstrates the superior predictive capability of the new PI algorithm. As a result of
the sensitivity analysis, guidelines to assess the optimal array configuration are also provided.
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1 Introduction

Electromechanical systems are a fundamental component of a wide class of devices, such as actu-
ators, sensors, controllers, motors and transducers. Several recent scientific researches about elec-
tromechanical systems are also focused on energy harvesting technologies with the aim to convert
mechanical vibrations into electrical energy, thereby facilitating the development of small electronic
autonomous apparatuses [20, 29]. To achieve this result, several prototypes have been built in the
last years based on thermoelectric, electromagnetic, pyroelectric, triboelectric and piezoelectric
effects [44]. The length of these devices range from the nanoscale to the microscale, up to the
macroscale. In this framework, advanced modelling and experimental characterization of the dy-
namic response are important to enhance the electromechanical systems performances. A reliable
modelling is one of the main task in order to predict the response of complex intelligent materials
and structures, given external loads and boundary conditions [13]. Furthermore, the continuous
growth of the complexity in smart, micro and nano electromechanical devices calls for multiphysics
and multiscale numerical simulations [45, 46, 47]. At the same time, experimental data are essen-
tial to assess the reliability of the model predictions. Given the model and the experimental data,
dynamic system identification can be accomplished.

System identification [4] is the science to build a valid mathematical model capable of describing
the essential properties of a given system starting from observed input-output or output-only data
[12]. Despite the large amount of significant contributions about system identification [14, 15, 16,
17], some open issues still exist such as dealing with nonlinear models [11] and large databases
(Bayesian and sensor networks [14]), formulating the estimation method as a convex optimization
problem, bridging the gap between the scientific communities involved in model order reduction
and system identification [12, 37, 38]. In particular, parameter estimation is the task that concerns
with the experimental determination of the numerical values of the parameters governing the static
and/or dynamic behaviour of a given system, under the assumption that the system model can be
represented by means of a known mathematical structure [15]. Parameter estimation also plays
an important role in filtering, state estimation [8] and controller design [9, 10, 11]. Parameter
identification (PI) techniques can be classified into two main categories, namely parametric and
non–parametric methods [19]. Unlike non–parametric methods (which are adopted when the system
model structure is unknown), parametric methods rely on the availability of an accurate system
model whose parameters have to be identified. Both frequency-domain (FD) [18] and time-domain
(TD) approaches can be employed to this end.

Typical numerical identification approaches adopted in PI problems include Newton methods,
least squares and the gradient search techniques [39, 40, 41] as well as soft computing techniques [42,
43]. For example, a generalized computing paradigm based on artificial dynamic models is proposed
in [33], and the computational strategy therein proposed does not fail even when traditional iterative
algorithms such as Newton–Raphson are not able to converge due to high nonlinearities. Among the
different available approaches, the model reference adaptive systems (MRAS) technique can also be
mentioned [50, 51]. It can be used for the direct adaptation of the controller gains [52, 53, 54, 55]
as well as for the identification of the parameters of unknown processes [15, 31, 32, 34]. Recently,
dynamic modeling of breast tissue with application of the MRAS identification technique based on
clinical robot-assisted palpation is described in [5]. Gatto et al. [7] presented an online discrete-
time PI algorithm suitable for surface-mounted permanent magnet synchronous machines. Liu
et al. [6] developed two MRAS estimators for identifying the parameters of permanent magnet
synchronous motors based on the Lyapunov stability theorem and the Popov stability criterion,
respectively. Lyapunov stability theory in analysis and control of electromechanical systems is
discussed in [35, 27, 28].
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During the last decade, even in the framework of smart electromechanical systems modelling [21,
22, 23, 24], several efforts have been spent in developing and implementing identification techniques
based on parametric methods. Actually, the identification of electromechanical modal parameters
of piezoelectric structures is important to enable a correct implementation of these devices for
energy harvesting, vibration control and health monitoring applications [48]. Reduced-order modal
models can usually arise from numerical finite element (FE) [49] or distributed analytical approaches
[21, 23]. Porfiri et al. [25] proposed two techniques for estimating piezoelectric modal couplings
and piezoelectric modal capacitances. Erturk et al. [21] provided an alternative approach to
conventional techniques for damping identification based on closed-form expressions and a single
data point of the voltage frequency response function (FRF). Delpero et al. [26] reported that an
accurate prediction of the damping is based on a reliable identification of the generalized coupling
coefficient and provided experimental proof for shunted piezoelectric elements. A FD technique
has been adopted in [24] in order to fit nonlinear algebraic equations derived via the method of
harmonic balance.

In this study, we propose a novel computational approach for both real-time or off-line PI in the
framework of electromechanical devices employed for energy harvesting and sensing applications
[36]. The system response is governed by a set of four partial differential equations (PDE) where
the three displacement components and the electrical potential are the unknowns. The FE method
is first used to reduce the PDE problem into a set of ordinary differential equations (ODE). Then, a
state-space model of the device response is derived with the aim to limit the PI problem to a subset
of unknowns. Model order reduction is achieved since the resulting FE equations are projected
onto the modal space. An identification error is then introduced and the Lyapunov theory is used
to derive the PI algorithm. The underlying principle of the algorithm is to formulate an artificial
dynamic system [2, 30] by a proper set of ODE, whose equilibrium points correspond to the problem
solutions [1, 3]. Exponential asymptotic convergence to equilibrium points for the artificial dynamic
system is also achieved through a proper design, where a sensitivity analysis of the system response
with respect to the vector of parameters to be identified is required.

2 Modelling

2.1 PDE for a piezoelectric solid

The governing equations for a linear piezoelectric solid are:

σij,j = ρ
∂2ui
∂t2

, σij = σji, i 6= j, εij =
1

2
(ui,j + uj,i) , Di,i = ρe, Ei = −φi, (1)

where stress/strain tensor and electric-field/electric-displacement vector components are defined
by σij , εij , Ei and Di, respectively. Moreover, ui are the displacement components (i = 1..3), ρe is
the free electric charge density and φ is the electric potential. The electric entalpy H is defined in
terms of strain and electric field vector components as [85]:

H =
1

2
Cijklεijεkl −

1

2
µijEiEj − ekijεijEk, (2)

3



where Cijkl, eikl, µik are the elasticity, piezoelectric and dielectric material tensors. Consequently,
the constitutive relations are:

σij =
∂H
∂εij

= Cijklεkl − ekijEk, (3a)

Di = − ∂H
∂Ei

= eiklεkl + µikEk. (3b)

The boundary conditions are defined as (see Figure 1):

u = 0 on Γu1e , u = u0 on Γu2e , (4a)

φ = 0 on Γφ1e , φ = φ0 on Γφ2e , (4b)

n · σσσ = σ on Γσn, (4c)

n ·D = d on ΓDn , (4d)

where Γu1e ,Γ
u2
e ,Γ

φ1
e ,Γ

φ2
e ,Γσn,Γ

D
n are the domain boundaries for displacement, ground condition,

electric potential, stress and electric displacement, respectively. The vector n is the normal to the
domain boundary and u0, φ0, σ, d are prescribed values of displacement, electric potential, stress
and electric displacement. With some algebra, the final system of four coupled equations (strong
form) for the three components of the displacement and the electric potential is obtained:

Cijklεkl,j + ekijφ,kj = ρ
∂2ui
∂t2

, eiklεkl,i − µikφ,ik = ρe. (5)

2.2 Toward an ODE-based formulation

Strain is obtained by derivatives of displacement, while displacement components and electric
potential are defined in terms of shape functions Na and nodal point values uai and φa such as:

ui ≈ uhi =

ne∑
a=1

Nauai , (6)

φ ≈ φh =

ne∑
a=1

Naφa, (7)

where ne denotes the number of nodes for each FE. Finally, the equivalent FE equations are written
in matrix form as [82]:(

Muu 0
0 0

)(
üd
φ̈φφd

)
+

(
Cuu 0
0 0

)(
u̇d
φ̇φφd

)
+

(
Kuu Kuφ

KT
uφ −Kφφ

)(
ud
φφφd

)
=

(
f
fe

)
(8)

where ud and φφφd collect the value of the unknowns at the nodes of the FE discretization (the upper
dot indicates the time derivatives) whereas f and fe are the load vectors due to mechanical and
electrical Neumann boundary conditions, respectively. Moreover, according to the standard FE
procedure, the matrices in Eq. (8) are assembled as:

Kuu =
Ne∧
e=1

keuu,Kuφ =
Ne∧
e=1

keuφ, Kφ φ =
Ne∧
e=1

keφ φ, Muu =
Ne∧
e=1

me
uu, (9)
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where:

keuu =

ˆ
Γe

(Bu)T cBudΓ, (10)

keφφ =

ˆ
Γe

(Bφ)TµµµTBφdΓ, (11)

keuφ =

ˆ
Γe

(Bu)TeTBφdΓ. (12)

The symbol
Ne∧
e=1

indicates the summation over the Ne elements of the finite element mesh whereas

the matrices Bu, and Bφ collect the derivatives of the shape functions. Moreover, c, e and µµµ are
the elasticity, piezoelectric and permittivity matrices. Viscous damping is assumed in Eq. (8),
where Cuu is the damping matrix. According to the Rayleigh damping model, Cuu is computed
via the combination of the linear stiffness matrix and the mass matrix as Cuu = αKKuu+αMMuu.
The class of Newmark schemes and an implicit solver are used here for the time discretization
[56, 57, 84].

2.3 Model order reduction

In the previous section, the general electromechanical PDE are converted into a linear second order
system with Ng degrees of freedom based on the FE approximation. The differential equation of
motion can be written in matrix form as:

Muuüd + Cuuu̇d + Kuuud + Kuφφφφd = f. (13)

For the class of problems of interest in this paper, the mechanical Neumann boundary conditions
are given by:

f = −MuuSgüg(t), (14)

where f is an effective force vector due to the external vibrations, üg is the horizontal base acceler-
ation, Sg is an influence vector whose components that refer to the motion direction are equal to
1, see [58]. In practice, −MuuSg describes the spatial distribution of the effective force and üg(t)
is their time variation. The following coordinate transformation is used for the mechanical and
electrical degrees of freedom:

ud = ΦΦΦηηη, φφφd = ΦΦΦv, (15)

thereby allowing the projection of the dynamic equations onto the modal space, where ΦΦΦ =
[ΦΦΦ1, ...,ΦΦΦN ] is the modal matrix, ηηη = [η1, ..., ηN ]T is the vector of modal mechanical coordinates,
and v = [v1, ..., vN ]T is the vector of modal electrical coordinates.

Once Eq. (15) is substituted into Eq. (13), both sides of Eq. (13) are pre-multiplied by ΦΦΦT and
post-multiplied by ΦΦΦ, thus obtaining:

ΦΦΦTMuuΦΦΦη̈ηηd+ΦΦΦTCuuΦΦΦη̇ηηd+ΦΦΦTKuuΦΦΦηηηd+ΦΦΦTKuφΦΦΦv = −ΦΦΦTMuuSgüg(t) = −ΓΓΓΦΦΦTMuuΦΦΦüg(t), (16)

where ΓΓΓ = (ΦΦΦTMuuSg)/(ΦΦΦ
TMuuΦΦΦ) is the modal participation vector. In particular, it yields that

Γr = (ΦΦΦT
r MuuSg)/(ΦΦΦ

T
r MuuΦΦΦr), with r = 1...N . Modal shapes ΦΦΦr are determined by solving the

eigenproblem:
Keff
uu ΦΦΦr = ω2

rMuuΦΦΦr, (17)
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where
Keff
uu = (Kuu −KuφK

−1
φφKT

uφ), (18)

and ω2
r are the corresponding eigenvalues. If we define the modal mass, damping, stiffness and

piezoelectric matrices as:

M̃uu = ΦΦΦTMuuΦΦΦ, C̃uu = ΦΦΦTCuuΦΦΦ, K̃uu = ΦΦΦTKuuΦΦΦ, Θ̃ΘΘq = ΦΦΦTKuφΦΦΦ, (19)

respectively, the resulting system of equations is decoupled and can be written as:

M̃uuη̈ηη + C̃uuη̇ηη + K̃uuηηη = −(ΓΓΓM̃uuüg(t) + Θ̃ΘΘqv). (20)

Similarly, once the time derivative of the electrical equation is performed, its projection onto the
modal space is obtained as follows:

ΦΦΦTKφuΦΦΦη̇ηη −ΦΦΦTKφφΦΦΦv̇ = ΦΦΦT Q̇ = ΦΦΦTR−1
L ΦΦΦv, (21)

where RL is the vector of nodal impedances and Q̇ indicates electrical currents.
Now, we define modal resistance and capacitance matrices as:

R̃L = ΦΦΦTR−1
L ΦΦΦ, C̃p = ΦΦΦTKφφΦΦΦ, (22)

respectively. Therefore, Eq. (21) becomes:

Θ̃ΘΘ
T
q η̇ηη − C̃pv̇ = R̃

−1
L v. (23)

2.4 Derivation of the state-space model

Equations (20) and (23) can be arranged in the state-space form as:

η̇ηη(t)
η̈ηη(t)
v̇(t)

 =


0 I 0

−K̃uuM̃
−1
uu −C̃uuM̃

−1
uu −Θ̃ΘΘqM̃

−1
uu

0 Θ̃ΘΘ
T
q C̃
−1
p −

(
R̃LC̃p

)−1


ηηη(t)
η̇ηη(t)
v(t)

+

 0
−ΓΓΓüg(t)

0

 , (24)

where we can introduce the matrices ΩΩΩ2, ΛΛΛ and ΘΘΘ:

ΩΩΩ2 = K̃uuM̃
−1
uu , ΛΛΛ = C̃uuM̃

−1
uu , ΘΘΘ = Θ̃ΘΘqM̃

−1
uu , (25)

and the vector f̃ such as:
f̃ = −ΓΓΓüg(t). (26)

Moreover, the orthogonality condition leads to the following diagonal matrices:

M̃uu =

M1

. . .

MN

 , ΩΩΩ2 =

ω
2
1

. . .

ω2
N

 , ΛΛΛ =

2ζ1ω1

. . .

2ζNωN

 , (27)
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R̃L =

RL,1 . . .

RL,N

 , C̃p =

Cp,1 . . .

Cp,N

 , ΘΘΘ =

Θ1/M1

. . .

ΘN/MN

 ,

(28)

f̃ =

 f1
...
fN

 = −

Γ1üg(t)
...

ΓN üg(t)

 . (29)

3 Identification algorithm based on sensitivity analysis

The system given by Eq. (24) can be rewritten as follows:

ż = Az + Bu, (30)

where
z = [ηηη, η̇ηη,v]T , u = [0, f̃, 0]T , B = [0, I,0]T , (31)

and

A =

 0 I 0
−ΩΩΩ2 −ΛΛΛ −ΘΘΘ

0 ΘΘΘC̃
−1
p −

(
R̃LC̃p

)−1

 . (32)

The matrix A represents the state matrix whereas the matrix B is the input matrix. Moreover, we
can introduce an output vector:

y = Cz + Du, (33)

where, for the electromechanical system under consideration, D = 0 and C =

(
I 0 0
0 0 I

)
. Overall,

the set of equations: {
ż = Az + Bu

y = Cz + Du
(34)

fully describes the linear time-invariant electromechanical system.
Now, let λ be a vector of unknown parameters that characterize the dynamic response of the

electromechanical system described by Eq. (24):

λ = [λ1, λ2, ..., λS ]T , (35)

where S is the number of parameters to be identified in the matrix A. Our goal is to find the set
λ∗ that minimizes the difference:

e(λ, t) = y(λ, t)− ym(t), (36)

where the vector ym(t) includes the values of measured displacements and electrical potentials of
the electromechanical system whose parameters we want to identify. The simplest approach to
solve this problem is to minimize the sum of the squared residuals. Therefore, the parametric
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identification process can be formulated as the following minimization problem:{
min.
λ

ψ(λ, t) ∀t

ψ(λ, t) = 1
2

∑Pm
ι=1 eι(λ, t)

2 = 1
2e(λ, t)Te(λ, t)

, (37)

where Pm is the number of control/measurement points and ι = 1...Pm. Following [33], we now
assume that λ̇(t) changes according to the gradient of ψ, that is:

λ̇(t) = −κκκ
(
Dψ(λ, t)

Dλ(t)

)T
= −κκκ

(
De(λ, t)

Dλ(t)

)T
e(λ, t), (38)

where κκκ is a diagonal matrix and D is the directional derivative. Hence, we obtain:

ψ̇(λ, t) = −κκκ

[
e(λ, t)T

De(λ, t)

Dλ(t)

(
De(λ, t)

Dλ(t)

)T
e(λ, t)

]
. (39)

Moreover, observing that ψ is positive–semidefinite and his time derivative ψ̇ negative–semidefinite,
the Lyapunov theorem guarantees that if the vector λ(t) evolves according to Eq. (38), it con-
verges to an equilibrium point λ∗ which is asymptotically stable and represents the solution of the
identification problem. However, the directional derivative of the error e(λ, t) with respect to λ
must be computed to solve Eq. (38). It is defined as follows:

De(λ, t)

Dλ
=
D [y(λ, t)− ym(t)]

Dλ
=
Dy(λ, t)

Dλ
= C
D[z(λ, t)]

Dλ
, (40)

and it is strictly connected with the directional derivative of the system dynamic response z(λ, t)
with respect to λ. Unfortunately, an implicit dependence exists between z(λ, t) and λ, where the
exception is represented by the existence of simplified analytical solutions for z(λ, t) in presence
of particular input excitation u(t) (for example, if an harmonic force is applied, then the relation
becomes explicit). However, for a general case, the dependence of the state-space system solution
with respect to each unknown parameter must be considered and can be computed deriving Eq.
(30) using the chain rule:

∂ż(λ, t)

∂λs
=
∂A(λ, t)

∂λs
z(λ, t) + A(λ, t)

∂z(λ, t)

∂λs
. (41)

It can be observed that Eq. (41) has the same form of Eq. (30). In fact, if we now introduce

Q = Dz(λ,t)
Dλ and A = DA(λ,t)

Dλ , the set of S equations given by Eq. (41) is recast in the form:

Q̇ = AQ + Az. (42)

It is here noticed that Q̇ and Q are second order tensors, while A and z are third and first order
tensors, respectively. Furthermore, if the uncertainty in the parameters is high, the convergence
of the procedure can be enhanced using in the sensitivity dynamic equation (42), in place of the
estimate of the state z(λ, t) directly the experimental values.

By combining Eq. (42), Eq. (38) and Eq. (34), the identification problem can be solved looking
for the solution of the following set of equations:
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ż(λ(t), t) = A(λ(t), t)z(λ(t), t) + Bu(t);

y(λ(t), t) = Cz(λ(t), t) + Du(t);

Q̇(λ(t), t) = A(λ(t), t)Q(λ(t), t) + A(λ(t), t)z(λ(t), t);

Q(λ(t), t) = Dz(λ(t),t)
Dλ(t) ;

λ̇(t) = −κκκ
(
CD[z(λ(t),t)]

Dλ(t)

)T
e(λ(t), t);

e(λ(t), t) = y(λ(t), t)− ym(t).

(43)

A block diagram of the proposed algorithm is provided in Figure 2.

4 Benchmark of the method

The configuration considered for the device under investigation is of the cantilevered type and the
assumed model relies on the Euler-Beroulli beam theory [20, 23]. Piezoelectric bimorphs mounted
as cantilever beam are widely used for energy harvesting applications. A common layout for piezo-
electric bimorph consists of two layers joined together with different polarization. The top surface
of the beam has an electrode patch, whereas the bottom surface is grounded. The piezoelectric
bimorph is made of Polyvinylidene Fluoride (PVDF), whose properties are given in Table 1.

Table 1: Elastic, piezoelectric, and permittivity properties of PVDF.

Property Value

Young’s modulus, E1 2 GPa
Poisson’s ratio, ν12 0.29
Shear modulus, G12 0.775 GPa
Piezoelectric strain coefficients, d31 2.2× 10−11 C/N
Piezoelectric strain coefficients, d32 0.3× 10−11 C/N
Piezoelectric strain coefficients, d33 −3.0× 10−11 C/N
Relative permittivity at constant stress, µ33 12

A reference bimorph geometry is now introduced, with length L = 30 mm, width B = 10 mm,
thickness Hb = 0.2 mm and tip mass M = 25 g. Close to the resonance, the system response given
by Eq. (24) is well approximated using its first mode only. Therefore, in order to illustrate the
effectiveness of the proposed computing paradigm, we considered here the final single-degree-of-
freedom (SDOF) electromechanical model resulting from the above assumption. As a consequence,
for the device depicted in Figure 3 the electromechanical response is governed by the equations:{

η̈1 + 2ζ1ω1η̇1 + ω2
1η1 + θ1υ = F1,

C1υ̇ + υ
R1
− θ1η̇1 = 0,

(44)

where ζ1 is the first modal mechanical damping ratio, ω1 is the first undamped natural frequency,
θ1 is the modal electromechanical coupling terms, F1 is the first modal mechanical forcing function,
C1 is the capacitance, R1 is the load resistance and υ = (Vt−Vb) is the voltage response across the
external resistive load. For further information on the device material properties and geometry, the
interested reader can refer to [49]. In practice, this is a single input (F1) and multiple output (η1

and υ) system. In place of the experimental data, we use a predefined set of target parameters to
benchmark the proposed method. The obtained trajectories of the relative error e(λ, t) components
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Table 2: Acceleration data [ag] (time domain).

Max Min RMS
S1 0.14 -0.15 0.019
S2 0.097 -0.08 0.024
S3 0.29 -0.25 0.042
S4 0.42 -0.37 0.063
S5 1.13 -0.78 0.093

(in terms of displacements and voltages) are provided in Figure 4 and Figure 5. Similarly, the
dynamic evolution of the unknown parameters K1 = Mω2

1 and θ1 is depicted in Figure 6 and
Figure 7. It is worth noting that the system converges to the target values after a time of 6
seconds. This time is function of the employed gain coefficients in the matrix κκκ. The final values
obtained are: K1 = 1.537 N/m and θ1 = 6.968× 10−6 C/m.

This benchmark problem demonstrated that the proposed identification algorithm can identify
the unknown system parameters and is able to follow the time evolution of the unknown dynamic
system.

5 Case-study

5.1 Experimental response of a cable–stayed bridge

The selected case-study is an existing cable-stayed bridge that crosses the Garigliano river (Italy).
An overview of the bridge is given in Figure 8. The bridge was built in 1993 and consists of two
equal spans whose length is 90 m. The width of the deck is 26.1 m and its height is 2.45 m. The
girder is constrained at the central tower, the height of which is 10.85 m from the foundation to
the deck extrados and 30 m from the deck to the top. The girder is also simply supported at the
other ends and sustained by 18 couples of cables (nine couples for each span). The cross sectional
areas of the two shortest cables is 67.5 cm2. The longest cable has a cross sectional area of 70.5
cm2. The others have a cross sectional area equal to 82.5 cm2.

The dynamic response of the bridge under ambient vibrations was recorded by means of an
extensive monitoring campaign [86]. The installed network of sensors consisted of piezoelectric
uniaxial accelerometers PCB 393B12 with a sensitivity equal to 10 V/g and a frequency range 0.15
Hz – 1000 Hz. The sampling rate was equal to 200 Hz. The vertical vibrations of the deck were
recorded by installing the accelerometers within the structure along the longitudinal axis. Both
horizontal and vertical accelerations of each cable were monitored by placing two accelerometers at
an average height of 3.8 m above the deck extrados. The intensity of the dynamic response of the
cables was found larger than that of the deck. Therefore, only the vertical accelerations recorded
on some cables are used in the present work. The time window of the measured cable response is
about 50 s. From the overall database, only five measurement points are selected and used for the
following analyses. In Figure 8, these points are indicated as S1, S2, S3, S4 and S5.

The acceleration records of each sensor are provided in Figure 9 and Figure 10 in the time
domain and frequency domain. The maximum value corresponds to 1.13 times the gravitational
acceleration (ag = 9.8 m/s2) and it occurs for S5 while the maximum root mean square (RMS) is
found to be 0.093ag, see Table 2 and Table 3.
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Table 3: Acceleration data [ag] (frequency domain).

fc [Hz] Acceleration
S1 1.28 6.59 × 10−4

S2 3.35 1.23 × 10−3

S3 2.53 1.46 × 10−3

S4 3.22 1.90 × 10−3

S5 12.59 3.06 × 10−3

5.2 Energy harvesting

5.2.1 Array of bimorphs

Energy harvesting is the process of (1) capturing a non-electric form of energy from naturally-
occurring energy sources, (2) converting it into an electric energy, and (3) accumulating this electric
energy for future uses [73]. Examples of energy sources typically exploited for energy harvesting
applications include thermal, light (solar), wind, mechanical (vibration) and many others. Amongst
these scavenging techniques, harnessing energy from vibration is probably the most promising
approach to power wireless sensing electronics [69]. Current proposals for vibration-to-electricity
conversion are mostly based on electrostatic [71, 76], electromagnetic [64, 68, 78] or piezoelectric
methods [62, 63, 66, 74]. Within this framework, piezoelectric energy harvesting technologies are
widely used [67] since the manufacturing processes of piezoelectric films are nowadays mature for
large-scale applications.

To date, most piezoelectric vibration-based energy harvesting (EH) devices are designed as linear
resonators that work efficiently within a limited bandwidth near the targeted resonant frequency
[90]. If the identified excitation frequency slightly shifts with respect to the resonant frequency
of the harvester, then its performance can decrease drastically [91, 92, 93, 94]. Many factors can
jeopardize the optimal tuning. As a matter of fact, the frequency content of the dynamic input
is unfortunately not known exactly in many cases. Moreover, the frequency content of many
mechanical vibrations can vary in time. Furthermore, the input signal energy can be distributed
over a quite large frequency range. Hence, increasing the bandwidth of piezoelectric vibration-
based EH devices is a critical design issue to foster their extensive use [59, 60, 65, 72]. The
existing strategies to broaden the bandwidth of EH devices can be grouped into frequency tuning,
multimodal energy harvesting and nonlinear energy harvesting [89]. Resonance tuning methods can
be further categorized into mechanical, magnetic, and piezoelectric methods [61, 70, 75, 77, 79, 80].
The use of an array of piezoelectric EHs is among the simplest strategies, but its efficient design
requires a proper evaluation of the role of mechanical and electrical parameters.

The main advantage of this technique is that the setup is scalable, since it is very easy to add
or remove a single cantilever or to adjust their resonance frequencies. Nevertheless, this setup may
require a bulky volume causing a limitation for small-scale devices. Therefore, designing an optimal
bimorph geometry as well as assessing the optimal number of bimorphs is not a simple task.

It can be seen from the experimental measurements (Figure 9 and Figure 10) that the largest
bridge cables vibrations are concentrated in the frequency range 0–12 Hz. A first estimation of the
maximum energy that can be extracted from a given base motion is possible based on a deterministic
design of the generator as discussed in [81]. Following this approach, a parametric analysis has
been performed for a preliminary design of each bimorph in the array. Based on such results, a
tuning between the bimorph first natural frequency f1 and the cable frequency fc (see Table 3)
with the peak amplitude in the signal spectrum is achieved by selecting a proper thickness of the
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Table 4: Natural frequency of the bimorph.

Acceleration
data

fc
[Hz]

Ho

[mm]
f1 (H=Ho)
[Hz]

S1 1.28 0.20 1.22
S2 3.35 0.38 3.21
S3 2.53 0.31 2.42
S4 3.22 0.37 3.08
S5 12.59 0.92 12.04

cantilever.

5.2.2 Parameter identification

By tuning fc and f1 for a given signal spectrum (from S1 to S5), the optimal bimorph thickness Ho is
calculated. The value is obtained such as ‖(fc − f1)/f1‖ ≈ 5%, see Table 4. The shift is introduced
in order to obtain a conservative estimation of the energy as well as to prevent the occurrence of high
stress levels that would not be compatible with the material strength of the device. For the sake
of completeness, it is remarked that the tuning condition can be achieved by designing a feedback
controller. Also a change in the electrical boundary conditions (resistance/capacitance) can lead
to a bandwidth shift. However, an electronic network (such as rectifier bridges and switches in the
circuit) is required for this purpose and consequently both the size and cost of the system would
increase [88].

First, FE analyses are implemented by discretizing the device geometry with eight-node coupled-
field electromechanical elements. A simple circuit element is introduced between the two layers of
each bimorph to simulate the electrical boundary conditions. A mass element is used to model the
tip mass while the mechanical boundary conditions (i.e. random accelerations) are globally applied
to the model at each time step. Then, the array parameters are identified. Third, the resulting set
of ordinary differential equations with updated lumped coefficients is solved using a Runge–Kutta
algorithm. According to [87], the assumption of linear piezoelectric material behaviour in EH
made of PVDF layers is valid if the tip displacement is not larger than 0.25L, as in this case-study.
Finally, the time histories of tip displacement and output voltage are obtained, see Figure 11 and
Figure 12. The comparison between FE model and lumped parameters model demonstrates the
effectiveness of the proposed algorithm.

5.3 Sensing

Although reduced order methods neglect local information about stress, strain and electric fields,
they can be useful to achieve a compromise between accuracy and computational cost [83]. In
the following numerical analyses, we analyze the bimorphs as a sensing apparatus and assess the
influence on the response as function of geometrical and electrical variables. Hereafter, FE solutions
only are shown for the sake of readability, but lumped parameters models well approximate these
results.

5.3.1 Influence of the geometry

A comparison of the bimorph voltage response is provided for two different thicknesses, namely Hb

(red line) and Ho (black line), see Figure 13. From Figure 13 and Table 5, it is evident that no
difference is obtained for S1 since Hb = Ho for this case. For a damping value equal to 8% and for
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Table 5: Bimorph output voltage [V] for different input acceleration (Max/Min).

Ho, ζ = 0% Ho, ζ = 4% Ho, ζ = 8% Hb, ζ = 0% Hb, ζ = 4% Hb, ζ = 8%
S1 42 17 10 42 17 10
S2 65 26 15 4.46 3.67 3.20
S3 51 19 12.7 20 14 10
S4 106 34 22 19 7 5
S5 107 45 29 3 0.90 0.65

Table 6: Bimorph output voltage [V] for different input acceleration (RMS).

Ho, ζ = 0% Ho, ζ = 4% Ho, ζ = 8% Hb, ζ = 0% Hb, ζ = 4% Hb, ζ = 8%
S1 18 9 5 18 9 5
S2 26.5 10 6.5 1.78 1.56 1.50
S3 18 8.85 5.57 6.46 4.17 3.11
S4 40 16 10.1 9.87 2.10 1.46
S5 26.3 13.5 9.3 3 0.9 0.65

the signals from S2 to S5, the maximum voltage increases from 3.2 V, 10 V, 5 V, 0.65 V to 15 V,
12.7 V, 22 V, 29 V, respectively. Moreover, for ζ = 8% and the signals from S2 to S5, the RMS
value of the voltage increases from 1.5 V, 3.11 V, 1.46 V, 0.65 V to 6.5 V, 5.57 V, 10.1 V and 9.3
V, respectively. Further values are provided in Table 5 and Table 6.

5.3.2 Influence of the damping

In Figure 14, the optimized thickness Ho for each signal (from S1 to S5) is used and damping values
equal to 0%, 2% and 4% are considered. It is here observed that different values of damping can
be obtained creating a coarse vacuum box that accommodates the bimorphs. Conversely, Hb is
considered in Figure 15. For damping values equal to 0%, 4%, 8% and considering the signal S2,
the RMS value of the voltage increases from 6.5 V to 10 V up to 26.5 V. The peak value of 107 V
corresponds to signal S5 when ζ = 0%. The maximum RMS value is obtained for signal S4 and it
is equal to 40 V, 16 V and 10.1 V for damping values equal to 0%, 4%, 8%, respectively. It is clear
that mechanical damping can remarkably affect the output voltage for vibration frequencies close
to the resonance condition (see Figure 15). Conversely, the influence of the damping is relatively
small for the non-resonance case, see Table 5, Table 6 and Figure 16. For signal S3, the peak
voltage increases from 12.7 V (4%) to 51 V (0%) when the thickness is optimized while it changes
from 10 V (ζ = 4%) to 20V (ζ = 0%) when the thickness is Hb.

5.3.3 A note on beating effects

The beat phenomenon occurs when a dynamic undamped system with a proper eigenfrequency is
forced with an oscillating external load having a frequency slightly different, i.e. it is excited in a
condition close to the resonance. In this work, we considered a 5% mismatch between the natural
frequency f1 of the bimorph and the cable frequency fc with the highest amplitude in the signal
spectrum. Consequently, if we focus on the results for the undamped system (black lines), two
waves are visible in the time histories of, both, tip displacement and electrical voltage, travelling
with frequencies approximately equal to ft =| (fc + f1)/2 | and fs =| (fc − f1)/2 |, respectively.
When f1 is equal to fc, the system oscillates in phase with the external vibration and, therefore,
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Table 7: Bimorph voltage output [V] for different frequency shifts (ζ = 8%).

Max RMS Shift (%)
S5 65 26.41 5%
S5 26 9.85 10%

Table 8: Bimorph voltage output [V] for different electrical resistance values.

Time domain analysis (ζ = 8%)

0 kΩ 10 kΩ 50 kΩ 100 kΩ
S5 7.67 9.11 30.85 41.00 Max/Min
S5 1.75 2.45 6.23 11.25 RMS

Frequency domain analysis (ζ = 8%)

0 kΩ 10 kΩ 50 kΩ 100 kΩ
S5 1.71 2.34 4.23 7.49 Max/Min
S5 0.05 0.06 0.13 0.27 RMS

the energy absorbed from the EH will increase resulting in a monothonic growth of the amplitude
being fs = 0, see Figure 17a. On the other hand, if fs 6= 0 (as common in practice) the amplitude
of the first oscillation initially increases until the device is in phase with the external acceleration,
and then decreases. To clarify this behaviour, we provide the output voltage for a frequency shift
(f1−fc) equal to to 5% and 10% in Figure 17b. For signal S5, this behaviour corresponds to a peak
decrease from 65 V to 26.41 V for a mismatch equal to 5% and 10%, while the RMS value decreases
from 26 V to 9.85 V, see Table 7. Hence, this phenomenon can be exploited for applications at
the nanoscale where the experimental evidence shows that the damping is very small.

5.3.4 Influence of the input acceleration

In Figure 16, dynamic voltage responses are compared for different acceleration records from S1 to
S5. Additionally, the influence of mechanical damping on the dynamic voltage responses can be
again inferred from Figure 16b and 16d (ζ = 4%) and in Figure 16a and 16c (ζ = 0%). It is here
highlighted that, for H = Hb and ζ = 4%, the maximum voltage is obtained for the signal S1 (10
V) and not S5 (0.65 V), even if the RMS value for the acceleration increases. This behavior is also
confirmed for other damping values.

5.3.5 Influence of the electrical resistance

Here, the response is analysed in the frequency and time domains, considering different values for
the resistor between the top bimorph layer and the ground. The analyses are limited to the most
critical input acceleration S5. Three different resistance loads, namely 10 kΩ, 50 kΩ and 100 kΩ
are assumed. The bimorph has a thickness Hf = 0.76 mm and a first frequency equal to 9.0747
Hz. See Figure 18 and Table 8.

6 Conclusions

This paper has presented a novel computational paradigm for modelling and PI of electromechanical
devices employed for energy harvesting and sensing applications. The computational strategy is
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based on sensitivity feedback analysis. First, we have shown that the identification problem can be
formulated by a proper set of ordinary differential equations whose equilibrium points correspond
to the problem solutions. We rigorously demonstrated that this artificial dynamic system can be
explicitly designed to be stable with asymptotic convergence. Moreover, the resulting equations are
computationally simple enough to be easily implemented in online adaptive identification/control
applications. Second, in the context of multimodal energy harvesting, the PI algorithm is used
to assess the lumped coefficients of a reduced order model for an array of bimorphs implemented
in real structural health monitoring conditions. We considered an array configuration with the
aim to produce higher energy from broadband ambient vibrations of a cable-stayed bridge. The
acceleration time–histories at different bridge locations are experimentally measured while the time
histories of tip displacement/velocity and the electrical output are numerically assessed using FE
simulations. The FE solutions are then used as an alternative to the experimental data to identify
the lumped coefficients of the state-space model of the piezoelectric device. Finally, a numerical
study is developed to characterize the response under different technological constraints and beating
effects in the dynamic behaviour are also discussed. Comparative evaluations demonstrate the
effectiveness of the proposed computational strategy.
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Figure 2: Block diagram.
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Figure 10: Acceleration data (frequency domain).
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Figure 11: Comparison of finite element model and lumped parameters model (tip displacement).
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Figure 12: Comparison of finite element model and lumped parameters model (voltage on the
electrodes).
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Figure 13: Sensitivity to geometry.
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Figure 14: Sensitivity to damping (Ho).
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Figure 15: Sensitivity to damping (Hb).
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Figure 17: Beat phenomenon in energy harvesting systems. Red line: shift=10%; Black line:
shift=5%.
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Figure 17: Analysis of the beat phenomenon (in case of frequency shift, the red line denotes a shift
equal to 10% while the black line corresponds to a shift equal to 5%).

28



0 5 10 15 20 25 30 35 40 45 50

-40

-30

-20

-10

0

10

20

30

40
��� ���� �	���
 ���	
��

V
o
lt
ag

e 
(V

)

Time (s)

0 5 10 15 20 25 30
0

2

4

6

8
��� ������
�� �	���
 ���	
��

t

ζ

g
RL R L  

R L  

R L  

R L

V
o
lt
ag

e 
(V

)

Frequency (Hz)

Figure 18: Sensitivity to electrical resistance.

29



[11] Feng Ding, Xiaoping Peter Liu and Guangjun Liu (2011). Identification methods for Hammer-
stein nonlinear systems. Elsevier Science, Digital Signal Processing, Vol.21(2), pp. 215–238.

[12] Lennart Ljung (2010). Perspectives on system identification. Elsevier Science, Annual Reviews
in Control, Vol.34(1), pp. 1–12.

[13] Pfeiffer, F., and Bremer, H., (2017). The Art of Modeling Mechanical Systems, Vol.570, The
Art of Modeling in Solid Mechanics. CISM International Centre for Mechanical Sciences, Chap-
ter 6, pp. 321–386.

[14] Chatzi Eleni and Papadimitriou Costas (2016). Identification Methods for Structural Health
Monitoring, Vol.567, Implementation of Parametric Methods for the Treatment of Uncertainties
in Online Identification. CISM International Centre for Mechanical Sciences, Chapter 3, pp. 51–
87.

[15] Heinz Unbehauen and Ganti Prasada Rao (1987). Identification of continuous systems, North-
Holland, Systems and control series, Elsevier Science, Amsterdam.

[16] Andrew P. Sage and James L. Melsa (1971). System Identification, Academic Press.

[17] Rolf Isermann and Marco Muenchhof (2011). Identification of Dynamic Systems: An Intro-
duction with Applications, Springer-Verlag.

[18] Rik Pintelon and Johan Schoukens (2012). System Identification: A Frequency Domain Ap-
proach, North-Holland, Systems and control series, Elsevier Science, Amsterdam. Wiley.

[19] Malatkar P., Nayfeh A. H. (2003). A Parametric Identification Technique for Single-Degree-of-
Freedom Weakly Nonlinear Systems with Cubic Nonlinearities. Journal of vibration and control,
Vol.9(3-4), pp. 317-336.

[20] Elvin N.G., Lajnef N. and Elvin A. (2006). Feasibility of structural monitoring with vibration
powered sensors. Smart Materials and Structures, Vol.15(4).

[21] Erturk A. and Inman D.J. (2009). An experimentally validated bimorph cantilever model for
piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009, 18 pp.

[22] Erturk A. and Inman D.J. (2011). Parameter identification and optimization in piezoelectric
energy harvesting: analytical relations, asymptotic analyses, and experimental validations. Proc.
IMechE, Vol. 225, Part I: J. Systems and Control Engineering.

[23] Zhao S. and Erturk A. (2013). Electroelastic modeling and experimental validations of piezo-
electric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart
Materials and Structures 22 (2013): 015002.

[24] Stanton S.C., Erturk A., Mann B.P. and Inman D. J. (2010). Nonlinear piezoelectricity in
electroelastic energy harvesters: Modeling and experimental identification. Journal of Applied
Physics 108, 074903.

[25] Porfiri, M., Maurini, C., Pouget, J. (2007). Identification of electromechanical modal parame-
ters of linear piezoelectric structures. Smart Materials and Structures, Vol.16(2), pp. 323–331.

[26] Delpero, T., Bergamini, A. E. and Ermanni, P. (2013). Identification of electromechanical
parameters in piezoelectric shunt damping and loss factor prediction. Journal of Intelligent Ma-
terial Systems and Structures, Vol.24(3), pp. 287–298.

30



[27] Lavretsky, E. and Wise K. A. (2013). Robust and Adaptive Control With Aerospace Applica-
tions, Springer.

[28] Sergey Edward Lyshevski (2008). Electromechanical systems and devices, CRC Press.

[29] Xu Wang (2016). Frequency Analysis of Vibration Energy Harvesting Systems, Academic Press.

[30] Bompard, E., Ciwei, G., Napoli, R., Torelli, F. (2007). Dynamic price forecast in a competitive
electricity market. IET Generation Transmission and Distribution, Vol.1(5).

[31] Torelli F. and Vaccaro A., Xie N. (2013). A Novel Optimal Power Flow Formulation Based on
the Lyapunov Theory. IEEE Transactions on Power Systems, Vol.28(4), pp. 4405–4415.

[32] Bompard, E., Vaccaro, A., Xie, N., Torelli, F. (2013). Dynamic computing paradigm for com-
prehensive power flow analysis. The Institution of Engineering and Technology, IET Generation
Transmission and Distribution, Vol.7(8), pp. 832–842.

[33] Torelli F. and Vaccaro A. (2014). A generalized computing paradigm based on artificial dynamic
models for mathematical programming. Soft Computing, Vol. 18(8), pp. 1561–1573.

[34] Torelli F., Vaccaro A. (2015). A second order dynamic power flow model. Elsevier Science,
Electric Power Systems Research, Vol.126, pp. 12–20.

[35] Novakovic Z.R. (1990). Solving systems of non-linear equations using the Lyapunov direct
method. Elsevier Science, Computers and Mathematics with Applications, Vol.20(12), pp. 19–
23.

[36] Maruccio, C., Acciani, G., Montegiglio, P., Torelli, F. (2017). A novel computing paradigm for
parameter identification of piezoelectric energy harvesting systems subjected to uncertain loads.
Proceedings of the 9th European Conference on Offshore Wind and other marine renewable
Energies in Mediterranean and European Seas (OWEMES17), Bary (Italy).

[37] Sehitoglu, H. (1983). Real-time parameter identification in a class of distributed systems using
Lyapunov design method Parti. Theory. Taylor and Francis Group, International Journal of
Control, Vol.38(4), pp. 747–756.

[38] Sehitoglu, H. (1983). Real-time parameter identification in a class of distributed systems using
Lyapunov design method Part II. Applications. Taylor and Francis Group, International Journal
of Control, Vol.38(4), pp. 757–767.

[39] Junhong Li, Ruifeng Ding, Yi Yang (2012). Iterative parameter identification methods for
nonlinear functions. Elsevier Science, Applied Mathematical Modelling, Vol.366, pp. 2739–2750.

[40] Junhong Li (2013). Parameter estimation for Hammerstein CARARMA systems based on the
Newton iteration. Elsevier Science, Applied Mathematics Letters, Vol.261.

[41] Dehghan Mehdi and Hajarian Masoud (2012). Fourth order variants of Newton’s method with-
out second derivatives for solving non linear equations. Emerald Group Publishing Limited,
Engineering Computations, Vol.294, pp. 356–365.

[42] Giuseppe Quaranta, Giorgio Monti and Giuseppe C. Marano (2010). Parameters identification
of Van der Pol - Duffing oscillators via particle swarm optimization and differential evolution.
Mechanical Systems and Signal Processing, Vol. 247, pp. 2076–2095.

31



[43] Giuseppe Quaranta, Giuseppe C. Marano, Rita Greco and Giorgio Monti (2014). Parametric
identification of seismic isolators using differential evolution and particle swarm optimization.
Applied Soft Computing, Vol. 22, pp. 458–464.

[44] Persano L., Dagdeviren C., Maruccio C., De Lorenzis L. and Pisignano D. (2014). Cooperativity
in the enhanced piezoelectric response of polymer nanowires. Advanced Materials, 26, 757480.

[45] Maruccio C. and De Lorenzis L. (2014) Numerical homogenization of piezoelectric textiles for
energy harvesting. Frattura ed Integritá Strutturale, 29, 4960.
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