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Abstract

This paper proposes an approach to the solution of optimal control problems under uncertainty, that extends the clas-

sical direct multiple shooting transcription to account for random variables defined on extended sets. The proposed

approach employs a Generalised Intrusive Polynomial Expansion to model and propagate uncertainty. The develop-

ment of a generalised framework for a direct multiple shooting transcription of the optimal control problem starts with

the discretisation of the time domain in sub-segments. At the beginning of each segment, the state spatial distribution

is modelled with a multivariate polynomial and then propagated to the sub-interval final time. Continuity conditions

are implicitly imposed at the boundary of two adjacent segments, a critical operation because it requires the continuity

of two extended sets. The Intrusive Polynomial Algebra aNd Multiple shooting Approach (IPANeMA) developed in

this paper can handle optimal control problems under a wide range of uncertainty models, e.g. nonparametric, ex-

pensive to sample, and imprecise probability distributions. In this paper, the approach is applied to the design of a

low-thrust trajectory to a Near-Earth Object with uncertain initial conditions.

Keywords: optimal control under uncertainty; robust control; generalised multiple shooting; intrusive polynomial

algebra; low-thrust trajectory optimisation.

1. Introduction

Optimal control problems aim at finding the optimal

control law for a single trajectory evolving in a determin-

istic nonlinear system. Hence, the resulting control is

valid only for the computed reference trajectory. How-

ever, in real-life applications, perfect compliance to the

reference trajectory is impossible to achieve as uncer-

tainty always affects the system; uncertainty is due to

both imperfect state knowledge and to unknown model

parameters. Furthermore, for nonlinear systems and large

time-scales, even small deviations from a pointwise tra-

jectory can lead to significant differences as the system

evolves over time. In space applications, low-thrust mis-

sions are rather sensitive to trajectory deviations. In-

deed, due to the limited control authority, long periods

of maximum thrust are required to build up the nominal

orbital changes. If possible uncertainty is not taken into

account during the stages of trajectory design, this may

leave no room for compensation maneuvers. One com-

mon cause of trajectory deviation in low-thrust trajecto-

ries is missed-thrust due to sub-systems partial failure or

external causes, like experienced by Dawn and Hayabusa

missions.

To compensate for possible deviations, currently the

practical solution is to consider propellant margins and

enforced coasting arcs in the reference trajectory design

[9]. Several research works developed methods to deal

with an optimal control formulation which models un-

certainty directly. Methods based on model predictive

control or closed-loop formulations takes into account di-

rectly correction terms based on possible deviations from

the desired trajectory [11][6]. A method based on Taylor

polynomials algebra has been developed to deal with un-

certain boundary conditions around a reference trajectory

[5]. In addition, stochastic differential dynamic program-

ming has been applied to space trajectory optimisation

with uncertainty with an expected value formulation [8].

The common baseline of these works is the presence

of a desired reference trajectory and undesired deviations

from it. This problem statement can be either formu-

lated implicitly, by working with expected valued objec-

tive and constraints, or explicitly, by trying to compen-

sate the trajectory deviations. Furthermore, often these

techniques can deal only with simple families of proba-

bility density distributions to represent uncertainty.

This paper proposes a tool for the transcription and

solution of optimal control problem with uncertainty
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phrased under a more general probabilistic framework.

Specifically, the premise of a reference trajectory is aban-

doned in favor of an extended uncertainty set representa-

tion. Each sample within the uncertainty set is a fully ad-

missible pointwise trajectory with associated probability

density. Aiming at a probabilistic framework, the objec-

tive function and constraint formulation are framed ac-

cordingly, since an expected value formulation would re-

sult too limited. From here, the goal is to compute control

profiles able to optimally steer the uncertain region to a

final target set, while minimising the modified objective

function. The developed tool is a generalised multiple

shooting for the optimal control problem transcription,

coupled with intrusive polynomial algebra for the uncer-

tainty propagation.

The paper is structured as follows. Section 2 in-

troduces the formulation of the addressed optimal con-

trol problem under uncertainty. Section 3 presents the

main development, first introducing the intrusive poly-

nomial algebra propagation, and then integrating it with

the novel generalised multiple shooting framework using

an expectation formulation for the objective function and

constraints. Within this framework, a specific approach

is proposed based on polynomial reinitialisation and suc-

cessive sampling. The developed tool is then applied to

the optimisation of a low-thrust rendezvous trajectory to

a Near-Earth Object in Section 4. Finally, Section 5 con-

cludes the paper with the final remarks.

2. Optimal Control under Uncertainty

Generally, the deterministic optimal control problem

statement is formulated as follows:

min
u(t)∈U

J

s.t. ẋ = f(t,x,u,d)

g(t,x,u,d) ∈ G

ψ(t0,x0, tf ,xf ) ∈ Ψ

[1]

The objective function J can be in Bolza form in the most

general case, i.e. with both end-cost and integral terms,

while both path g and boundary ψ constraints could be

imposed. A set inclusion formulation has been used

to describe simultaneously both the admissible cases of

equality and inequality constraints. This framework is

suitable for a single trajectory optimisation.

When uncertainties and random factors come into

play, a set of admissible trajectories is associated to a

single control. For this situation, the framework above

results too limited. The main challenge addressed in this

section is the formulation of a general optimal control

problem of a dynamical system under uncertainty.

The general uncertainty vector is denoted as Z with

probability density distribution p(ξ). Usually, it models

possible uncertainty affecting the initial state and model

parameters. As a result, the state and model param-

eters become random variables themselves X = X(Z)
and D = D(Z). The lower case letters ξ, x and d de-

note an admissible realisation. On the other hand, the

control variables will be treated as completely determin-

istic input since possible disturbances on the control can

be modelled in the dynamics as a multiplicative noise in-

corporated in Z.

The dynamical equations induce the state density dis-

tribution to evolve over time p(x). In the general nonlin-

ear case, computing directly its evolution is an ambitious,

and when possible laborious, task. Therefore, this prob-

lem is often tackled with sampling techniques. Indeed,

the dynamical equations can be used directly as a map

from the state and parameter sample space at a given time

to the state sample space at another time. The distribu-

tion at the time of interest is then reconstructed according

to the sample responses, usually by fitting a parametric

(possibly discrete) distribution.

In the transition from the deterministic to the uncer-

tain setting, the main divergence lies in the definition of

objective functions and constraints depending on random

variables. Specifically, since the random variable state

affects their value, generally they turn out to be random

variables themselves. How to formulate an objective or

constraint on a random variable is a design choice that

directly affects the interpretation and result of the optimi-

sation process. Common choices in stochastic program-

ming are to impose so-called objective or constraints in

expected value or in probability [2]. In order to have a

single notation, we will write both the possible formu-

lations in expectation form with the auxiliary function

φ. The expectation formulation is flexible as it allows

to define a variety of different quantities just selecting

the appropriate function. From here, depending on the

quantity of interest, the expectation can be minimised or

constrained. Specifically for the constraints, the set of

acceptable constraint values Φ for the inclusion relation-

ship should be defined accordingly.

It is worth describing in detail how the expectation

formulation encloses common cases of objective or con-

straints forms:

• in expected value, for which the function φ is the

mapping between the trajectory realisation and the

quantity of interest. As an example, the expected

value of the final state Xf can be constrained to be

equal to a target state xf . In this case, the auxiliary

function is the identity mapping of the final state

φψ(tf ,Xf ) = Xf , [2]

resulting in the constraint formulation

E[Xf ] ∈ Φψ = {xf} ; [3]
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• in probability, for which the indicator function of a

particular event should be employed. For example,

we can ask the final state to reach a target region A
with probability larger than or equal to 1 − α. The

auxiliary function is defined as

φψ(tf ,Xf ) = IA(Xf ) , [4]

where

IA(Xf = xf ) =

{
1 if xf ∈ A

0 if xf 6∈ A .
[5]

From here, the constraint is formulated as

P (Xf ∈ A) = E[IA(Xf )] ∈ Φψ = [1− α, 1] .

[6]

• according to higher order moments, for which a spe-

cific φ and acceptable set Φ are selected accorginly.

Among the possible choices, the specific form to min-

imise or constraint is a design decision, which translates

the question ”what do we want to optimise?”. Generally,

different design choices lead to different optimisation re-

sults.

Given these premises, the optimal control under un-

certainty to be tackled in this paper is formulated as

min
u(t)∈U

E[φJ ]

s.t. Ẋ = f(t,X,u,D)

E[φg(t,X,u,D)] ∈ Φg

E[φψ(t0,X0, tf ,Xf )] ∈ Φψ ,

[7]

in a comparable way to the classical deterministic opti-

mal control problem. The objective auxiliary function

φJ may depend on all the random variables when in the

Bolza form. Nonetheless, its dependencies have not been

written explicitly for conciseness of notation. Clearly,

fully deterministic objective and constraints are still al-

lowed. In that case, the corresponding function would

fall back to Equation (1) notation. One common example

is the case of the objective function only depending on

the deterministic control.

This paper considers the case of deterministic dynam-

ics affected by epistemic uncertainty, but with no intrin-

sic stochastic terms. Hence, for a fixed uncertain sample

ξ ∈ Ωξ, the resulting trajectory x(t) is deterministic.

In general, an optimal control problem is infinite di-

mensional with no closed form solution. This implies

that a finite dimensional approximation is required to

practically compute a solution with a numerical solver.

Transcription methods are schemes which convert a dy-

namical optimal control problem into static constrained

optimisation one, which is possible to solve with well-

established numerical routines, e.g. NLP solvers. The

next section will introduce a general transcription frame-

work for optimal control problems with uncertainty in the

form of Equation (7).

3. Generalised Direct Multiple Shooting

In the family of transcription techniques, direct meth-

ods aim at finding a sequence of control profiles which

progressively decrease both the objective function and

the constraint’s violation. Within direct methods, the

deterministic multiple shooting works by discretising

the independent variable interval into ni sub-segments

[ti, ti+1], which are then handled as independent. As a

consequence, the state xi at the beginning of each seg-

ment has to be treated as free variable. Within a seg-

ment, the control is parameterised using a functional

form with free parameters βi, such that the control pro-

file has the finite-dimensional representation ui(t) =
Ui(t,βi). Once these free variable are set by the optimi-

sation solver, each state xi is integrated from ti to ti+1.

Continuity constraints are added at the boundary of two

adjacent segments to ensure continuity of the final solu-

tion.

However, when uncertainties are introduced, this

pointwise method is not sufficient anymore. This section

introduces a generalised shooting framework to deal with

potential uncertainty in the initial conditions and dynam-

ical model under general form objective and constraints

as in Equation (7). A generalised intrusive polynomial

expansion approach is used to represent the state variable

evolution as function of the uncertain variables in a finite-

dimensional space [7]. The resulting approach is named

IPANeMA (Intrusive Polynomial Algebra aNd Multiple

shooting Approach) for short.

3.1 Intrusive polynomial algebra propagation

The initial uncertain state sample domain Ωx0
,

induced by the random variable Z, is bounded

by a q-degree nξ-variables polynomial representation

PX0
∈ Tq,nξ

, where Tq,nξ
is the resulting polynomial

space. Since we are interested in the time evolution of

this region, the polynomials approximating the state vec-

tor are function of all the nξ random variables involved:

PX(t) =

N∑

j=1

αj(t)Pj(ξ)

PX(t0) = PX0
,

[8]

where N =
(
nξ+q

q

)
is the algebra dimension of the result-

ing functional space Tq,nξ
, and Pj one of its multivariate

polynomial basis. Keeping the ordering constant, each

element in the polynomial space is uniquely identified by

a specific vector of coefficients.

IAC–18–C1.8.5x46264 Page 3 of 11



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

In this functional space, a set of algebraic operations

between polynomials can be defined. Denoting with

V and Z the multivariate polynomial approximations in

Tq,nξ
of v and z, the algebraic operation ⊕ = {+,−, ·, /}

between real-valued functions has its correspondent ⊗ in

the polynomial space:

v(ξ)⊕ w(ξ) ∼ V (ξ)⊗W (ξ) ∈ Tq,nξ
. [9]

The result of the addition (or equivalently subtraction)

of two elements of Tq,nξ
is still an element of the same

functional space. On the other hand, the result of mul-

tiplication needs to be truncated to restore the order q.

Multiplication of two polynomials is an expensive opera-

tion, hence the approach used in this analysis will rely

on a monomial basis, which guarantees lower compu-

tational costs. A composition rule is defined to handle

division and other elementary functions such as trigono-

metric functions, exponents, logarithms, etc. These poly-

nomial operations are implemented using the C++ over-

loading operator within the Strathclyde Mechanical and

Aerospace Research Toolbox for Uncertainty Quantifica-

tion (SMART-UQ) [7].

Given this set of operations, any integrator for the

propagation of ordinary differential equations can be eas-

ily templated to work with generalised polynomial ex-

pansions. This feature enables to propagate the initial

hyper-region PX0
through the dynamical system con-

straints in Equation (7).

The uncertain model parameters are handled equiva-

lently. The parameter sample domain Ωd, induced by the

random variable Z, is bounded by a constant multivariate

polynomial PD ∈ Tq,nξ
, which is composed in PX(t)

through the dynamical operations.

3.2 Multiple shooting framework

Intrusive polynomial algebra could be used directly

to propagate PX0
, the initial uncertain region, through

the dynamics to obtain the final region PXf
. The latter

polynomial mapping could then be used to compute the

objective function and the constraints (see section 3.3) to

complete a loop of the optimisation process. This scheme

can be seen as a generalised single shooting transcription

method.

Despite its simplicity, this polynomial algebra-

assisted single-shooting suffers severely from the

renowned curse of dimensionality. Indeed, intrusive

polynomial algebra scales badly with increasing number

of uncertain variables, precisely as (nξ + q)! /(nξ! q! ).
Hence, the cost of each algebraic operation involved in

the numerical propagation grows dramatically.

When the uncertainties affect the system evolution se-

quentially (e.g. multi-phase trajectories, discretised con-

trol with disturbances, etc.), this issue can be mitigated

adopting a multiple shooting scheme. In this develop-

ment, we will consider the uncertain vector to be com-

posed of uncertain initial conditions and model parame-

ters Z = [X0,D], and consequently an admissible reali-

sation is ξ = [x0,d]. In particular, the uncertain parame-

ter vector is partitioned as D = [D0,D1, . . . ,Di, . . . ],
such that the parameters Di affect the system only in

the discretised interval [ti, ti+1]. From here, the goal

is to develop a transcription method such that each sub-

segment can be treated independently, and consequently

the algebra dimension in the i-th segment reduces to

nξi = ns + di, namely the number of the uncertain state

variables X(ti) at the beginning of the segment and the

number of uncertain parameters Di affecting the system

evolution for t ∈ [ti, ti+1]. With this partition, the accu-

mulation of uncertainties is avoided.

If this goal is achieved, each segment can be treated as

a single shooting where the polynomial representation of

the initial condition P
(g)
Xi

at ti is propagated to P
(p)
Xi+1

at

ti+1 under the effect of uncertain parameters Di only.

3.2.1 Reinitialisation Approach

The main difficulty of the proposed discretisation

arises from the necessity to impose continuity conditions

between two hyper-dimensional sets at the boundary of

two adjacent segments. For polynomial algebra, this con-

tinuity requirement could be translated into a reinitial-

isation approach: the propagated polynomial represen-

tation P
(p)
Xi+1

, function of Xi and Di, is reinitialised to

the polynomial P
(g)
Xi+1

, initially function of Xi+1 only.

Indeed, it is worth stressing that the terms interacting

with Di+1 arise only during the propagation, i.e. for

t ∈ (ti+1, ti+2].
However, in general, it is not possible to fully de-

scribe a multivariate polynomial with another polynomial

of smaller number of (initial) variables and same degree.

To overcome this intrinsic issue, the reinitalised polyno-

mial will be constructed to bound the propagated one. In

particular, the propagation phase is carried out as follows:

1. Initialise i = 0, P
(g)
Xi

= PX0
;

2. Propagate uncertainty region P
(g)
Xi

at ti to P
(p)
Xi+1

at

ti+1 through intrusive polynomial algebra;

3. Compute lower XLi+1 and upper XUi+1 polyno-

mial ranges of P
(p)
Xi+1

;

4. Reinitialise uncertainty region P
(g)
Xi+1

as hyper-box

with range XLi+1 and XUi+1;

5. Update i = i+ 1 and repeat steps 2-5 while i < ni

In this way, all the possible state realisations are in-

cluded, therefore granting any pointwise trajectory con-

tinuity. This simple approach comes at the expense of
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propagating larger regions than strictly needed. Graphi-

cally, this procedure can be visualised as in Figure 1 for

a two-dimensional example.ܺ଴௚ ଵܺ௣ ଵܺ௚

x

y

x

y

xL

xU

݂ሺݐǡ ǡݔ ǡݑ ݀ଵሻ
͙

௙ܺ௣

time

௙ܺିଵ௣ ௙ܺିଵ௚

Fig. 1: Graphical sketch of intrusive polynomial propa-

gation approach for the generalised multiple shooting.

The gray boxes represent the reinitalisation hyper-boxes,

whereas the blue regions depict the propagated polyno-

mials.

The result of this propagation approach is a chain of

polynomial surrogates describing the state at time ti+1 as

function of the state at time ti and uncertain parameters

within the corresponding interval. Therefore, a recursive

polynomial surrogate of the final state Xf is available as

a function of the initial conditions X0 and all the uncer-

tain parameters D. At this step however, the hyper-box

reinitialisation caused the final state surrogate to be an

over-estimation of the true final uncertain space in gen-

eral.

The routine to recover the actual terminal region is

achieved by successive sampling. In the simplest form,

the final hyper-region computation algorithm is described

as follows:

1. Initialise i = 0

2. Sample the initial uncertain space:

x
(s)
i ∈ Ωx0

3. Sample the i−uncertain parameter space:

di ∈ Ωdi

4. Propagate each particle from ti to ti+1 with polyno-

mial surrogate P
(p)
Xi+1

:

(x
(s)
i ,di) → xi+1

5. Each response state is scaled within the polynomial

input domain using the same ranges XLi+1 and

XUi+1 used for polynomial reinitialisation:

xi+1 → x
(s)
i+1

6. Update i = i + 1 and repeat steps 3-5 while i < ni

(skip step 5 for last iteration)

A graphical depiction of the recovery strategy is plotted

in Figure 2.

ܺ଴ ଵܺ௣ ଵܺ
͙ ௙ܺିଵ௣ ௙ܺିଵ ௙ܺ௣

଴ݔ
x

y

͙

time

ଵ௦ݔ ௙ିଵ௦ݔ௙௫ݔ

Fig. 2: Graphical sketch of the recovery approach for the

generalised multiple shooting. The gray boxes represent

the reinitialisation hyper-boxes, the blue regions depict

the propagated polynomials, while the grey areas sym-

bolise the true uncertainty regions reconstructed by the

black samples.

It is worth noting that the samples can be propagated

at any intermediate time of interest t̄ ∈ (ti, ti+1) with-

out the need of further discretisation. Trivially, an inter-

mediate polynomial can be saved during the propagation

phase, and the samples (x
(s)
i ,di) propagated to t̄ through

it. Hence, the general result of this approach is a surro-

gate model F̃t̄ : Ωx0
× Ωd0:i

→ R
ns that maps the un-

certain initial conditions and parameters to the state vec-

tor at any time t̄. The uncertain parameter space Ωd0:i

takes into account only the model uncertain parameters

D0:i = [D0, . . . ,Di] which entered the system not later

than the time of interest.

With the developed generalised multiple shooting ap-

proach, the uncertain space dimensionality is kept as

low as possible in each discretisation interval. Further-

more, the outer reinitialisation strategy intrinsically im-

plies pointwise trajectory continuity. This property re-

moves the need of explicit defect constraints and interme-

diate free variables in the transcription, hence reducing

the dimensionality of the associated constrained optimi-

sation problem. The only free variables to be optimised

are the control parameters in each sub-segment. Another

powerful upside of this method is that the sampling in

steps 2-3 is agnostic to the probability distribution na-

ture. Therefore, the method is equally suitable for any

probability distribution.

The missing bit for a complete transcription scheme

for uncertain optimal control problems is the computa-

tion of expectations of generic functions as introduced in

Section 2.

3.3 Objective and constraint computation

In the problem statement development, the general

expectation formulation was chosen to represent a wide

class of possible constraints and objective functions. In-

deed, the generic function φ is considered a design choice

to be selected according to the sought quantity of inter-

est. Furthermore, the expectation can be computed at any

fixed-time t̄, or even on a time-span of interest.

For the case considered in this paper, the expectation

over the uncertain distribution can be computed by means
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of the surrogate model F̃t̄, approximating the true map-

ping, as defined in the previous section:

E[φ(X(t̄))] ≈ E[φ(F̃t̄(Z0:i))]

=

∫

Ωξ0:i

φ(F̃t̄(ξ0:i))p(ξ0:i)dξ0:i ,
[10]

where the random variable is defined as

Z0:i = [X0,D0:i], its realisation as ξ0:i = [x0,d0:i], and

the uncertain domain Ωξ0:i = Ωx0
× Ωd0:i

.

In the general case, this integral has no closed-

form solution and numerical techniques shall be ap-

plied. Exploiting the inexpensive surrogate map, two

main sample-based alternatives can be considered:

• Monte Carlo methods for the estimation of the ex-

pectation: the samples in steps 2-3 of the recov-

ery strategy shall be drawn according to the un-

certain variables propability distributions p(x0) and

p(d0:i). Then, the expected value can be computed

as:

E[φ(F̃t̄(Z0:i))] ≈
1

N

N∑

j=1

φ(F̃t̄(ξ
(j)
0:i )) ; [11]

• Quadrature schemes for the computation of the inte-

gral: the samples are chosen according to a quadra-

ture scheme with corresponding weights wj , result-

ing in the integral approximation

∫

Ωξ0:i

φ(F̃t̄(ξ0:i))p(ξ0:i)dξ0:i ≈

N∑

j=1

wjφ(F̃t̄(ξ
(j)
0:i ))p(ξ

(j)
0:i ) .

[12]

The latter scheme shall be preferred when the probability

distribution is complex to sample but rather easy to eval-

uate, or when the expectation should be evaluated for a

set of different density distributions.

It is worth suggesting that when this approximation is

included in a NLP local optimisation solver with finite-

difference derivative computation, sampling grids should

be kept constant within a major NLP step. Indeed, if

the grids are varied between the reference and perturbed

propagations, the derivative values would result highly

inaccurate, leading the optimiser to compute unreliable

descent directions.

Although probability constraints (or equivalently ob-

jectives) are an intuitive and general tool to impose condi-

tions on random variables, the indicator function discon-

tinuity introduces important numerical challenges when

coupled with derivative-based optimisers. Indeed, al-

though in theory the expectation operator should smooth

the discontinuity, the final constraint is usually com-

puted by sample-based numerical approximations (as in

eq. (11) or (12)), which cause the constraint response to

be piecewise constant with discontinuous jumps. Local

derivative-based optimisers cannot cope with such func-

tions.

To overcome this numerical issue, the developed tool

substitutes the indicator function by a smoother approxi-

mation obtained by convolution [2], a general technique

to modify the shape of a function according to a smooth-

ing function h. To simplify the convolution applica-

tion to a scalar function of scalar variable, the member-

ship condition of a sample belonging to a region A will

be expressed by an auxiliary continuous scalar function

ηA : Rns → R such that:

{
|ηA(X = x)|≤ 1 if x ∈ A

|ηA(X = x)|> 1 if x 6∈ A .
[13]

Hence, the indicator function previously defined is equiv-

alent to IA(X) = I[−1,+1](ηA(X)). Now, for a state re-

alisation x, the convolution of the indicator function with

a smoothing function h results in the function:

I
(r)

[−1,+1](ηA(X = x)) =

∫ +∞

−∞

I[−1,+1](y)
1

r
h
(ηA(x)− y

r

)

dy

=

∫ +1

−1

I[−1,+1](y)
1

r
h
(ηA(x)− y

r

)

dy ,

[14]

with r > 0 a small positive scaling parameter. The

integration interval is restricted to the interval [−1,+1]
because of the function ηA definition. The function

h is chosen to result in a proper approximation of the

original function. Specifically, h : R → R shall be

non-negative, symmetric, with an unique maximum in

0, and it shall integrate to 1. These properties imply

limr→0 h(·/r)/r = δ, the Dirac delta. Hence, for r → 0
the convolution result tends to the original indicator func-

tion [2].

It is worth mentioning that objective and constraints

not falling under the expectation formulation are possi-

ble. As an example, if we are interested in the final

state ending in the target region A, one alternative is

to constraint the maximum deviation to be under a set

threshold, e.g. max({|ηA(x
(j))|: j = 1, . . . , N}) ≤ ρ .

Similar objective and constraint functions are rather test

case specific and hence not explicitly accounted for, but

nonetheless possible in the developed framework.

3.4 Transcribed problem

IPANeMA is meant to transcribe the optimal control

under uncertainty into a finite-dimensional constrained

optimisation problem. In the current implementation,

the constrained optimisation is solved using WORHP as

nonlinear programming solver [12]. Differently from a
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deterministic multiple shooting, the resulting transcribed

problem is dense and low-dimensional, as no intermedi-

ate state guesses or explicit continuity constraints have

been introduced. Hence, the control parameters βi per

each sub-segment are the only free variables.

To avoid a new expensive intrusive polynomial prop-

agation each time a free variable vector is set within the

optimisation routine, the deterministic control can be ex-

panded in polynomial representation as well. Specifi-

cally, the control parameters domain Ωβi
can be bounded

by a time-static multivariate polynomial Bi ∈ Tq,nξi
,

where the number of uncertain variables nξi should be

increased accordingly. Then, the polynomial control pro-

file in each interval follows according to the parameter-

control relationship Ui(t) = U
(p)
i (t,Bi), where by U

(p)
i

it is intended the corresponding polynomial operator of

Ui. For a fixed value βi ∈ Ωβi
, the control polyno-

mial representation reduces to the deterministic control

ui(t) = Ui(t,βi). With this procedure, only one uncer-

tainty polynomial propagation is needed, and it can be

precomputed before the optimisation cycle.

4. Test case

The developed method is applied to the optimisation

of a space trajectory. The goal of the set-up mission is

to compute the optimal-fuel rendezvous to the near-Earth

asteroid 99942 Apophis (2004 MN4) with a low-thrust

spacecraft departing from the Earth sphere of influence.

The initial date of the interplanetary leg is 22/10/2026 for

a total time of flight of 628 days. The engine has max-

imum thrust of Tmax = 53 mN, for a spacecraft initial

mass of m0 = 644.3 kg. The reference mission employs

an initial excess velocity of magnitude vref∞ = 3.34 km/s

and azimuth angle αref
∞ = 35.17 deg deviation from the

x−axis in the Earth-centered inertial reference frame.

As this case is meant at assessing the suitability and

performance of the developed method to preliminary de-

sign of robust space trajectories, a few simplifying as-

sumptions will be used. Namely, only the Sun pull is

considered as gravitational force, and only the planar tra-

jectory is studied.

The spacecraft planar motion is described in equinoc-

tial coordinate system for the in-plane coordinates [3]:

a

P1 = e sin (Ω + ω)

P2 = e cos (Ω + ω) .

[15]

The governing equations are expressed in the Gauss’

planetary form in a radial-transverse reference frame.

The fast angular variable L, i.e. the true longitude, can

be used as independent variable to replace the time evolu-

tion. Under the enforced assumption of a low-thrust con-

trol magnitude significantly smaller than the local gravi-

tational force, the resulting system of equations is [13]:

da

dL
=

2a3B2

µ

[

P2 sinL− P1 cosL

Φ2(L)
fR +

1

Φ(L)
fT

]

dP1

dL
=

B4a2

µ

[

−

cosL

Φ2(L)
fR +

(

P1 + sinL

Φ3(L)
+

sinL

Φ2(L)

)

fT

]

dP2

dL
=

B4a2

µ

[

+
sinL

Φ2(L)
fR +

(

P2 + cosL

Φ3(L)
+

cosL

Φ2(L)

)

fT

]

,

[16]

where B =
√
(1− P 2

1 − P 2
2 ) and

Φ(L) = 1 + P1 sinL+ P2 cosL. The radial and

transverse control components are controlled in terms of

acceleration magnitude and azimuth angle:

f =

[
fR
fT

]
=

[
ǫ sinα
ǫ cosα

]
. [17]

For the deterministic reference case, the terminal con-

straint is imposed by requiring the matching of the space-

craft final state with Apophis in equinoctial elements at

the time of arrival. The optimal-fuel objective to min-

imise is the trajectory ∆V . The first guess for the ref-

erence trajectory has been generated by the deterministic

single-shooting tool FABLE (Fast Analytical Boundary-

value Low-thrust Estimator) [4], which transcribes the

optimal control problem into a sequence of coast and

constant thrust arcs. In FABLE, the dynamics in Equa-

tion (16) is analytically propagated using a first-order ex-

pansion in the perturbing control acceleration [13]. The

resulting objective value is ∆V = 2.0318 km/s.

In the following, a fictitious scenario is considered to

introduce uncertainty. Telemetry has reported a partial

failure in the interplanetary orbit injection phase, but ac-

curate information about the new spacecraft state after

failure is not available yet. From the partial data, the un-

certainty has been traced back to the injection velocity.

Specifically, the azimuth angle error ∆αref
∞ is modelled

with zero-mean normal distribution about the reference

value with 1σ = 0.25 deg, while the magnitude veloc-

ity error ∆vref∞ is modelled with a zero-mean reversed

Gaussian tail distribution with 1σ = 25 m/s, where only

negatives values are admissible. The uncertain vector,

composed as Z = [∆αref
∞ ,∆vref∞ ], induces uncertainty

in the initial conditions in planar equinoctial elements.

The resulting initial set of uncertainty in equinoctial ele-

ments is displayed in Figure 3. The sample colour indi-

cates the associated probability density value according

to the distribution definition above. Superimposed there

are the expected value of the distribution and 1σ ellip-

soid projections according to the samples covariance. By

construction, the distribution is asymmetric, and the ex-

pected value significantly deviates from the mode of the

distribution in the dark red coloured area. Hence, the first

two moments are not fully representative of the real dis-

tribution.
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Fig. 3: Initial set of uncertainty in equinoctial elements

as a result of uncertainty in the excess velocity with su-

perimposed the expected value and 1σ ellipsoid resulting

from to the sample distribution.

To counteract this partial failure, it has been decided to

compute a modified control profile able to steer the initial

uncertain region into a target zone around the asteroid

state. With this approach, the goal is to limit the required

correction manoeuvres, either in-flight or at arrival, when

accurate measurements will be available.

This optimal control problem under uncertainty is for-

mulated by substituting the final boundary condition with

a probability constraint. Specifically, the probability of

the final uncertain state to belong to a target ellipsoid T
is required to be above a given threshold. The probabil-

ity constraint is defined thanks to the auxiliary positive

continuous function that, for a given state realisation x,

is defined as

ηT (X = x) = (x−µ)TM(x−µ) =

{
≤ 1 if x ∈ T

> 1 if x 6∈ T
,

[18]

where µ is the target ellipsoid center, i.e. the aster-

oid state at the time at arrival, while M is defined

such that its eigenvectors are the ellipsoid principal axes

and its eigenvalues are the reciprocals of the semi-axes

squared. In this test case, M is defined as symmet-

ric, while its eigenvalues follow from the set semi-axes

10−3 · [2.2 au, 2.0 rad, 3.7 rad]. The probability thresh-

old has been set to 95%.

To solve this optimal control under uncertainty, 5-

degree Chebyshev polynomials are employed for the in-

trusive propagation, which have been already used in

aerospace applications because of their superior global

convergence properties [1, 10]. As regards the tran-

scription, the following settings are used: 6 discretisa-

tion intervals; piecewise constant control; 200 samples

for Monte Carlo approximation of Equation (10); bi-

quadratic function

h(z) = 15(1− z2)2I[−1,+1]/16

for the convolution operator [2]. The resulting control

profile and the first guess are shown in Figure 4.
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Fig. 4: Optimised robust control profile components ver-

sus first guess control.

While the thrust magnitude is essentially unaltered,

implying a robust ∆V objective value, the thrust angle

changed significantly to steer the final region within the

required target ellipsoid. The optimisation routine fin-

ished with a probability of 95.3% associated to the final

state arriving within the target region, improving the tra-

jectory reliability from the value of 22.7% associated to

the first guess control.

The resulting L-evolution of the uncertain region is

shown in Figure 5, where the trajectory of the initial ex-

pected value is highlighted with a black dotted line.

The optimised final uncertain area projected in two di-

mensional planes is displayed in Figure 6 together with

the target ellipsoid. It is worth noting how the shape and
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Fig. 5: Uncertain set evolution as function of indepen-

dent variable L. The trajectory of the initial expected

value is reported with a black dotted line.

extension of the uncertain region have remained essen-

tially unaffected during the dynamics propagation. The

reason behind this effect is twofold. First, the equinoctial

state variables are integrals of motion of the two body

problem, hence only partially affected by the small per-

turbative force in a limited time-span. Technically, the

dynamical system is not fully controllable because of

the limited low-thrust control authority. Second, for the

given dynamics and initial uncertain set, it is not possi-

ble to make all the possible trajectories converge within

an arbitrary final region with a single open-loop control

profile.

For validation, two key approximations employed in

the optimisation routine are checked, namely the surro-

gate propagation by intrusive polynomial algebra, and

the probability approximation by convolution on a rather

small set of samples. For the former, 105 samples drawn

from the initial distribution are reintegrated with the re-

fined control profile, with both the polynomial surrogate

and a numerical fourth order Runge-Kutta integrator for

comparison. The resulting root-mean-square error is in

the order of 10−5 per state component, which confirms

that intrusive polynomial algebra produces a satisfactory

propagation approximation. As for the latter, the final

probability is then computed with the indicator function

directly, i.e. without the convolution approximation, on

the extended validation set of RK4 propagated samples.

The resulting probability is 94.0%, slightly lower than

the value obtained in the optimisation loop. This discrep-
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Fig. 6: Final set of uncertainty in equinoctial elements re-

sulting from optimised control profile and final target re-

gion.

ancy results partly from the convolution approximation,

but mainly from the different orders of magnitude of un-

certainty samples employed. More uncertain samples can

be used in the optimisation loop to improve the solution

accuracy. Nonetheless, for the current test case, the ob-

tained results are considered highly satisfactory.

The reliability percentages associated to different set-

tings are summarised in the following table.

Table 1: Probability of final target matching for different

settings.

Setting Samples Convolution P (Xf ∈ T )
First guess 2 · 102 Yes 22.7%

Guess validation 105 No 23.3%

Robust solution 2 · 102 Yes 95.3%

Robust validation 105 No 94.0%

5. Conclusions

This paper presented the development of an intrusive

polynomial assisted multiple shooting transcription for
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the solution of optimal control problems affected by un-

certainty.

First, a general problem statement is introduced,

which reformulates in expectation the constraints and ob-

jective functions affected by uncertainty. Thanks to the

intermediate auxiliary function, this general notation is

shown to be flexible in describing a variety of formula-

tions, e.g. expected value, probability, different statistics,

etc.

Then, IPANeMA is presented as tool for the transcrip-

tion of the infinite-dimensional optimal control problem

under uncertainty into a constrained optimisation possi-

ble to solve with a NLP solver. IPANeMA integrates a

novel multiple shooting framework with a generalised in-

trusive polynomial expansion to represent and propagate

uncertainty regions. One approach based on reinitialisa-

tion by bounding hyper-boxes is proposed, which reduces

the intrusive algebra dimension, and intrinsically handles

the continuity conditions between two adjacent segments

with no need of additional constraints. A sample-based

recovery strategy is employed as the reinitialisation ap-

proach requires propagating wider regions than the actual

one.

The developed framework is capable of handling both

uncertainty in the initial state and in the model param-

eters. Furthermore, IPANeMA is suitable to work with

a large variety of uncertainty models, hence it is not re-

stricted to purely Gaussian, uniform or other basic prob-

ability distribution families. Indeed, the sample-based

strategy developed naturally suits the approximate com-

putation of constraints and objective functions formu-

lated in expectation. A specific convolution approach

is integrated to deal with numerical complexities in the

optimisation loop introduced by the probability formula-

tion.

Finally, IPANeMA is successfully applied to the ro-

bust optimisation of a low-thrust rendezvous trajectory

to the near-Earth asteroid 99942 Apophis. In particular,

the found control law steers the initial uncertain region to

a target ellipsoid around the asteroid, with a probabilistic

constraints satisfied within the required threshold.

As for future developments, the main challenge is to

integrate observations within IPANeMA for the compu-

tation of an updated control law which takes into account

the measurement information. The developed framework

seems to suit naturally an interface with a particle filter.
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