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ARTICLE

An automated Design-Build-Test-Learn pipeline for
enhanced microbial production of fine chemicals
Pablo Carbonell 1, Adrian J. Jervis 1, Christopher J. Robinson1, Cunyu Yan1, Mark Dunstan1,

Neil Swainston 1, Maria Vinaixa 1, Katherine A. Hollywood1, Andrew Currin 1, Nicholas J.W. Rattray 1,

Sandra Taylor1, Reynard Spiess1, Rehana Sung1, Alan R. Williams1,2, Donal Fellows1,2, Natalie J. Stanford1,2,

Paul Mulherin 1,2, Rosalind Le Feuvre1, Perdita Barran 1,3, Royston Goodacre 1,3, Nicholas J. Turner 1,3,

Carole Goble1,2, George Guoqiang Chen1,4, Douglas B. Kell 1,3, Jason Micklefield1,3, Rainer Breitling 1,3,

Eriko Takano 1,3, Jean-Loup Faulon1,3,5 & Nigel S. Scrutton1,3

The microbial production of fine chemicals provides a promising biosustainable manu-

facturing solution that has led to the successful production of a growing catalog of natural

products and high-value chemicals. However, development at industrial levels has been

hindered by the large resource investments required. Here we present an integrated

Design–Build-Test–Learn (DBTL) pipeline for the discovery and optimization of biosynthetic

pathways, which is designed to be compound agnostic and automated throughout. We

initially applied the pipeline for the production of the flavonoid (2S)-pinocembrin in Escher-

ichia coli, to demonstrate rapid iterative DBTL cycling with automation at every stage. In this

case, application of two DBTL cycles successfully established a production pathway improved

by 500-fold, with competitive titers up to 88mg L−1. The further application of the pipeline to

optimize an alkaloids pathway demonstrates how it could facilitate the rapid optimization of

microbial strains for production of any chemical compound of interest.
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R
ecent technical advances in synthetic biology, including
rapid DNA assembly1, genome editing2, comprehensive
pathway refactoring3, high-throughput screening4, and

powerful pathway design tools5, are enabling the increased
automation of microbial chemical production processes6,7. Aca-
demic and industrial biofoundries are increasingly adopting an
engineering approach based on the iterative application of the
DBTL cycle that has long been a central element of product
development in traditional engineering disciplines8. Here we
present an automated DBTL pipeline for the rapid prototyping
and optimization of biochemical pathways in microbial chassis,
which integrates a unique combination of these new technologies.
The pipeline is designed to be agnostic regarding the target
compound and runs from the in silico selection of candidate
enzymes, through automated parts design, statistically guided and
robot-assisted pathway assembly, rapid testing and rationalized
redesign, providing an iterative DBTL cycle underpinned by
computational and laboratory automation. This is a major step
forward toward automating the DBTL cycle to develop bioma-
nufacturing solutions for industrial chemical production.

Results
The automated Design–Build-Test–Learn pipeline. The Design
stage of the pipeline includes an integrated suite of novel software
tools. For any given target compound, tools for automated
pathway and enzyme selections are RetroPath9 and Selenzyme10

(http://selenzyme.synbiochem.co.uk), respectively. Reusable DNA
parts are then designed with the simultaneous optimization of
bespoke ribosome-binding sites and enzyme coding regions using
the in-house-developed PartsGenie software11 (https://parts.
synbiochem.co.uk). Genes and regulatory parts are combined in
silico into large combinatorial libraries of pathway designs, which
are statistically reduced using design of experiments (DoE) to
smaller representative libraries. Such libraries allow the efficient
exploration of the design space resulting in tractable numbers of
samples for laboratory construction12,13 and screening14,15, alle-
viating the need for high-throughput systems. Our publicly
available custom software (https://parts.synbiochem.co.uk/
plasmidGenie) then produces assembly recipes and robotics
worklists to enable automated ligase cycling reaction16 for path-
way assembly (Supplementary Data 1 and 2), and all DNA part
designs and plasmid assemblies are simultaneously deposited in a
JBEI-ICE repository17,18, providing unique IDs for sample
tracking. The Build stage begins with commercial DNA synthesis
(Supplementary Tables 1 and 2), then part preparation via PCR,
followed by reaction setup for pathway assembly by ligase cycling
reaction on robotics platforms. After transformation in E. coli,
candidate plasmid clones (Supplementary Tables 3 and 4) are
quality checked by high-throughput automated purification,
restriction digest and analysis by capillary electrophoresis, fol-
lowed by sequence verification. To Test, constructs are introduced
into selected production chassis and automated 96 multi-well
growth/induction protocols run (Supplementary Fig. 1). The
detection of target product and key intermediates from cultures
begins with automated extraction followed by quantitative
screening involving fast ultra-performance liquid chromato-
graphy coupled to tandem mass spectrometry with high mass
resolution. The data extraction and processing are based on
custom-developed and open-source R scripts. The Learn stage
involves identifying the relationships between observed produc-
tion levels and design factors through the application of statistical
methods and machine learning, and this includes suitable statis-
tical validation.

The pipeline is built with the aim of automating each identified
bottleneck in the DBTL cycle. In that way, the pipeline provides

an efficient and streamlined approach to pathway engineering.
Automation is a key to achieving this goal. As shown in Fig. 1,
most of the steps in the pipeline have been replaced by automated
workflows. Currently, some manual interventions remain in this
workflow, in particular PCR clean-up and host–cell transforma-
tion are carried out off deck, and plates need to be manually
transferred between certain platforms. However, there is no
reason why these steps could not also be automated in the future.
The pipeline is designed in a modular fashion which would allow
other laboratories to replace individual pieces of equipment or
protocols to adopt their own methods. The principles and
processes of the pipeline would be preserved in this manner. This
also allows future-proved flexibility as technology develops in the
future. Our suite of design tools can be easily deployed in other
biofoundries. All designed parts and plasmids are deposited from
a centralized ICE repository providing the transition from Design
to Build. Automated worklist generation for ligase cycling
reaction assembly can facilitate standardizing the Build step.
The data tracking systems underpin the transition from Build to
Test and Learn. Efforts from several groups on standardization of
the SOPs/software protocols to provide common platforms and
transferability are therefore enabling technologies for the
integration as far as they remain open source. As they become
community standards, such standard protocols will be incorpo-
rated into our pipeline. The aim of the pipeline is to perform
rapid prototyping in order to identify the best combination of
genetic parts leading to high producer strains. Once top
producers have been identified, a second stage is pathway
optimization followed by integration of pathways into the
organism’s genome for scale-up. The pipeline infrastructure and
its associated methodologies can be easily adapted for use with a
wide range of industrial microorganisms, not just E. coli. There
are certain sequence design parameters, such as regulatory
elements, codon optimization and experimental methods (e.g.,
transformation and growth conditions), that may require
modification to accommodate the requirements of different
microbes, but the modular nature of the pipeline streamlines
the introduction of species-specific constraints without disrupting
the overall workflow and iterative nature of the automated DBTL
approach.

Application of the pipeline to flavonoids production. Our first
application of the pipeline targeted flavonoid production path-
ways expressed in E. coli. Flavonoids are among the most struc-
turally diverse classes of natural products19, and pinocembrin
serves as a key precursor to this diversity20. Automated enzyme
selection for the pinocembrin pathway had already been validated
using our RetroPath21 software and served as a compatible start
point for the rest of the pipeline. The four selected enzymes
(phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS)
and chalcone isomerase (CHI) (all from Arabidopsis thaliana)
and 4-coumarate:CoA ligase (4CL) (from Streptomyces coelicolor,
strain ATCC BAA-471/A3(2)/M145)) convert L-phenylalanine to
(2S)-pinocembrin with the requirement for malonyl-CoA (Fig. 2).

In order to efficiently explore the design space, an initial library
covering a wide range of variants was designed with the following
parameters: four levels of expression by vector backbone
selection; varying the copy number from medium (p15a origin)
to low (pSC101 origin) and including a strong (Ptrc) or a weak
promoter (PlacUV5)

22. Further regulation was introduced by
considering each intergenic region in the pathway to include a
strong, weak, or no promoter. Finally, another factor was
introduced by varying the position of each of the four genes,
resulting in 24 permutations (Fig. 2a, Design). This combinatorial
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design approach produced 2592 possible configurations (4 × 3 ×
3 × 3 × 24).

DoE based on orthogonal arrays combined with a Latin square
for positional arrangement of the genes was applied to reduce the
2592 combinations down to 16 representative constructs,
achieving a compression ratio of 162:1. All 16 constructs in this
reduced library were successfully assembled (Fig. 2a, Build) and
sequenced-verified. The library was screened for production of
pinocembrin and the pathway intermediate cinnamic acid in E.
coli DH5α using an HTP 96-Deepwell plate-based growth
pipeline with media and culture conditions approximated to that
of Fehér et al.21 This initial library was found to produce
pinocembrin titers ranging from 0.002 to 0.14 mg L−1 (Fig. 2a,
Test and Supplementary Data 3). Measured pinocembrin titers
for the 16 constructs were statistically analyzed to identify the
main factors influencing production from the design parameters
(Fig. 2a, Learn). Vector copy number had the strongest significant
effect on pinocembrin levels (P value= 2.00 × 10−8), followed by
a positive effect of the CHI promoter strength
(P value= 1.07 × 10−7). Weaker effects were observed for CHS
(P value= 1.01 × 10−4), 4CL (P value= 1.01 × 10−4), and PAL
(P value= 3.06 × 10−4) promoter strengths, respectively. Every
construct also produced high levels of the intermediate cinnamic
acid relative to pinocembrin, suggesting that PAL enzyme activity
is high even at low levels of expression. The effects of relative gene
order on pinocembrin production were not significant.

The design specifications used in the second round were
focused on some specific region of the design space based on
existing knowledge from the first round. Design constraints were

defined as follows: (a) a high copy number origin of replication
(ColE1) was selected for all constructs, because the statistical
analysis showed that vector copy number was the strongest
ordinal factor observed with a positive effect on production titers;
(b) CHI, the expression of which was identified as having a strong
effect on pinocembrin production, was kept at the beginning of
the pathway to ensure it was always directly downstream of a
promoter; (c) a lesser effect of 4CL and CHS expression levels was
also identified and so these genes were allowed to exchange
positions in the middle of the construct with the inclusion of no,
low (PlacUV5), or high (Ptrc) strength promoters in front of each;
(d) high levels of cinnamic acid, the product of PAL activity, were
observed from all constructs (Supplementary Data 3), suggesting
that expression levels of the gene were not limiting. Therefore, the
location of the PAL gene was kept fixed at the 3′ end of the
assembly as the last gene within a 2–4 gene operon. Even though
PAL promoter strength had some impact on pinocembrin titers
according to the statistical analysis, its effect was smaller than for
the other promoters and therefore was not considered a
significant bottleneck because of the observed cinnamic acid
accumulation. In addition, CHI and PAL were kept at the first
and last positions for practical reasons in order to focus the test
on exchanging promoters on 4CL and CHS at the middle section
of the construct.

The resulting library design for the second round of testing
consisted of just 36 constructs (2 × 3 × 3 × 2) and so the full-
factorial design was selected for assembly (Fig. 2b, Design). The
first attempt at constructing this library yielded 25 of 36
constructs with verified sequences (Fig. 2b, Build). Among the
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Fig. 1 The SYNBIOCHEM Design/Build/Test/Learn pipeline for microbial production of fine and speciality chemicals. The pipeline starts at the Design

stage (purple) with pathway (RetroPath) and enzyme (Selenzyme) selection tools. Selected DNA parts are sequence optimized (PartsGenie), combined

into plasmid libraries through design of experiments (SBC-DoE), and automated assembly instructions are generated (DominoGenie). The Build stage

(orange-yellow) prepares assembly parts from commercially synthesized DNA, and assembles them into plasmids via ligase cycling reaction, according to

automatically generated worklists driving laboratory automation. Assembled plasmids are first checked by high-throughput restriction digest analysis using

capillary electrophoresis, then by commercial Sanger-based sequencing. The Test stage (gray) encompasses high-throughput methods for the growth of

microbial production cultures, automated product extraction, and screening via fast-liquid chromatography QqQ mass spectrometry. Data are processed

and analyzed with open-source R scripts. Results are analyzed at the Learn stage (blue) through predictive models using statistical methods and machine

learning to inform the next round of design. After a number of iterations of this DBTL cycle, successful prototypes are taken forward to process

development and scale-up
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25 successfully built constructs, 19 (76%) showed median titers of
pinocembrin above the highest producer in first round (Supple-
mentary Data 4), with ten designs (40%) showing a marked
increase in pinocembrin production of up to 46-fold. The best
producer (pathway 3382) yielded a median level of 6.6 mg L−1

pinocembrin (Fig. 2b, Test and Supplementary Data 4). Statistical
analysis of this library’s performance revealed that the most

decisive factor was the promoter strength in front of CHS
(P value= 3.46e × 10−9), followed by the strength effect of the
4CL promoter (P value= 1.03 × 10−8). Finally, the effect of the
CHI promoter was of lower significance (P value= 3.34 × 10−2),
most likely because contrary to 4CL and CHS, a promoter was
kept in front of CHI in all constructs. The effect of exchanging
CHS and 4CL positions was not found significant, confirming the
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results already obtained in iteration 1. Pathway 3382 already had
the strongest promoter (Ptrc) upstream of the genes for CHS and
4CL and there were no other pathway permutations in the library
predicted to improve titers although stronger promoter parts
could be designed for future pathway assemblies. This improve-
ment of pathway performance in the second round over the first
confirmed the importance of the design rules obtained from the
Learn stage.

Other studies have employed additional strategies for boosting
titers in the flavonoids pathway, including chassis engineering to
increase malonyl-CoA21,23,24 or phenylalanine24 availability, result-
ing in titers of up to 40 mg L−1 21,23,24; and regulation of growth
through substrate feeding (glucose and phenylalanine) and pH
regulation in fermenters, resulting in the highest reported titer of 68
mg L−1 23. In order to assess the production capabilities of the
prototype selected by the pipeline, we performed additional
screening for optimal chassis, growth media, and strain. The three
best-performing pathways from the second library (3382, 3353, and
3391) were screened in triplicate in nine different E. coli strains,
including K-12, B, and W strains derivatives (Fig. 3a and
Supplementary Data 5). A dramatic range in pinocembrin
production titers was observed (from 0.1 to 34.7mg L−1), with K-
12 strains displaying the highest titers. Pathway 3382 was the
highest producer across the top-performing strains, consistent with
the library screens conducted in DH5α. The MDS42 strain with
pathway 3382 produced the highest median titer of 30.4mg L−1,
representing a five fold increase with respect to the titer obtained in
DH5α. Some strains displayed large titer variation and individual
clone titers were observed up to 50.7 mg L−1 (BW25113 with 3353).
Media screening was performed for the best-performing pathway
(3382) in seven different growth media (Fig. 3b and Supplementary
Data 6). The MDS42 strain with pathway 3382 produced a mean
titer of 38mg L−1 in TBsb media. The MG1655 strain with pathway
3382 produced the best mean titers of 32mg L−1 of pinocembrin in
EZ media, however, the highest individual clone titers were
observed in phosphate-buffered TB media. Finally, we adopted
the well-documented strategy to improve flavonoid production by
reducing malonyl-CoA consumption in fatty acid biosynthesis. One
approach is to knockout the fabF gene encoding the 3-oxoacyl-(acyl
carrier protein [ACP]) synthase II enzyme, which incorporates
malonyl-CoA into fatty acid biosynthesis24. Knockout of the fabF
gene was performed (by kanamycin resistance cassette insertion) in
both MG1655 and MDS42 and then pathway 3382 was introduced.
The strains were grown in TB media and pinocembrin production
was induced at different culture densities (OD600) as shown in
Fig. 3c and Supplementary Data 7. Under these conditions, we
observed final pinocembrin of up to 88mg L−1 for the MG1655
fabF::kan strain with pathway 3382, higher than those reported in
the literature.

Application of the pipeline to alkaloids production. To
demonstrate the applicability of the pipeline to target production
of diverse chemical compounds, we used our methods to optimize
the expression of an alkaloids pathway in E. coli. A three-enzyme
pathway transforms (S)-tetrahydropapaveroline (THP) into (S)-

reticuline, the branch point precursor to a wide range of valuable
benzylisoquinoline alkaloids, which can be converted by a fourth
enzyme into the protoberberine target (S)-scoulerine (Fig. 4 and
Supplementary Table 4). This example showcases how the pipe-
line can be modularly applied to optimize sections within longer
pathways, in our case the transformation of THP into (S)-reti-
culine and (S)-scoulerine in the alkaloids pathway, provided
suitable standards for intermediates are available. We applied our
statistical DoE approach to reduce a full-factorial construct
library of 2592 configurations down to 16 representative con-
structs. We observed difficulties in assembling the 4′OMT-Ptrc-
BBE combination within our constructs, resulting in deletion of
either the promoter or part of the BBE gene, suggesting that this
arrangement is either unstable or is negatively selected against in
the cloning host. As a result, constructs 206 and 212 could not be
assembled, and although construct 203 had the correct sequence
we failed to detect either reticuline or scoulerine in the produc-
tion strain. The remaining 13 constructs all produced reticuline
over a range of titers up to 50mg L−1 (Fig. 4a and Supplementary
Data 2), equal to the best titer reported in the literature for an
equivalent three-enzyme pathway in E. coli25. The Learn stage of
our pipeline informed us, through statistical analysis of design
factors, that tuning of the promoter strength for the CNMT gene
had the most significant effect on reticuline titers (P value=
5.12 × 10−7). Further conversion of (S)-reticuline to (S)-scouler-
ine was modest in our screened library, with a highest titer of just
10 µg L−1 (Fig. 4b and Supplementary Data 8). We suspect that
this is due to solubility issues with BBE, which is expressed in
plants as a transmembrane protein with several N-glycosylation
modifications. Nevertheless, this alkaloid has not been produced
in E. coli previously and work is ongoing to improve the activity
of BBE in this chassis.

Discussion
We have successfully implemented an automated DBTL pipeline
to streamline the process of microbial engineering for chemical
production. The pipeline integrates and combines tools of the
Design–Build–Test–Learn cycle of metabolic engineering, pro-
viding relatively simple robust protocols. Crucially the pipeline is
designed with the potential of operating in a target agnostic
manner, applicable to any feasible chemical target. To develop
and demonstrate its capabilities, the pipeline was applied to
optimize the production of the flavonoid (2S)-pinocembrin and
the alkaloid (S)-reticuline in E. coli. By considering relatively few
design parameters, large numbers of pathway variants were
designed and we demonstrated how using statistical sampling of
the initial design space, coupled with automated laboratory pro-
tocols for pathway assembly and testing, allowed rapid proto-
typing in vivo. Both pathways were optimized to produce >50 mg
L−1 of target, making them competitive with current state-of-the-
art titers. For pinocembrin, identification of the key design factors
influencing final production titers contributed to a second DBTL
round using standardized statistical protocols, which resulted in a
further 40-fold improvement in pinocembrin production. The
titers observed from the two libraries ranged over three orders of

Fig. 2 Combinatorial optimization of the (2S)-pinocembrin pathway through the Design/Build/Test/Learn cycle. a A biosynthetic pathway composed of

four enzymes (PAL, 4CL, CHS, and CHI; see Supplementary Table 2) was initially selected21. In the first DBTL cycle, a combinatorial library totaling 2592

pathway configurations was designed by varying the order of pathway genes, promoter parts (Ptrc and PlacUV5), and plasmid copy numbers (pSC101 and

p15a). Through the application of statistical DoE, the designed library was reduced to 16 representative constructs. This pathway library was assembled and

expressed in E. coli DH5α to test pinocembrin titers. Statistical analysis was then used to assess the relative effects of the different design factors tested. b

In the second DBTL cycle, a new focused combinatorial library was designed, based on experimental factors from the first cycle which correlated with

pinocembrin titer. For this second full-factorial library, PAL was fixed at the end of the pathway and CHI at the beginning, while CHS and 4CL were allowed

to exchange positions with or without promoter parts
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magnitude (Fig. 2), clearly demonstrating the importance of
pathway design and optimization. Testing such a large design
space is only feasible using this kind of approach, combining
intelligent sampling and automated workflows.

The efficiency of the automated pipeline is clearly demon-
strated, as it led to a 500-fold increase in titers for the flavonoids
pathway with competitive titers up to 88mg L−1, from the
screening of just 65 (16+ 25+ 24) variants out of 23,328 (2592 ×
9) possible designs. Furthermore, for the alkaloids pathway
screening of just 14 variants out of 2592 possible designs iden-
tified pathways with reticuline titers equivalent to the current
state of the art. Our present pipeline can achieve a full iteration in

2 months, including gene synthesis (typically 1 month) and
sequencing (3 days). A second iteration involving parts that have
been already ordered could be then accomplished in 3 weeks.
These results outperform previously reported DBTL approa-
ches12,13 in terms of fold increase in titers compared with number
of screened variants. As the application of these strategies
becomes more widespread, it is anticipated that DBTL pipeline
methodologies for engineering biology will provide new faster,
highly predictable and sustainable routes to valuable chemical
diversity. We envision deriving common design rules and
applying state-of-the-art machine-learning techniques in future
cases involving larger data sets and design spaces. Similarly,
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Fig. 3 Process development and optimization of (2S)-pinocembrin production. a Chassis selection was performed by expressing the best-performing

constructs from the second DBTL cycle (3382, 3353, and 3391; see Supplementary Table 1) in nine different E. coli strains (listed in Table 1) and the results

are displayed as box-whisker plots, indicating median and interquartile range. bMedia screening was performed by expressing the best construct (3382) in

the two best chassis (MG1655 and MDS42) and monitoring pinocembrin in six different growth media (listed in Table 2). c Further optimization was

investigated by screening fabF::kanmutants of the best chassis (MG1655 and MDS42) transformed with the best construct (3382), with pathway induction

at different culture densities (OD600)
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combinatorial library totaling 2592 pathway configurations was designed by varying the order of pathway genes, promoter parts (Ptrc and PlacUV5) and

plasmid copy numbers (pBBR1 and ColE1 origins). Through the application of statistical DoE, the designed library was reduced to 16 representative

constructs, of which 14 were successfully assembled and tested. This pathway library was expressed in E. coli DH5α and reticuline titers were quantified.

Statistical analysis was then used to assess the relative effects of the different design factors tested. b Quantification of scoulerine titers observed for the

same 14 constructs and statistical analysis of the relative effects of the different design factors
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propagation of design rules will be implemented as part of the
pipeline through a workflow that will translate inferred design
rules between factors into design constraints for the redesign of
the next iteration. The workflow could also be extended beyond
part selection to other factors like enzymes, alternative pathways,
process conditions, etc.–e.g., finding alternatives to overcome
identified bottlenecks. Designed to be applicable to any target
compound, the pipeline is intended to be compatible for auto-
mation and therefore able to work without any prior knowledge
of successful strategies. Our application of an automated DBTL
pipeline demonstrates how these strategies can efficiently lead to
the discovery and rapid optimization of high-performance path-
ways, providing the tools to enable a new era in automated agile
biomanufacturing.

Methods
Design. The pipeline uses the retrosynthesis workflow of RetroPath9, and the
enzyme sequence selection tool Selenzyme10 (http://selenzyme.synbiochem.co.uk)
to mine available biochemical knowledge26 and allow the initial selection of pro-
duction pathway(s) through the application of reaction rules-based retrosynthesis;
and of enzymes based on biochemical reaction similarity at each transformation
step in the pathway. Initial synthetic pathways for pinocembrin were selected based
on a RetroPath design21; genes for reticuline/scoulerine biosynthesis were selected
from Coptis japonica27. Plasmids were built from individual parts, comprising
vector backbones (BglBrick vectors22), terminator–promoter pairings and enzyme
coding genes with optimized ribosome-binding (RBS) sites. Gene parts were
designed with the PartsGenie web application11 (http://parts.synbiochem.co.uk).
RBS translation initiation rates were set to 15,00028, CDS were codon optimized for
expression in E. coli, and 5′ and 3′ sequences were optimized for assembly via the
ligase cycling reaction16. Parts were also designed to be compatible for BglBrick22

and Golden Gate assembly29. All part and plasmid designs were formatted in the
Synthetic Biology Open Language (SBOL) version 130 and are available from our
ICE repository (https://ice.synbiochem.co.uk)17,18.

A combinatorial approach was utilized in designing synthetic plasmids
expressing each pathway, using a formalized design of experiments (DoE) method.
Our design strategy tried to minimize the number of samples by selecting sets of
optimal combinatorial libraries to explore the design space determined by the
target chemical–producer pathway to be imported into a chassis organism. The
reduced design space through intelligent sampling makes possible adding some
level of redundancy at the design stage to the libraries to account for assembly
failures. A pathway construct template was initially defined by the sequential
composition of plasmid and genetic parts available in the centralized ICE
repository. For DoE, each part was considered as a factor and the number of levels
associated with the factor was given by the number of possible variations of the
design parameter. For the first round of design, in order to reduce the total number
of promoters, it was considered as a four-level factor, with two of the levels
corresponding to a no-promoter state and the other two to each promoter,
respectively. We used two DoE approaches: (a) regular fractional factorial design by
means of the planor R package31; (b) orthogonal arrays, which are a generalized
form of mutually orthogonal Latin squares, by means of the DoE.base R package32.
We considered an additional factor given by the variation of the positional order of
genes. This factor can be used in order to perform permutations of the desired n
genes within the construct and combinations can be reduced to n by using a Latin
square. Through the application of orthogonal array design, the initial design

round generated 16 variant plasmids, in which the plasmid copy number, the order
of enzymes within the plasmid and the strength of promoters were varied.

Each resulting construct in the library was processed through design and
optimization algorithms for DNA parts (RBS and CDSs) and plasmids, that were
tailored to the chosen assembly method. Ligase cycling reaction was used to
assemble plasmids, for which bridging oligos were designed with in-house software,
assuming a ligase cycling reaction melting temperature of 70 °C.

Bacterial strains and media. Escherichia coli DH5α (New England Biolabs) was
used for routine cloning and pathway propagation. Strains were maintained on
Lysogeny broth (LB) or LB agar containing ampicillin (100 µg mL−1) for plasmid
selection. Production strains are listed in Table 1.

Knockout of the fabF gene was accomplished by standard lambda red
recombineering33. Briefly, the kanamycin resistance cassette-disrupted fabF gene
from the KEIO strain JW1081-4 (ΔfabF759::kan)34 was PCR amplified from
genomic DNA using primers deltaFabF-F and deltaFabF-R to include ~250 bp
sequences which flank the fabF gene in the E. coli genome. The MG1665 and
MDS42 strains were transformed with the pSIM18 plasmid35, grown to an OD600

of 0.3 then heat shocked at 42 °C for 15 min to induce FLP recombinase expression,
electrocompetent cells were prepared from these cultures. Aliquot of 50 µl of cells
were transformed with 300 ng of the kanamycin cassette PCR product and then
plated on agar plates containing 50 µg mL−1 kanamycin. Knockout of the fabF gene
was confirmed by colony PCR using the primers deltaFabFCHK-F and
deltaFabFCHK-R. Cells were cured of the pSIM18 plasmid by growth in liquid
culture at 43 °C for 4–5 h. Loss of the pSIM18 cassette was then confirmed by
replica plating of single colonies on LB agar plates containing 50 μg mL−1

kanamycin (growth) or 150 μg mL−1 hygromycin B (no growth).

Automated robotic platforms. Plasmid libraries were screened in E. coli DH5α
using an HTP 96-deep-well plate-based growth pipeline. Robotic platforms were
implemented for automated colony picking, growth and induction with 24 h off-
platform fermentation followed by automated product harvesting from the culture
supernatant using methanol/water extraction. We assayed target compound titers
from triplicate colonies using a 96-well plate HTP-LC-MS/MS (QqQ) quantitative
system based on fast chromatography and automated MRM data extraction for
selective Q1Q3 transitions for each compound.

Hamilton Star robotics platforms have been optimized for the efficient assembly
of DNA pathways and the analysis of downstream combinatorial libraries.
Equipped with both 8 channel and 96 head liquid handling, integrated PCR
(TRobot), colony picking, growth and induction methods and metabolite
extraction from cultured supernatant (Supplementary Fig. 1). Automated worklist
packages generated from our Design software provide the complete recipes
required for automated pathway assembly, coupled with integrated barcode reading
for quality control and sample tracking.

Part preparation. DNA parts (Supplementary Table 3) were synthesized by
commercial vendors (Life Technologies, Germany; Gen9, USA; Twist Biosciences,
USA) and amplified using part specific 5′-phosphorylated primers (Integrated
DNA Technologies, Belgium; Supplementary Data 1). PCR reactions were treated
with DpnI (NEB), spin column-purified, analyzed by gel or capillary electrophor-
esis, quantified using a Nanodrop (ThermoFisher) and diluted to 75 nM with
deionized water for ligase cycling reaction assembly. Parts were made fresh for each
assembly and stored at 4 °C for <5 days.

Plasmid assembly. An automated pipeline was created on the robotic platforms to
reduce human error and ensure consistency and accuracy of assembly. Parts were
produced by commercial DNA synthesis vendors followed by PCR amplification
and processing. The pathways were built using the ligase cycling reaction assembly
method16,36. Automated, worklist-driven liquid handling was implemented for
bridging oligo pooling and ligase cycling reactions setup. Completed reactions were
transformed into high efficiency NEB 5-alpha cells. Typically, 100–300 colonies
were seen following overnight growth and five colonies of each were grown in 1.2
mL LB media for plasmid isolation using a QIAprep 96 Turbo Kit (Qiagen).
Correct plasmid assembly was screened by automated restriction digests using
EcoRI and BamHI (unique restriction sites in all BglBrick plasmids22 to separate
vector backbones from pathway inserts) followed by analysis on a 96-capillary

Table 1 Bacterial strains used in this study

Strain name Strain Reference

DH5α (NEB 5-

alpha)

K-12 New England Biolabs

DH10ß (NEB 10-

beta)

K-12 New England Biolabs

DH1 K-12 Meselson & Yuan (1968)

MG1655 K-12 F. R. Blattner, et al. Science 277,

1453–1462 (1997)

W3110 K-12 K. Hayashi, et al. Mol. Syst. Biol. 2 (2006)

DH1 K-12 M. Meselson & R. Yuan. Nature 217,

1110–1114 (1968)

BW25113 K-12 Datsenko & Wanner (2000)

MDS42 Meta K-12 Scarab Genomics

BL21(DE3) B New England Biolabs

Mach1 W ThermoFisher

Table 2 Growth media used in this study

Designation Name

EZ EZ-rich defined medium

M9 M9 minimal medium

MOPS MOPS minimal medium

SOB Super optimal broth

TB Terrific broth

TBsb Terrific broth + 0.5M sorbitol + 5mM betaine
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Fragment Analyser (Advanced Analytical Technologies, USA). Correct assemblies
(Supplementary Table 1) were then confirmed by full-pathway sequencing (GATC
Biotech). Through this assembly pipeline we typically obtained >70% of sequence-
perfect plasmid targets at the first attempt. We were successful in assembling the
full 16-member pathway library in the first DBTL round (Fig. 2a) and 25 constructs
for the second round 32-member pathway library (Fig. 2b).

Pinocembrin production experiments. Production experiments were conducted
in TBsb media (phosphate-buffered Terrific broth supplemented with 0.5 M sor-
bitol and 5 mM betaine) to approximate the conditions of Fehér et al.21. Additional
media prepared for media screening (Table 2) were AIM (auto induction media,
Formedium AIMTB0210), EZ (EZ-rich defined medium kit, Teknova M2105),
MOPS (prepared as EZ but excluding 10× ACGU and 5× Supplement EZ), SOB
(Super Optimal broth, Formedium SOB0202), TB (Terrific broth phosphate buf-
fered, Formedium TBP0102) and M9 (recipe from Sambrook and Russell37). All
media were supplemented with ampicillin (100 µg mL−1) and 0.4% glycerol
(replacing glucose in the case of EZ media).

Overnight seed cultures were grown from freshly transformed colonies in the
desired production media at 37 °C with shaking at 180 rpm. Seed cultures were
inoculated 1/50 into fresh media (1.2 mL in 96-deep-well blocks with breathable
seals) and grown at 30 °C, 950 rpm shaking, 75% humidity. When cultures reached
OD600= 1.2–1.5 (or OD600= 0.5–0.6 for MOPS and M9 minimal media) they were
induced with the addition of 100 µM IPTG, 3 mM phenylalanine and 20 µg mL−1

cerulenin, as appropriate, then transferred back to the 30 °C shaker-incubator for
24 h. Cultures were processed for analysis as described below. All liquid handling
steps for plate-based experiments were performed on an Hamilton Star robotic
platform.

Reticuline/scoulerine production experiments. Production experiments were
conducted in phosphate-buffered TB media supplemented with kanamycin
(50 µg mL−1) and 0.4% glycerol. Overnight seed cultures were grown from freshly
transformed colonies in production media at 37 °C with shaking at 180 rpm. Seed
cultures were inoculated 1/50 into fresh media (1.2 mL in 96-deep-well blocks with
breathable seals) and grown at 30 °C, 950 rpm shaking, 75% humidity. When
cultures reached OD600= 1.0 they were induced with the addition of 100 µM IPTG,
returned to the shaker-incubator for 2 h, then pelleted by centrifugation at 2250
RCF for 10 min (5804R centrifuge; Eppendorf, Germany). Induced cells were
resuspended in fresh production media supplemented with 500 µM THP substrate,
30 mM L-ascorbic acid and 100 µM IPTG, and transferred back to the 30 °C shaker-
incubator for 24 h. Cultures were then processed for analysis as described below.
All liquid handling steps for plate-based experiments were performed on an
Hamilton Star robotic platform.

Analysis and quantification of pathway targets. All cell cultures were quenched
with an equal volume of 100% methanol at the 24 h time point post induction. The
samples were then centrifuged at 2250 RCF for 10 min (5804R centrifuge;
Eppendorf, Germany). The supernatant was collected and diluted as required with
methanol/water (10:90 v/v) in 96-well plates. These plate-based extractions were
designed to be compatible for analysis on a triple quadrupole tandem mass spec-
trometer (Xevo TQ-S; Waters MS Technologies) connected to an Acquity Ultra
Performance Liquid Chromatography system (Acquity UPLC; H-Class, Waters)
with a 96-well plate sample tray accessory. UPLC methods were optimized for the
resolution of cinnamic acid and pinocembrin (flavonoids pathway) on a BEH C18

column (2.1 × 50 mm, 1.7 μm; Waters), and THP, reticuline and scoulerine (alka-
loids pathway) on an HSS T3 column (2.1 × 50 mm, 1.8 μm; Waters). Mobile phase
A (water+ 0.05% formic acid) and mobile phase B (methanol+ 0.05% formic
acid) were used at an operating temperature of 45 °C (flavonoids pathway) or 40 °C
(alkaloids pathway). Instrument injection sequences were randomly generated by
Excel-based data tracking and worklist generators.

The optimized flavonoids LC gradient ran at a flow rate of 0.6 mLmin−1,
resulting in a total runtime of 2 min per sample. A linear gradient of 40–95% B (v/
v) was applied over 1.5 min, before returning linearly to 40% B (v/v) over 1 min. A
total of 40% B (v/v) was then maintained for 0.4 min to equilibrate the system for
the next injection. The optimized alkaloids LC gradient ran at a flow rate of
0.6 mLmin−1, resulting in a total runtime of 5 min per sample. A linear gradient of
1–63% B (v/v) was applied over 2.0 min, then increased to 95% B (v/v) over 0.1
min, before holding at 95% B (v/v) for 0.3 min. The gradient returned linearly to
1% B (v/v) over 0.1 min and was then maintained at 1% B (v/v) for 2.5 min to
equilibrate the system for the next injection. The MS parameters were optimized
with a desolvation gas flow of 1000 L h−1, a capillary voltage of 2000 V, desolvation
temperature of 600 °C, and a source temperature of 150 °C. The MRM transition of
255.25 > 213.11 was used for the quantification of pinocembrin. MRM transitions
of 288.15 > 164.17, 330.26 > 192.08, and 328.12 > 178.14 were used for
quantification of THP, reticuline, and scoulerine, respectively.

The limit of detection (LOD) and limit of quantification (LOQ) were calculated
from the signal-to-noise ratio (S/N). The LOD was defined when S/N > 3, and the
LOQ defined when S/N > 10. Absolute quantification of targets was performed
relative to an external 8-point calibration curve analyzed in the same analytical run
as the samples. Relative comparison of cinnamic acid within the first two screening

cycles were based on the cinnamic acid peak areas, which provided relative
quantification and informed the DESIGN and BUILD for further pipeline
optimization. A standard stock solution of (2S)-pinocembrin (4 mM) was freshly
prepared in ethanol, then dilution series were prepared in 0.2% TB media in
MeOH/H2O (10:90 v/v) to take into account matrix effects from the culture
medium. Alkaloid standards were freshly prepared by adding THP (2 mM),
(S)-reticuline (200 µM), and (S)-scoulerine (100 µM) to phosphate-buffered TB
media containing 30 mM L-ascorbic acid, then dilution series were prepared in
MeOH/H2O (10:90 v/v). The linear model for standard curves was selected based
on the analysis of the data by linear regression with and without intercept and
weighting factors 1/x. The linear range for pinocembrin quantification was 120
pM–500 nM. Linear ranges of 100 pM–400 nM, 10 pM–40 µM and 5 pM–20 nM
were used for quantification of THP, reticuline, and scoulerine, respectively.
MassLynx V4.1 SCN905, with TargetLynx (Waters Corp., Milford, MA, USA) was
used to process the acquired data.

Binary MS/MS files were automatically transferred and archived with
corresponding metadata using a data acquisition service. The binary MS/MS files
were then transformed using Proteowizard38 to open-source mzXML format files
from which we extracted peak areas from selective MRM transitions and
performed absolute quantification in an automated manner. Custom in-house
scripts used for peak areas extraction are available online at https://gitlab.cs.man.ac.
uk/mqbpwca2/RP2.

Statistical analysis. In order to analyze the significance of the effects for each
factor, we performed a standard least squares analysis. Promoters were considered
as a categorical factor, plasmid copy numbers were considered as an ordinal factor
with two possible values: low and high copy number. P values corresponded to the
probability associated with an F-test of zero effect of the parameter. All tests were
carried out using JMP Pro 12.2.0 (SAS Institute).

Box-plot elements in figures: center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× interquartile range; points, outliers.

Data management support. The integrated pipeline benefited from the support of
a data management system consisting of commercial, open source, and bespoke
data management platforms, which assisted in making the data FAIR (findable,
accessible, interoperable, reusable)39 throughout the pipeline. An instance of the
open-source JBEI Inventory of Composable Elements (ICE) registry16,17 was used
as registry of parts, plasmids, and strains. Recording of experiments was performed
using shared electronic lab notebooks (http://www.labarchives.com). A data
acquisition service was developed in house, which allowed data to be remotely
transferred from laboratory instruments (e.g., QqQ), archived and backed up in
our large data store (Synology NAS Disk Station with mirrored backup). During
transfer, data were simultaneously ingested into our OpenBis software39 along with
associated metadata for easy retrieval.

Data availability. The data sets generated during and/or analyzed during the
current study are available in the Mendeley Data repository, https://doi.org/
10.17632/8g4wfwtd43.140. All synthetic DNA sequences designed and used in this
study are publicly available from our ICE repository at https://ice.synbiochem.co.uk
(see also Supplementary Table 1).
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