
Bolognani, Denise and Verzobio, Andrea and Tonelli, Daniel and 

Cappello, Carlo and Glisic, Branko and Zonta, Daniele and Quigley, John 

(2018) Quantifying the benefit of structural health monitoring : what if 

the manager is not the owner? Structural Health Monitoring. ISSN 1475-

9217 , http://dx.doi.org/10.1177/1475921718794506

This version is available at https://strathprints.strath.ac.uk/65863/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195293929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Type of paper: Original manuscript 

Denise Bolognani, University of Trento, Department of Civil, Environmental and 
Mechanical Engineering, via Mesiano 77, 38123 Trento, Italy 
Email: denise.bolognani@unitn.it 

Quantifying the benefit of SHM:          

what if the manager is not the owner? 

Denise Bolognani1. Andrea Verzobio2. Daniel Tonelli1,3. Carlo 
Cappello1. Branko Glisic3. Daniele Zonta1,2. John Quigley4 
1University of Trento, Department of Civil, Environmental and Mechanical Engineering, 
via Mesiano 77, 38123 Trento, Italy. 
2University of Strathclyde, Department of Civil & Environmental Engineering, 75 
Montrose Street, Glasgow, G1 1XJ, UK. 
3Princeton University, Department of Civil & Environmental Engineering, Princeton, NJ 
08544 USA. 
4University of Strathclyde, Department of Management Science, 199 Cathedral Street, 
Glasgow, G4 OQU, UK. 
 

Abstract 

Only very recently our community has acknowledged that the benefit of Structural Health 
Monitoring (SHM) can be properly quantified using the concept of Value of Information 
(VoI). The VoI is the difference between the utilities of operating the structure with and 
without the monitoring system. Typically, it is assumed that there is one decision maker 
for all decisions, i.e. deciding on both the investment on the monitoring system as well as 
the operation of the structure. The aim of this work is to formalize a rational method for 
quantifying the Value of Information when two different actors are involved in the decision 
chain: the manager, who makes decisions regarding the structure, based on monitoring 
data; and the owner, who chooses whether to install the monitoring system or not, before 
having access to these data. The two decision makers, even if both rational and exposed to 
the same background information, may still act differently because of their different 
appetites for risk. To illustrate how this framework works, we evaluate a hypothetical VoI 
for the Streicker Bridge, a pedestrian bridge in Princeton University campus equipped with 
a fiber optic sensing system, assuming that two fictional characters, Malcolm and Ophelia, 
are involved: Malcolm is the manager who decides whether to keep the bridge open or 
close it following to an incident; Ophelia is the owner who decides whether to invest on a 
monitoring system to help Malcolm making the right decision. We demonstrate that when 
manager and owner are two different individual, the benefit of monitoring could be greater 
or smaller than when all the decisions are made by the same individual. Under appropriate 
conditions, the monitoring VoI could even be negative, meaning that the owner is willing 
to pay to prevent the manager to use the monitoring system. 
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Introduction 

Although the utility of structural health monitoring (SHM) has rarely been questioned in 
our community, very recently a few published papers [1] [2] have clarified the way that the 
benefit of monitoring can be properly quantified. Indeed, seen from a mere structural 
engineering perspective, the utility of monitoring may not be immediately evident. Wear 
for a minute the hat of the manager of a Department of Transportation (DoT), responsible 
for the safety of a bridge: would you invest your limited budget on a reinforcing work or 
on a monitoring system? A retrofit work will increase the bridge load-carrying capacity 
and therefore its safety. On the contrary, sensors don’t change the bridge capacity, nor 
reduce the external loads. So how can monitoring affect the safety of the bridge? The 
answer to this legitimate question  goes roughly along these lines: monitoring does not 
provide structural capacity, rather better information on the state of a structure; based on 
this information, the manager can make better decisions on the management of the 
structure, minimizing the chances of wrong choices, and eventually increasing the safety 
of the bridge over its lifespan. Therefore, to appreciate the benefit of SHM, we need to 
account for how the structure is expected to be operated and eventually recast the 
monitoring problem into a formal economic decision framework. 

The basis of the rational decision making is encoded in axiomatic Expected Utility Theory 
(EUT), first introduced by Von Neumann and Morgenstern [3] in 1944, and later developed 

in the form that we currently know by Raiffa and Schlaifer [4] in 1961. EUT is largely 

covered by a number of modern textbooks (among the many, we recommend Parmigiani 
[5] to the Reader of SHM who is approaching the topic for the first time). Within the 

framework of EUT, the benefit of information, such as that coming from a monitoring 

system, is formally quantified by the so-called Value of Information (VoI). The concept of 
VoI is anything but new: it was first introduced by Lindley [6] in 1956, as a measure of the 

information provided by an experiment, and later formalized by Raiffa and Schlaifer [4] 

and DeGroot [7]. Since its introduction, it has been continuously applied in manifold fields, 
including statistics, reliability and operational research [8] [9] [10] [11]. Its first appearance 

in the SHM community, however, is much more recent and dates back, in our best 

knowledge, to a paper published in the proceedings of SPIE by Bernal et al. in 2009 [12], 
followed by Pozzi et al. [13], Pozzi and Der Kiureghian [14], Thöns & Faber [1], Zonta et 

al. [2], - a recent state of the art can be find in Thöns [15]. In the last few years, quantifying 

the value of SHM has known a renewed popularity thanks to the activity of the EU-funded 
COST action TU1402 [16]. 

Broadly speaking, the value of a SHM system can be simply defined as the difference 

between the benefit, or expected utility u*, of operating the structure with the monitoring 
system and the benefit, or expect utility u, of operating the structure without the system. 

Both u* and u are expected utilities calculated a priori, i.e. before actually receiving any 

information from the monitoring system. While in u we assume the knowledge of the 
manager is his a priori knowledge, u* is calculated assuming the decision maker has access 



to the monitoring information and is sometimes referred as to preposterior utility. The 

difference between these values measures the value of the information to the decision 
maker. Clearly, if the monitoring does not provide any useful information, the preposterior 

u* is equal to the prior u, and the value of monitoring information is zero.  
Typically, it is assumed that there is one decision maker for all decisions, i.e. deciding on 

both investments as well as operations. This individual could be for example an idealized 
manager of a DoT, as the fictitious character ‘Tom’ who appears in [2]. We must recognize 
that in the real world the process whereby a DoT makes decision over its stock is typically 
more complex, with more individuals involved in the decision chain. Even 
oversimplifying, we always have at least two different decision stages. First a decision is 
made on whether or not to buy and install the monitoring system on the structure; this is a 
problem of long-term planning and investment of financial resources. This decision is 
typically carried out by a high-level manager, that in this paper we will conventionally refer 
to as owner, whose  key performance measure is return on investment. The second stage 
concerns the day-to-day operation of the structure which includes for example 
maintenance, repair, retrofit or enforcing traffic limitations, once the monitoring system is 
installed; if installed these decisions may be informed by the monitoring system. Most of 
the time, the manager and the owner of the structure are different individuals. Both decision 
makers are motivated to maintain a high level of long term availability for the structure, 
which is challenging as the state of the structure is never known precisely while in 
operation. Operators balance two types of errors, either removing a structure from 
operation prematurely for maintenance or operating too long resulting in a failure; both of 
which are based on imperfect information concerning the state of the structure. Decision 
makers will differ in their choices under uncertainty even when they have access to the 
same information if they have different appetites for risk.  As such, the owner needs to 
consider the operators appetite for risk when deciding whether to install a monitoring 
system, as this will indicate how the system will inference the operators decision making 
and as such the value of this information.  

The aim of this work is to formalize a rational method for quantifying the Value of 
Information when two different actors are involved in the decision chain: the manager, 
who makes decisions regarding the structure, based on monitoring data; and the owner, 
who chooses whether to install the monitoring system or not, before having access to these 
data. We start explaining why and how two different individuals, both rational and 
provided with the same background information, can end up with different decisions. Next, 
we review the basis of the VoI, which illustrates a method for evaluating the VoI in SHM-
based decision-problems, and revise the framework of Zonta et al. [2], to include the 
difference between the manager and the owner. To illustrate how this framework works we 
apply it to the same decision problem reported in [2]: the Streicker Bridge case study. This 
is a pedestrian bridge at Princeton University campus, which is equipped with a continuous 
monitoring system. Some concluding remarks are reported at the end of the paper. 

SHM-based decision 

In this section, we review the concepts of Bayesian judgment, expected utility and value of 
information, as applied to SHM problems, following a similar path as in Cappello et al. 

[17] and Zonta et al. [2]. The Reader can find further examples of SHM-based decision 



problems in Flynn and Todd [18] [19], Flynn et al. [20] and Tonelli et al [21]. As observed 

in [17], SHM-based decision making (i.e., deciding based on the information from a SHM 
system) is properly a two-step process, which includes a judgement and a decision, as 

depicted in Figure 1: first, based on the information from the sensors y, we infer the state 

S of the structure; next, based on our knowledge of the state S we choose the optimal action 
aopt to take.  

Before proceeding with the mathematical formalization of this process let us confine the 

complexity of our problem through the following assumptions: 

- the monitoring system provides a dataset that can be represented by a vector y; 
- the structure (e.g.: one bridge) can be in a one out of N mutually exclusive and 

exhaustive states S1, S2, …, SN (e.g.: S1 = ’severely damaged’, S2 = ’moderately 
damaged’, S3 = ’not damaged’, …); 

- the state of the structure is generally not deterministically known, and can be only 
described in probabilistic terms; 

- the decision maker can choose between a set of M alternative actions a1, a2, …, aM 
(for example, a1 = ‘do nothing’, a2 = ‘limit traffic’, a3 = ‘close the bridge to traffic’, 
…); 

- taking an action produces measurable consequences (e.g.: a monetary gain or loss, 
a temporary downtime of the structure, in some case causalities); the consequences 
of an action can be mathematically described by several parameters (e.g.: the 
amount of money lost, the number of day of downtime, the number of casualties), 
encoded in an outcome vector z; 

- the outcome z of an action depends on the state of the structure, thus it is a function 
of both action a and state S: z(a,S); when the state is certain the consequence of an 
action is also deterministically known; therefore, the only uncertainty in the 
decision process is the state of the structure S; 

- for simplicity and clarity, we refer here to the case of ‘single shot’ interrogation, 
which is the case when the interrogation occurs only following an event which has 
a single chance to happen during the lifespan; an extension to the case of multiple 
interrogations is also found in [2]. 

 

 

Figure 1. The process of SHM-based decision making. 
 



Judgment is about understanding the state of the structure based on the observation, which 

is exactly what SHM is about from a logical standpoint. In the presence of uncertainty, the 
state of the structure after observing the sensors data y is probabilistically described by the 

posterior information P(S|y), and the logical inference process followed by a rational agent 

is mathematically encoded in Bayes’ rule [22], which reads: 
 

P(鯨沈】y) = p岫桂】鯨沈岻P岫鯨沈岻p岫桂岻 ┸ 岫な岻 

 

where P(ゲ) indicates a probability and p(ゲ) a probability density function. Equation (1) 
basically says that the posterior knowledge of the ith structural state P(Si|y) depends on the 

prior knowledge P(鯨沈) (i.e., what I expect the state of the structure to be before reading any 
monitoring data) [23] and the likelihood p(y|Si) (i.e., the probability of observing the data 
given the state of the structure). Distribution p(y) is simply a normalization constant, 
referred to as evidence, calculated as: 
 p岫桂岻 = 布 p岫桂】鯨沈岻P岫鯨沈岻朝

沈退怠 ┻ 岫に岻 

 

Decision is about choosing the ‘best’ action based on the knowledge of the state. When the 

state of the system Si is deterministically known, the rational decision-maker ranks an 
action based on the consequences z through a utility function U(z). Mathematically, the 

utility function is a transformation that converts the vector z, which describes the outcome 

of an action in its entire complexity, into a scalar U, which indicates the agent’s order of 
subjective preference for any possible outcome. 

When the state of the system is uncertain, and therefore the consequences of an action are 

only probabilistically known, the axioms of expected utility theory (EUT) state that the 
decision maker ranks their preferences based on the expected utility u, defined as: 
 u(a) = E聴範戟盤渓岫欠┸ 鯨岻匪飯 ┸ 岫ぬ岻 

 

where ES is the expected value operator of random variable S, which we have assumed be 

the only uncertainty into the problem. To prevent confusion, note that in this paper capital 

U indicates the utility function, while lowercase u denotes an expected utility.  
To better clarify the practical meaning of Equation (3), let’s start from the case of a 

structure not equipped with a monitoring system, where the manager decides without 

accessing any SHM data. In this case the manager’s prior expected utility u(aj) of a 
particular action aj, depends on their prior probabilistic knowledge P(Si) of each possible 

state Si: 
 u(欠珍) = 布 戟 岾渓盤欠珍 ┸ 鯨沈匪峇 P岫鯨沈岻 ┸朝

沈退怠  岫ね岻 

 



and consistently with EUT, the rational manager will choose that actions aopt which carries 
the maximum expected utility payoff u:  
 

u = max
j

u盤aj匪 ┸ aopt= arg max
j

u盤aj匪 ┻  岫のa┸b岻 

 
In contrast, if a monitoring system is installed, and data are accessible by the agent, the 
monitoring observation y affects the state knowledge, and therefore indirectly their 
decision. This time, the posterior expected utility u(aj,y) of actions aj depends on the 
posterior probabilities P(Si|y), which are now functions of the observation y: 
 

u(欠珍, y) = 布 戟 岾渓盤欠珍 ┸ 鯨沈匪峇 P岫鯨沈】y岻 ┻朝
沈退怠 岫6岻 

 

Because the posterior probability depends on the particular observation y, in the posterior 

situation the expected utility is a function of y as well, and so are the maximum expected 
utility and the optimal choice:  
 

u 岫y岻= max
j

u盤欠珍, y匪 ┸ aopt= arg max
j

u盤欠珍, y匪 ┻ 岫7a,b岻 

 

Equation (5a) and (7a) are the utilities calculates before and after a monitoring system is 

interrogated. Note that, in order to evaluate the posterior utility of an action u(aj,y), we 
need to know the particular realization of observation y, so we cannot evaluate the posterior 

utility until the monitoring system is installed and its readings are available. 

How does the utility change if we have decided to install a monitoring system, but we 
have still to observe the sensors’ readings? Technically, what we should do is to evaluate 

a priori (i.e., now that the system is not installed yet) the expected value of the utility a 

posteriori (i.e., at the time when the system will be installed and operating). We denote this 
quantity preposterior utility, u*, to separate it both from the prior and posterior utilities 

introduced above. The preposterior utility u* is independent on the particular realization 

and can be derived from the posterior expected utility u(y) by marginalizing out the 
variable y, [2] [17]: 
 

 u* = E桂 釆max
j

u盤aj,y匪挽 噺 豹 max
j

u盤aj,y匪 ∙ p岫y岻 
Dy

dy ┸ 岫8岻 

 

where distribution p岫y岻 is the same evidence defined by Equation (2). The preposterior 
expected utility encodes the total expected utility of a decision process, based on the 

information provided by the monitoring system, but evaluated before the monitoring 

system is actually installed.  
Finally, the Value of Information of the monitoring system is simply the difference 

between the expected utility with the monitoring system (the preposterior utility u*) and 

the corresponding utility without the monitoring system (the prior utility u):  
 



VoI = u* 伐  u  = 豹 max
j

u盤aj,y匪 ∙ p岫y岻 
Dy

dy伐 max
j

u盤aj匪 ┻ 岫9岻 

 

In other words, the VoI is the difference between the expected maximum utility and the 
maximum expected utility. It is easily mathematically verified that u* is always greater or 

equal than u, and therefore the VoI as formulated above can only be positive. This is to say 

that under the assumption above SHM is always useful, consistently with the principle that 
“information can’t hurt” [24] as reported in Pozzi [25].  It is worth reminding that these 

assumptions are performed before acquiring the data. That means that the value of those 

data is anticipated by the decision maker, even if the realized value, once the decision is 
made, may be quite different. As well, it may be that the cost of data exceeds its value, but 

this would be reflected in the calculation as we assess the utility associated with the cost 

of obtaining the data. 
The process of deciding on the monitoring system installation can be graphically 

represented as a two-stage decision tree, as shown in Figure 2. At the first stage the agent 

decides on whether to go or not with the SHM system, while at the second stage he decides 
on the action a1, …, aj to undertake on the structure. The realization of the state occurs at 

the following chance node and the outcome z depends on the action and the state. On the 

‘without SHM’ branch of the tree, the state is determined by the prior information and the 
expected utility corresponds to u in Equation (9). On the ‘with SHM’ branch of the tree, 
the second stage action is decided based on the information y from the monitoring system 

and the final outcome includes the cost zSHM of the monitoring system. The best choice of 
stage one is the one that provides maximum utility, and this can be calculated by solving 

the two-stage tree by backward induction [5].  

 
Figure 2. Graphical representation of the decision problem of whether or not to install a 
monitoring system (SHM). 

Two individuals, two decisions 

In the classical formulation of the VoI stated above, we have implicitly assumed that the 
decision is taken at any stage by the same rational individual, characterized by a defined 
background information and utility function. We address now the problem of quantifying 



the VoI when two separate individuals are involved in the decision chain. We 
conventionally denote manager (M) the one who makes decisions on the day-to-day 
operation of the structure, and owner (O), the one who is in charge of the strategic 
investments on the asset and decide on whether to install the monitoring system or not. 
Referring to Figure 2, the manager is the one who takes decisions at stage two, while the 
owner decides at stage one. We will refer to the classical formulation of VoI, as stated in 
the previous section, as to unconditional - in contrast with the conditional VoI which we 
are about to introduce. 

A common misunderstanding, not only in our community, is that two individuals, if both 

rational and exposed to the same observation, should always end up with the same decision. 
In the real world, there are a number of components in the SHM-based decision process 

that are inherently subjective, so different decisions by different individuals should not be 

necessarily be seen as an inconsistency. This concept needs a deeper explanation: with 
reference to Figure 1, the reasons whereby two individuals, both rational, can take a 

different decision based on the same observation include: 

a) the two have a different prior knowledge of the problem – i.e. they use different priors 
P(S); 

b) they interpret differently the observation – i.e. they use different interpretation models, 
which are encoded in the likelihood function P(y|S); 

c) they have a different expectation or knowledge of the possible outcome of an action – 
i.e. they assume different outcome vectors z; 

d) they weight differently the importance of an outcome - i.e. they use different utility 
functions U(z). 

 
Differences in (a) (b) and (c) are merely about background knowledge and may actually 
occur in the real world; however, we expect that two individuals with similar experience 
and education should generally agree on any of that. For example, two structural engineers 
with common background will probably agree on the limited importance of a bending crack 
visible on an unprestressed reinforced concrete beam, while a non-expert could be over-
concerned. In this paper, we will assume that the two agents fully agree on (a), (b) and (c), 
while they only differ in the way how they weight outcomes (d), through their utility 
function. The utility function is not a matter of background knowledge, rather it reflects 
the value of the individual as to the consequence of an action. Therefore, there is no logical 
argument to judge one utility function better than another one, as long as it does not violate 
the axioms of the expected utility theory.  

Even limiting our discussion to the case where the outcome z is just a monetary loss or 
gain, the utility function adopted by different people can be very different based on their 
particular individual risk aversion [26] [27]. For instance, an agent is risk neutral if his or 
her utility function U is linear with the loss or gain z, as shown in Figure 3. Since the 
expected utility is proportional to the probability of realization, as shown in Equation (4), 
risk neutrality implies indifference to a gamble with an expected value of zero. So, for 
example, to a risk neutral agent a 1% probability of losing $100 is equivalent to a certain 
loss of $1. 

In practice it is commonly observed that individuals tend to reject gambles with a neutral 
expected payoff: in the example above individuals often prefer to pay $1 off the pocket 



rather than taking the risk of losing $100. This condition is referred to as risk aversion and 
can be graphically represented with a utility function with a concave (i.e., with negative 
second derivative) utility function, as shown in Figure 3. The condition of risk aversion is 
consistent with the observation that the marginal utility of most goods, including money, 
diminish with the amount of goods, or the wealth of the decision maker, as observed since 
Bernoulli [26]. 

 

Figure 3. Utility function for risk seeking, risk neutral and risk adverse agents. 
 
Dealing with losses, risk aversion respect to a loss depends on the amount of the loss with 
respect to the decision maker’s own wealth or the extent of his or her own asset: when the 
loss is much smaller than the whole value of the asset, the agent tends to be risk neutral, 
while they became risk averse when the loss is a significant fraction of their asset. In our 
situation, the owner, who is in charge of the strategic development of the agency, typically 
manages a large stock of structures, and the loss corresponding to an individual structure 
is a much smaller than the overall asset value. In this case, it is likely that the owner is risk 
neutral with respect to the loss compared to the value of a single structure. In contrast the 
manager is responsible for the safety of a single structure: in this case the value of the 
structure corresponds to the value of the asset, and their behaviour is likely to be risk 
adverse respect to the loss of that particular structure. 

To proceed with the mathematical formulation, we have to acknowledge that the two 
agents involved in the decision chain, the owner and the manager, may have different utility 
functions. We’re going to use indices (M) or (O) to indicate that a quantity is intended from 
one of the other perspective. The expected utility of the manager is calculated as:  

 憲岫M岻 (欠珍) = 布 戟岫M岻 岾渓盤欠珍 ┸ 鯨沈匪峇 P岫鯨沈岻N
沈退怠 ┸ 岫など岻 



 
and we may calculate the optimal action and the maximum utility from the manager 
perspective as in the following: 
 

u岫M岻 = max
j

u盤aj匪岫M岻  ┸ a岫M岻
opt

= arg max
j

u盤aj匪 ┻岫M岻 岫ななa┸b岻 

 

If the owner was in charge of the entire decision chain, we would end up with analogous 

expressions of optimal action a岫O岻
opt

 and maximum expected utility u岫O岻
max

, this time from 
the owner perspective. Observe that the optimal choice of the owner does not necessarily 

coincide with that of the manager, meaning that if the owner was in charge of the full 

decision chain, they would behave differently from the manager. Continuing on this 
rationale, we can reformulate the expression of posterior utilities, preposterior utilities and 

VoI from the owner or the manager perspective. 

However, the situation we are discussing is different: the owner is the one who decides 
on the monitoring system installation, but the manager is the one who decides which is the 

optimal action at the second stage. Therefore, all utilities are from the owner perspective, 

but should be evaluated accounting for the action that the manager, not the owner, is 
expected to choose. In other words, the utility of the owner is conditional to the action 

chosen by the manager a岫M岻
opt

. For example, the prior utility of the owner conditional to 

the decision expected by the manager reads:  
 

u岫O|M岻  = u岫O岻 岾 a岫M岻
opt

峇 = u岫O岻 犯arg max
j

u盤aj匪岫M岻 般 ┸ 岫なに岻 

 

where the index (O|M) on the utility u岫O|M岻
 indicates that this utility is conditional to the 

manager’s choice, in opposition to the unconditional utility u岫O岻
 calculated assuming the 

owner in charge of the full decision chain. We can proceed accordingly to formulate the 

posterior conditional utility (the utility of the owner after the manager has observed the 
monitoring response): 

 

u岫O|M岻  = u岫O岻 岾 a岫M岻
opt

岫 y岻峇 = u岫O岻 犯arg max
j

u盤aj┸y匪岫M岻 般 ┸ 岫なぬ岻 

 
and similarly the preposterior conditional utility (the utility of the owner in the expectation 
of what the manager would decide if a monitoring system was installed):  
 

 u* 岫O|M岻 = 豹 u岫O岻 犯arg max
j

u盤aj,y匪岫M岻 般 ∙ p岫y岻 dy
Dy

 ┻ 岫14岻 

 
Eventually the conditional VoI is the difference between the preposterior and the prior 
conditional utilities: 
 



VoI = u*岫O|M岻 伐  u 岫O|M岻  = 噺 豹 u岫O岻 犯arg max
j

u盤aj,y匪岫M岻 般 ∙ p岫y岻 dy
Dy

伐 u岫O岻 犯arg max
j

u盤aj匪岫M岻 般 ┻ 岫15岻 

 
The unconditional and conditional formulations are summarized and compared in Table 1. 
At this point, it’s interesting to compare the unconditional and the conditional utilities, and 
also the value of information. The unconditional utility, prior or preposterior, is basically 
the owner’s utility of their favourite choice, while the conditional utility is the owner’s 
utility of the choice of someone else. If the two choices coincide, the conditional utility is 
equal to the unconditional prior utility. If they do not coincide, the manager’s choice can 
only be suboptimal from the owner’s perspective, and therefore the conditional utility must 
be equal or lower than the unconditional. Therefore, the following relationships must hold: 
 憲岫拓】托岻 判 憲岫拓岻  ┸ 憲茅岫拓】托岻 判 憲茅岫拓岻 ┻ 岫なは岻 

 

In a situation with one decision maker the VoI cannot be negative; if the decision maker 
anticipated misleading data it would be optimal to discard it resulting in a VoI of 0.  

However, we consider a situation of two decision makers and demonstrate that the VoI can 

be negative to one, i.e. the owner, as the new information is resulting in the other, i.e. the 
manager, making decisions that are less preferred by the owner than with no information.   
 
Table 1. Value of Information of a monitoring system in the unconditional and 
conditional formulation. 

Unconditional formulation 

Manager (M) = Owner (O) 

Conditional formulation 

Manager (M) 塙 Owner (O) 

Prior utility without monitoring 

u岫O岻  = max
j

u盤aj匪岫O岻
 

u岫O|M岻  = u岫O岻 岾 a岫M岻
opt

峇 = u岫O岻 犯arg max
j

u盤aj匪岫M岻 般 
a岫O岻

opt
 = arg max

j
u盤aj匪岫O岻

 

Posterior utility with monitoring 

u岫O岻 岫y岻 = max
j

u盤aj,y匪岫O岻
 u岫O|M岻 岫y岻 = u岫O岻 峭 a岫M岻

opt
岫y岻嶌 

u岫O|M岻 岫y岻 = u岫O岻 犯arg max
j

u盤aj,y匪岫M岻 般 a岫O岻
opt

岫y岻 = arg max
j

u盤aj,y匪岫O岻
 

Preposterior utility with monitoring 

u* 岫O岻 = 豹 max
j

u盤aj,y匪岫O岻
∙ p岫y岻 dy

Dy
 u*岫O|M岻  = 豹 u岫O岻 犯arg max

j
u盤aj,y匪岫M岻 般 ∙ p岫y岻 dy

Dy
 

Value of information of the monitoring system 

VoI = u*岫O岻  – u岫O岻
 VoI = u*岫O|M岻  – u岫O|M岻

 

 



The Streicker Bridge case study 

To illustrate how the presence of two different decision makers in the decision chain affect 
the way how the VoI is evaluated, we consider the case of Malcolm, the fictitious manager 
of an imaginary Office of Design and Construction at Princeton University, protagonist in 
[2] and [17]. Malcolm is responsible for the Streicker Bridge, a pedestrian bridge located 
on Princeton University campus. The bridge and its monitoring system are illustrated in 
much detail in a number of past publications [28] [29] [30], we summarise the main 
structural features, for clarity. The deck of the bridge is a continuous thin concrete 
posttensioned deck featuring a characteristic X-shape connecting four different sectors of 
Princeton Campus. From the structural point of view, it consists of a thin post-tensioned 
supported by a high resistance steel lattice. The main span of the bridge overpasses 
Washington road, a busy public road the campus (see Figure 4(a) and Figure 4(b)).  

The SHM-lab of Princeton University instrumented the bridge with two SHM systems: 
(i) global structural monitoring using discrete long-gauge strain Fiber Optic Sensors (FOS), 
based on fiber Bragg-grating (FBG) [31], and (ii) integrity monitoring, using truly 
distributed FOS based on Brillouin Optical Time Domain Analysis (BOTDA) [32]. These 
two approaches are complementary: discrete sensors monitor an average strain at discrete 
points, while the distributed sensors monitor one-dimensional strain field. Discrete FOS 
embedded in the bridge deck have gauge length 60 cm and feature excellent measurement 

properties with error limits of ±4 づご. Thus, they are excellent for assessment of global 
structural behavior and for structural identification. Instead, distributed FOS have accuracy 
an order of magnitude lower than discrete sensors and so cannot be used for accurate 
structural identification; they are used for damage detection and localization. Figure (4c) 
shows the sensors map in the main span, while Figure (4d) its cross section. 

Agents 

To make the case study easier to understand, we imagine the bridge managed by two agents 
with distinct roles: 

- Ophelia (O) is the owner responsible for Princeton’s estate; she is Malcolm’s 
supervisor and decides on whether to install the monitoring system or not. 

- Malcolm (M) is the manager responsible for the bridge operation and maintenance, 
graduated in civil engineering and registered as a professional engineer, who has to 
take decisions on the state of the bridge based on monitoring data, exactly as in 
Zonta et al. [2]. 

 
We assume that Ophelia and Malcolm are both rational individuals and that have the same 
knowledge background as for possible damage scenarios S of the bridge, prior information, 
and they have the same knowledge of the consequence of a bridge failure. They only differ 
in the way how to weight the seriousness of the consequences of a failure. It is probably 
unnecessary to remind that, while the Streicker Bridge is a real structure, the two 
characters, Ophelia and Malcolm, are merely fictitious and do not reflect in any instance 
the way how asset maintenance and operation is performed at Princeton University.  



 

Figure 4. The Streicker bridge: view of the bridge (a)(b), location of sensors in the main 
span (c), main cross section (d). 

States and likelihoods 

As part of this fictitious story, we suppose that both Ophelia and Malcolm are concerned 
by a single specific scenario: a truck, maneuvering or driving along Washington road, could 

a)

b)

c)

d)



collide with the steel arch supporting the concrete deck of the bridge. In this oversimplified 
example, we will assume that after an incident the bridge will be in one of the following 
two states: 

- No Damage (U): the structure has either no damage or some minor damage, with 
negligible loss of structural capacity. 

- Damage (D): the bridge is still standing but has suffered major damage; 
consequently, Malcolm estimates that there is a chance of collapse of the entire 
bridge. 

Similar to the assumptions in [1], we assume Malcolm (and similarly Ophelia) focuses on 
the sensor installed at the bottom of the middle cross-section between P6 and P7 (called 
Sensor P6-7d, see Figure 4(c)). 

We understand that for both Ophelia and Malcolm the two states represent a set of 
mutually exclusive and exhaustive possibilities, which is to say that P(D) + P(U) = 1. On 
the basis of their experience, they both agree that scenario U is more likely than scenario 
D, with prior probabilities P(D) = 30% and P(U) = 70%, respectively.  

We can also assume that both use the same interpretation model, i.e. they interpret 
identically the data from the monitoring system. As Malcolm will pay attention only to the 
changes at the midspan sensor (labelled P6-7d in Figure 4(c)), we presume that he expects 
the bridge to be undamaged if the change in strain will be close to zero. However, he is 
also aware of the natural fluctuation of the strain, due to thermal effects, and to a certain 
extent due to creep and shrinkage: he estimates this fluctuation to be in the order of 

±300 たi. We can represent this quantity with a probability density function pdf(i|U), with 

zero mean value and standard deviation j = 300 たi, which describes Malcolm’s 
expectation of the system response in the undamaged (U) state, i.e. this is the likelihood of 
no damage. On the other hand, if the bridge is heavily damaged (D) but still standing. 
Malcolm expects a significant change in strain; we can model the likelihood of damage 

pdf(i|D) as a distribution with mean value 1000 たi and standard deviation of j = 600 たi, 
which reflects Malcolm’s uncertainty of expectation. Before the data are available, he can 

also predict the distribution of i, which is practically the so-called evidence in classical 
Bayesian theory, through the following formula:  
 

pdf岫i岻 = pdf岫i】D岻∙P岫D岻 + pdf岫i】U岻∙P岫U岻 . 岫17岻 

 

When the measurement  is available, both update their estimation of the probability of 
damage consistently with Bayes’ theorem: 
 

pdf岫D】i岻 = pdf岫i】D岻∙P岫D岻
pdf岫i岻  , 岫18岻 

 

where pdf岫D】i岻 is the posterior probability of damage. Figure 6(a) shows the two 
unnormalized posterior distributions along with the evidence. Note that the posterior 
probability of damage starts exceeding the posterior of no-damage when the measurement 

 exceeds the threshold i違p = 540 たi. 



Decision model 

After he assesses the state of the bridge, we assume that Malcolm can decide between the 
two following actions: 

- Do nothing (DN): no special restriction is applied to the pedestrian traffic over the 
bridge or to road traffic under the bridge. 

- Close Bridge (CB): both Streicker Bridge and Washington Road are closed to 
pedestrians and road traffic, respectively; access to the nearby area is restricted for 
the time needed for a thorough inspection, which both Ophelia and Malcolm 
estimates to be 1 month. 

Ophelia and Malcolm agree that the costs related to each action, for each scenario, are the 
same as estimated in Glisic and Adriaenssens [28], and reported in Table 2. 

Table 2. Costs per action and state. 

 Scenario U (no damage) Scenario D (bridge fails) 

Action DN 
(do nothing) 

nothing happens                 
you pay nothing  

failure cost                                    権題 = $881,600 

Action CB 
(close bridge) 

1-month downtime cost                権第鐸 =$139,800 

1-month downtime cost                 権第鐸 = $139,800 

 
However, Ophelia and Malcolm differ in their utility functions, which is the weight they 
apply to the possible economic losses. Ophelia is risk neutral, meaning that according to 
her a negative utility is linear with the incurred loss, as illustrated in Figure 5. Strictly 
speaking, a utility function is defined except for a multiplicative factor, therefore it should 
be expressed in an arbitrary unit sometime referred to as util [33]. Since Ophelia’s utility 
is linear with loss, for the sake of clarity we will deliberately confuse negative utility with 
loss, and therefore we will measure Ophelia’s utility in k$.  

Unlike Ophelia, Malcolm is likely to behave risk adversely, i.e. his negative utility 
increases more than proportionally with the loss. We can describe mathematically the risk 
aversion classically defined in Arrow-Pratt theory [34] [35], where the level of risk 
aversion of an agent is encoded in the coefficient of Absolute Risk Aversion (ARA), 
defined as the rate of the second derivative (curvature) to the fist derivative (slope): 
 

A岫z岻 = U"岫z岻
U'岫z岻  ┻ 岫19岻 

 
To state Malcolm’s utility function, we can make the following assumptions: 
 

- Malcolm’s and Ophelia’s reaction are virtually identical for a small amount of loss, 
while their way of weighting the losses departs for bigger losses. 

- For small losses, therefore, the two-utility function may be confused, and we will 
adopt for Malcolm’s the same conventional unit (call it equivalent k$) for 
measuring utility. Malcolm’s utility function derivative for zero loss is equal to 1. 



- We assume that Malcolm’s utility has constant ARA; it is easily demonstrated that 
a function with constant ARA and unitary derivative at zero [36] takes the form of 
an exponential: 戟岫托岻 岫権岻 噺 な 伐 結貸佃ゲ提肯  ┸ 岫20岻 

              

where し is the constant ARA coefficient: A(z) =  
- To calibrate , we assume that for a loss equal to the failure cost, Malcolm’s 

negative utility is twice that of Ophelia’s. This results in a constant ARA coefficient 

し = -1.425 M$-1. 

Using these assumptions, the resulting Malcolm’s utility function is plotted in Figure 5. 
We wish now to verify how the different utility functions affect the decision of the two a 

priori and a posteriori. 
 

 

Figure 5. Representation of Ophelia’s and Malcolm’s utility functions. 

Prior utility 

Consider the case where Malcolm has no monitoring information. Based on his utility, 
Malcolm estimates the utilities involved in each action. Action CB depends only on the 

downtime cost zDT, while action DN depends also on his estimate of the state of the bridge: 
 



u(M)
DN

 = 戟(M) 岫zF岻 ∙ P岫D岻 = -528.ぱぱぬ kｕ ┸   u(M)
CB

 = 戟(M) 岫zDT岻   = -154.940 kｕ ┻    岫21岻 

 

Since the utility of action CB is clearly less negative than the utility of action DN, Malcolm 

would always choose to close the bridge after an incident if he has no better information 

from the monitoring system. Therefore, Malcolm’s maximum expected utility without the 
monitoring system is u(M) = u(M)

CB
 = -154.940 k$. 

Now imagine Ophelia in charge of the decision: her prior utilities are different from 

Malcolm’s and their values are somewhat closer: 
 

u(O)
DN

 = 戟(O) 岫zF岻 ∙P岫D岻 = -264.480 kｕ ┸    u(O)
CB

 = 戟(O) 岫zDT岻   = -139┻800 kｕ ┸    岫22岻 

 
but in the end, in this particular case, her optimal action would be again ‘close the bridge’.  

Posterior utility 

Now imagine that the monitoring system is installed and let’s go back to Malcolm. Since 
now Malcolm can rely on the monitoring reading, in this case the expected utility of an 

action is calculated using the posterior probability of damage pdf岫D】i岻 rather than the prior: 
  憲寵喋】悌岫托岻  = u岫zDT岻 , 憲岫托岻

DN|i = u岫zF岻∙ pdf岫D】i岻 . 岫23a┸b岻 

 

Note that since the cost of closing the bridge is independent on the bridge state, the 
monitoring observation  does not affect the posterior utility of closing the bridge (CB), 

which is always equal to -154.940 kｕ as in the prior case. On the contrary, the expected 

utility of doing nothing (DN) does depend on the probability of having the bridge damaged, 
and this probability, in turn, depends on the monitoring observation through Equation 

(23b). Malcolm’s posterior expected utilities (i.e. after observing data from the monitoring 

system) for actions DN and CB are plotted in the graph of Figure 6(b) as functions of the 
observation . As a rational agent, Malcolm will always take the decision that maximizes 

his utility. For very small values of , suggesting a small probability of collapse, Malcolm’s 
utility of DN is bigger than the utility of CB, and therefore Malcolm will keep the bridge 
open. Malcolm’s utility of closing the bridge starts exceeding the utility of doing nothing 

above a threshold of strain of  i違u(M)
 = 170 たi, and therefore Malcolm will always close the 

bridge above this threshold. 
Note that this threshold is much smaller than the threshold i違p whereby Malcolm would 

judge the damage more likely, so there is a range of values whereby Malcolm, in 

consideration of the possible consequences, will still prefer to close the bridge even if it is 
more likely the bridge is not damaged. Malcolm’s maximum expected utility is plotted in 

bold in the graph of Figure 6(b). 

Assume now that Ophelia is in charge of the decision. Since she weights the losses 
differently, her utility curves as functions of  are different from Malcolm’s, and are plotted 

in the graph of Figure 6(c). For the same reason, the threshold above which she would close 

the bridge,  i違u(O)
 = 310 たi, is different and much higher than Malcolm’s, reflecting 

Ophelia’s risk neutrality in contrast to Malcolm’s risk aversion. Therefore, there is a range 

of values of measurements, from 170  to 310 , where the two decision makers, both 



rational, behave differently under the same information, simply because of their different 

level of risk aversion. 
 

 

Figure 6. Representation of Malcolm’s estimation of the state of the bridge a priori (a), 
Malcolm’s decision model with monitoring data (b), Ophelia’s decision model with 
monitoring data (c), Ophelia’s decision model based on Malcolm’s own (d).  

 



Preposterior utility and Value of Information 

In this scenario Ophelia and Malcolm are both involved in the decision chain.  Malcolm is 
the operational manager who decides whether or not to close the bridge in the occurrence 
of an incident.  Ophelia is the owner who decides on the purchase of the monitoring system.  
This is illustrated as a decision tree in Figure 7. We seek the VOI as anticipated by Ophelia 
(she has to decide), which explicitly accounts from Malcolm reacting to the signals from 
the monitoring system.  
 

 

Figure 7. Decision tree for the Streicker Bridge case study. 

Before attacking this problem, let’s first see what happens if the decision chain was in the 
hands of a single individual. Let us start, for example, with Malcolm. His preposterior 
utility (i.e., the prior utility of operating the bridge with the monitoring system) can be 
calculated with the equation: 
 

u岫M岻 *
 = 豹 u 犯argmax

j
u(aj,i)岫M岻 般 ∙ p岫i岻 di

岫M岻
 = -

Di

88┻504 kｕ ┸ 岫24岻 

 
where the index (M) indicates that all the utilities are calculated from Malcolm’s 
perspective. Malcolm’s VoI is simply the difference between the preposterior utility (i.e. 
the prior utility of operating the bridge with the monitoring system) and the prior utility 
(i.e. the utility of operating the bridge without the monitoring system): 
 

VoI =  u岫M岻 茅  - u岫M岻  = -88┻505 kｕ 髪154.940 kｕ = はは.435 kｕ ┻ 岫25岻 

 

Note that the VoI is a utility, not an actual amount of money, and is measured in Malcolm’s 
utility unit, which in our case is Malcolm’s dollar-equivalent as defined above. 

Now we can calculate the VoI from Ophelia’s perspective, assuming that she takes 

decisions at any stage of the decision chain. In this case being Ophelia less risk adverse 



than Malcolm, her utilities will be u岫O岻 茅
 = -84.600 kｕ and u岫O岻  = -139.800 kｕ, so eventually 

Ophelia’s VoI would be: 

VoI =  u岫O岻 茅  - u岫O岻  =  -84,600 kｕ + 139,800 kｕ = のの┻にどど k$ ┻ 岫26岻 

This practically means that, if Ophelia was in charge of all the decisions, she would be 

willing to spend up to 55.200 k$ for the information from the monitoring system.  

In reality, Ophelia is only in charge of the purchase of the monitoring system, while the 

one who is going to use it is her colleague Malcolm. So, in taking her decision, Ophelia 
has to figure out how Malcolm is going to behave both with and without the monitoring 

system. In other words, we have to calculate the prior and preposterior utility from 

Ophelia’s perspective, but conditional to the action that Malcolm will undertake.  
For example, to calculate the prior (i.e. the utility of Ophelia of operating the bridge 

without the monitoring system, conditioned to Malcolm’s actions) conditional utility, 
Ophelia thinks: what will Malcolm do after an accident if no monitoring system is 

installed? I know Malcolm, and I know he will close the bridge right away (I would do the 

same, but that’s irrelevant). My utility, if he closes the bridge, is: 
 

u岫O|M岻  = u 犯argmax
j

u(aj)
岫M岻 般(O) = u(O)

CB
 噺 -139┻800 kｕ ┸ 岫27岻 

 
which in this case is the same as the unconditional. And what – Ophelia continues to think 
– would Malcolm do if a monitoring system was installed. I know that he would look at the 

strain i and he would close the bridge if i >170  and keep the bridge open otherwise. I 

personally would NOT do the same, but that’s it, I have to live with Malcolm’s decision! 
The way Ophelia evaluates the utility on Malcolm’s decisions is explained in Figure 6(d): 
her utilities for each possible Malcolm’s choice are calculated using her utility function, 
hence all individual curves are identical to those of Figure 6(c), However, the threshold 
whereby she expects the bridge is closed is Malcolm’s threshold, i.e. the same as in Figure 
6(d). Ophelia’s utility of Malcolm’s choice is, for any value of i:  
 欠岫拓岻 墜椎痛= u岫拓岻 犯argmax

j
u(aj,i)(M) 般 噺 -なのね┻ひね k$ ┸ 岫28岻 

 
and therefore the preposterior utility conditional to Malcolm is: 
 

u岫O|M岻 *
 = 豹 u 犯argmax

j
u(aj,i)岫M岻 般 ∙ p岫i岻 di

岫O岻
 =

Di

-88┻504 kｕ 岫29岻 

 
Eventually, Ophelia’s VoI, conditional on Malcolm’s decision, is: 
 

VoI 岫O|M岻 =  u岫O|M岻 *
- u岫O|M岻   =  -88┻505 kｕ + 139.800 kｕ = 51.295 kｕ . 岫30岻 

 

Again, this quantity is the money Ophelia believe is worth spending on a monitoring 

system, having accepted that Malcolm, not her, is going to use it. The conditional 
VoI 噺 51.495 kｕ  岫O|M岻

 is slightly lower than the unconditional VoI = 55.200 k$ 岫O岻
. 

Generally, it is clear from Ophelia perspective, that when Malcolm’s decision is different 



from hers it is always suboptimal. Therefore, the conditional prior and pre-posteriors are 

always smaller than the corresponding unconditional: u岫O|M岻 判 u岫O岻
, uこ岫O|M岻 判 uこ岫O岻

. In 
the present example, Ophelia and Malcolm agree on what to do a priori u岫O|M岻 噺 u岫O岻

, the 

conditional VoI 岫O|M岻
 is necessarily smaller than the conditional VoI 岫O岻

. In simple words, 

Ophelia’s rationale goes along these lines: I can exploit the monitoring system better than 

Malcolm, therefore the benefit of the monitoring system would be greater if I was using the 

monitoring system rather than Malcolm. 

However, this is not the most general case. Assume for example the prior probability of 
damage P(D) is 10%: Ophelia’s prior utility of action DN u(O)

DN
= -88.160 k$, small enough 

for Ophelia to keep the bridge open; on the contrary Malcolm’s prior utility u(M)
DN

 = -

176.294 k$, is still big enough for Malcolm to close it. In this case the unconditional prior 
is much bigger than the conditional one, since Ophelia doesn’t agree with Malcolm’s 
choice, and the conditional VoI岫O|M岻

 = 103.670 k$ is much bigger than the unconditional 

VoI 岫O岻
= 53.217 k$, meaning that monitoring is much more useful in this case. We can 

almost hear Ophelia commenting: This Malcolm can’t make the right decision alone, 

hopefully some monitoring will help him! For sure a monitoring system is more useful to 

him rather than me! 

Negative Value of Information? 

We noted above that in the unconditional case (i.e. when Ophelia is both owner and 
manager), the preposterior utility u* is always greater or equal than the prior u, hence the 

VoI cannot be negative. In simpler words, if a monitoring system if offered to Ophelia at 

no cost, she has no reason not to accept it. Of course, if at any time Ophelia realizes that 
the monitoring system yields junk data, she can always decide to disregard this information, 

but she has no economic reason to refuse a priori to see the data (‘Take each man’s censure, 
but reserve thy judgment’). 

We also noted that in the unconditional case (i.e. when Ophelia is the owner but someone 

else, Malcolm, is the manager who decide based on the SHM data) there is no logical 

necessity whereby Ophelia’s preposterior utility must be greater than her prior. So in 
principle we can always find a combination of prior probabilities and utility functions 

which ultimately yield a negative conditional VoI. We illustrate this concept with an 

example. 
Imagine that Malcolm, instead of being risk adverse, is risk seeking. This is to say that 

his utility function is convex (i.e., with positive second derivative), as shown in Figure 8: 

for this exercise we can again assume an Arrow-Pratt’s utility model, as in Equation (20), 
but this time with a positive ARA coefficient 5.234 M$-1. Also, assume, both for 

Ophelia and Malcolm, a high prior probability of damage, say P(D) = 55%.  

Using these assumptions, Ophelia’s prior utilities for doing nothing (DN) and closing the 
bridge (CB) are u(O)

DN
= -484.88 k$ and u(O)

CB
= -139.800 k$ respectively, while Malcolm’s 

are u(M)
DN

 = -108.660 k$ and u(M)
CB

 = -100.680 k$. For both, closing the bridge (CB) is 

the action that yields the maximum expected utility a priori: so they both agree that, without 
a monitoring system, the best thing to do is to close the bridge. 

Their decisions start departing after receiving data from the monitoring system. Figure 9 

shows how Ophelia’s and Malcolm’s decision models change based on the new 
assumptions.  



We note that: 
- because of the high prior risk of collapse, risk-neutral Ophelia is very conservative 

and thinks it is a good idea to close the bridge as soon as the elongation recorded is 

greater than  i違u(O)
 = 70 たi; 

- risk-seeking Malcolm doesn’t take a collapse so seriously and he would rather keep 
the bridge open unless the sensor reads an elongation greater than  i違u(M)

 = 423 たi.  

So there is a very wide range of values, from 70 たi to 423 たi, whereby Malcolm would 

keep the bridge open in disagreement with Ophelia, who believes this is a dangerous 
practice which can potentially result in a big loss. Based on these premises, Ophelia’s 
conditional preposterior (i.e. Ophelia expected utility conditional to Malcolm’s decision) 
is calculated, using equation (29), in u岫O|M岻 *

= ‒なのど┻ぬはに kｕ, and eventually her conditional 
value of information is: VoI 岫O|M岻 噺  u岫O|M岻 こ‒ u岫O|M岻   噺 ‒ なのど┻ぬはに kｕ 髪 なぬひ┻ぱどど kｕ 噺 ‒ など┻のはに kｕ ┻ 岫ぬな岻 

Contrary to the example above, now the conditional value of information is negative, 
meaning that Ophelia’s perceives the monitoring information as damaging. Ophelia thinks 
that, in observing the monitoring data, Malcolm may wrongly decide to keep the bridge 

open even when, in her opinion, it should be closed. She concludes that, after all, it is better 
not to install the monitoring system at all. In Ophelia’s own words: Malcolm is an 

irresponsible and should not use the monitoring system! I would rather pay money than 

letting him use the system! Indeed, the negative value of information is exactly the amount 
of money Ophelia is willing to pay to prevent Malcolm using the monitoring system. 
 

 

Figure 8. Representation of Ophelia’s and risk-seeking Malcolm’s utility functions. 



 

Figure 9. Representation of risk-seeking Malcolm’s estimation of the state of the bridge a 
priori (a), risk-seeking Malcolm’s decision model with monitoring data (b), Ophelia’s 
decision model with monitoring data (c), Ophelia’s decision model based on risk-seeking 
Malcolm’s own (d).  

Concluding remarks 

The benefit of SHM can be quantified using the concept of Value of Information. This is 
the difference between the anticipated utilities of operating the structure with the 
monitoring system (the preposterior utility) and without the monitoring system (the prior 



utility). Preposterior utility, Prior utility and Value of Information are all subjective 
quantities: they depend on the particular background information and risk appetite of the 
individual in charge of the decision. In calculating the VoI, a commonly understood 
assumption is that the individual who decide on the installation of the monitoring system 
is the same rational agent who will later use it.  

In the real world, these could be two separate subjects. We labelled conventionally owner 
the individual who decides on buying a monitoring system and manager the one who is 
going to use it, once the system has been installed. The two decision makers, even if both 
rational and exposed to the same background information, may still act differently because 
of their different appetites for risk. 

We developed a formulation to properly evaluate the VoI from the owner perspective, 
when the manager is a different individual. The rationale of the formulation is that the 
owner, in evaluating the benefit of the monitoring system, must anticipate the way how the 
manager will actually react to the monitoring information. The calculation requires the 
definition of the owner’s prior and preposterior utilities conditional to the manager 
anticipated behavior. For convenience, we defined the VoI conditional in the case when the 
manager is not the owner, and unconditional when manager and owner coincide. 

To illustrate how this framework works, we have evaluated a hypothetical VoI for the 
Streicker Bridge, a pedestrian bridge in Princeton University campus equipped with a fiber 
optic sensing system, assuming that two fictional characters, Ophelia the owner and 
Malcolm the manager, are involved in the decision chain. In the example, Malcolm is the 
manager who decide whether to keep the bridge open or close it, following to an incident 
that could potentially jeopardize its safety. Ophelia is the owner who decide whether to 
purchase a monitoring system to help Malcolm making the right decision in that event. We 
noted that: 

- Seen from the owner’s perspective, the choices of the manager are always 
suboptimal: Malcolm’s decisions don’t necessarily coincide with what Ophelia 
would have made in the same situation. 

- In the prior situation (i.e. without SHM), the conditional utility (i.e. when the 
manager is not the owner) is always equal or lower than the unconditional one (i.e. 
when manager and owner coincide).  

- The conditional (i.e. manager is not owner) VoI could be bigger or smaller than the 
unconditional (i.e. manager is owner); if Ophelia agree on how Malcolm makes 
decision without the monitoring system, the conditional value of monitoring is 
always lower than the unconditional. 

- If Ophelia doesn’t agree with Malcolm, the conditional value of information may 
be bigger than the unconditional: Ophelia would strongly support the purchase of 
the monitoring system in the hope it will help Malcolm to make the right decision. 
 

While the unconditional VoI is never negative, we demonstrate that under appropriate 
combination of prior information and utility functions, the conditional value of information 
could be negative. This can happen when Ophelia believe than the monitoring system can 
seriously mislead Malcolm’s decision. The negative value of information is exactly the 
amount of money Ophelia is willing to pay to prevent Malcolm using the monitoring 
system. 
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