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Abstract

Multi-robot search-and-rescue missions often face major challenges in adverse environments
due to the limitations of traditional implicit and explicit communication. This paper pro-
poses a novel multi-robot communication system (MRoCS), which uses a passive action
recognition technique that overcomes the shortcomings of traditional models. The proposed
MRoCS relies on individual motion, by mimicking the waggle dance of honey bees and thus
forming and recognising different patterns accordingly. The system was successfully designed
and implemented in simulation and with real robots. Experimental results show that, the
pattern recognition process successfully reported high sensitivity with good precision in all
cases for three different patterns thus corroborating our hypothesis.

Keywords: Swarm Robotics, Multi-robot communication, Passive action recognition,
Bio-inspired computation, Honey bee waggle dance, Unmanned aerial vehicle.

1. Introduction

Search-and-rescue (SaR) missions using a multi-robot-system (MRS) are considered to
be very challenging as communication amongst robots is limited due to the fact that the
environment is often prone to sensory noise with limited information. Examples of SaR
scenarios include earthquakes, floods or other natural disasters and multi-robot-systems
could help in the task of rescuing people by aiding fire brigades, ambulances, police forces,
and volunteers [43].

A MRS consists of a number of intelligent, self-organised and collaborative robots. Mul-
tiple robots can perform complex tasks with a minimum time span and can increase their
robustness in the environment [9]. In MRS, individual robots are smart enough to make
decisions and can plan to accomplish a complex task collectively. They rely on mutual in-
teractions, as well as the local information from the environment, where the loss of a given
robot does not affect the overall system.
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In a swarm, robots dynamically assign themselves to different tasks to fulfil the require-
ments in a particular environment and conditions [13]. Nevertheless, with the increase of
number of robots, as it typically occurs in a swarm of robots, coordination and commu-
nication are necessary to fulfil complex tasks. Communication has a huge impact on the
performance of a swarm, where the robots interact with each other to exchange knowledge
about their environment [37]. However, in such dynamically changing environment, tradi-
tional robot communication often reaches its bottleneck and there may be uncertainty on
account of incorrect information or information not reaching the robots within the swarm.

Robot communication can be divided into three categories, (1) explicit communication
(robots directly and intentionally communicate the relevant information to their teammates
through some active means)[1, 24, 51, 36], (2) implicit communication (robots sense the
effects of their teammates’ actions through the influence they leave on the environment e.g.,
stigmergy)[12, 35], and (3) passive action recognition (robots use sensors to directly observe
the actions of their teammates).

Explicit communication has been the one widely used due to its directness and ease with
which robots become aware of the actions and/or goals of their teammates [10]. However,
explicit communication shows limitations in terms of fault-tolerance and reliability, as it
typically depends upon a noisy, limited-bandwidth communication channel that may be
unable to continually maintain all members of the robot swarm connected.

On the other hand, implicit communication is non-transient and needs no encoding or
decoding, knowledge of place, or memory. Robots only react to the local configuration of
the environment [4]. However, with the increase in number of robots, the interactions also
increase, which decrease the response time. As a result, robots are unable to achieve given
tasks [27]. Additionally, the robots, which have no knowledge to detect if whether or not
the task has been completed, may jeopardise the objectives of the entire swarm.

For instance, let us consider a military applications, wherein robots need to exchange
messages. An explicit communication is vulnerable as it can be intercepted, or understood,
by opposing forces. From a security perspective, any open implicit or explicit communi-
cation method can be jammed, intercepted or otherwise disturbed relatively easily by the
enemy. The security of wireless communication has been well researched, but the security
of unconventional and more exotic interaction methods should be explored and presents a
compelling security challenge [21]. Therefore, other types of communication, such as passive
action recognition, is useful and not easily interpretable. Shim and Arkin [46] advocated
that a biologically inspired behaviour as a robotic deception system for military application
can lead to a robust passive action recognition based communication, which can be beneficial
to improve the security system.

Passive action recognition techniques do not rely on any communication medium, lan-
guage or environmental configuration [22]. However, for such communications to be success-
ful, robots need to be able to recognise teammates’ behaviours by decoding and interpreting
their actions [34]. Hence, in addition to military applications, this is also useful for hazardous
environment, such as, in case of a natural disaster, where establishing communication chan-
nel is challenging and sometimes impossible. Human-robot interaction can also be made
easy by passive communication, especially when humans are not connected to any other
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traditional robot communication medium. This type of swarm behaviour can be observed
in nature e.g., honey bee’s waggle dance [53, 14] which was used as a bio-inspiration in this
work.

Honey bees daily life cycle involves collection of good nest or searching for nectar in
neighbouring environment. Although the individual insect has limited ability, collectively
they can perform complex tasks using their self-organising behaviour without any recognised
interaction between them. The nest or nectar collection activity can be expressed in follow-
ing four categories: i) Scouting/foraging; ii) Pattern formation; iii) Pattern recognition; and
iv) Decision making behaviour. Recently, roboticists have shown keen interest on developing
new models inspired by the honeybee waggle dance due to its ability for passive communi-
cation, which helps to improve adaptive robotic behaviour and avoids complex multi-point
(wireless) communication among robots[28].

In this paper, we are particularly interested in mimicking honeybees’ waggle dance as
a form of passive action recognition within MRS. Although there are a number of papers
available in the literature that explain the pattern formation [15, 44] and pattern recognition
behaviour [17] of honey bee waggle dance, to the best of authors’ knowledge, its application
in robot communication is largely unexplored. The proposed approach considers the design
of a multi robot system, where a scouting (leading) robot generates a behavioural pattern by
body movement [23] while follower robots recognise and decode the pattern without the need
to implicitly or explicitly exchange information among themselves. The main contributions
of this paper are threefold:

1. Mimicking honey bees’ waggle dance in multi-robot system which includes,

• Simple and complex pattern formation resembling scouting/foraging behaviour
and

• Pattern recognition by observing and recognising previously formed patterns (a
behaviour of follower bees).

2. Simulating our proposed system using Robot Operating System (ROS1).
3. Prototyping the MRS using a group of Unmanned Aerial Vehicles (UAV) (i.e., Parrot

AR. Drones2).

The paper is organised as follows: background and related work are described in Sec-
tion 2. Details of the overall system and experimental set up are discussed in Section 3
following the methodology on pattern formation and pattern recognition in Section 4. Re-
sults obtained from simulations and real environment are reported and discussed in Section 5
followed by concluding remarks and future work in Section 7.

2. Background and Related Work

Swarm intelligence and biologically inspired computation, especially in robotic applica-
tions, have gained significant attraction from researchers in recent years [5]. Many systems

1http://www.ros.org/
2http://ardrone2.parrot.com/
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have been proposed in the literature that mimic the collective behaviour of insects or animals
to perform complex tasks using a group of simple robots (often referred as agents). Many
bio-inspired algorithms, such as ant colony algorithm, firefly algorithm, bee algorithm and
particle swarm optimisation have been applied in various areas of science and engineering
research [42, 11, 52]. Communication in a swarm is extremely important because, robots
must share their information to achieve a task. Increasing the number of robots in a MRS
decreases the amount of time needed to complete a given task. However, this may not be
always true in a practical scenario as multiple robots struggle to speed up the task due to
limited communication bandwidth. As a result, the performance of the system degrades
as more robots are employed. Thus, we need a good communication system to flow the
information uninterruptedly. In this section, we shall discuss about various types of commu-
nication proposed in the literature and used in MRS, followed by an overview of honeybees’
life-cycle and waggle dance in the context of this paper.

2.1. Multi-robot communications

The term robotics consists of sensing information from the environment, understand-
ing the main features, modifying them with their requirements and then acting on the
environment. The main objective in MRS is to achieve the final goal through inter-robot
interactions. To achieve this goal, robots require information about their teammates and the
environments. According to Parker [37], this information can be acquired by three common
techniques: a) explicit communication, b) implicit communication and c) passive action
recognition.

2.1.1. Explicit communication

Explicit communication is based on the intentionally transmitting and receiving infor-
mation via some type of protocol or language as a medium. This is always intentional and
the robots are completely aware of it. An example is human’s interaction with each other
using spoken languages. Deploying this type of communication in MRS always requires
some medium, e.g., radio, Ethernet or wireless. However, the communication medium can-
not always be shared, therefore it is necessary for the robots to obtain exclusive access to
them. The problem of communication medium sharing is often associated with bandwidth
limitation. Rekleitis et al. [41] examined the problem of multi-robot coverage path plan-
ning for a team of robots with limited communication, where the robots operate under the
restriction that communication between two robots is only available when they are within
the line of sight of each other. In comparison, explicit communication is less robust than im-
plicit communication as communication desires to be transmitted and received in a separate
procedure [1]. The authors developed an autonomous and decentralised robot system called
ACTRESS. Each robotic agent is able to act autonomously and can interact with other
agents. As ACTRESS is a decentralised system, it does not need a supervisor. The authors
relied on explicit communication to exchange information using a wireless communication
framework. In this case, wireless communication is advantageous in terms of mobility of the
autonomous mobile robots. Multiple implementation of one-to-one communication permits
one-on-n communication. However, with the increase in number, the communication system
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reaches its bottleneck, taking longer to execute the tasks, even though some agents are not
active at any given instances. Parker [36] proposed a mobile robotic system (ALLIANCE)
to tackle dangerous tasks to reduce the risk for humans. The author developed a behaviour-
based architecture with a team of mobile robots performing hazardous toxic waste clean-up
tasks. The group of robots were designed to be fault tolerant, reliable and adaptive in nature.
An explicit broadcast communication system was developed to form interactions between
individual robots. Such communication mechanism allows robots to inform other members
of the team about its current activities without establishing any two-way conversations.
Although the robots do not entirely rely on sensing through the world, the communication
medium is not guaranteed to be available. In some cases, when each robot broadcasts a
statement of its current action, other robots may choose to listen or ignore.

In a previous work [10], we proposed a communication architecture for the Robotic
Darwinian Particle Swarm Optimisation (RDPSO) with the intent to overcome the Mobile
Ad-Hoc Network (MANET) constraints. The problem was described as having a population
of N robots, divided into several swarms of NS robots, wherein each robot would be both
an exploring agent of the environment and a mobile node of a MANET that performs
packet forwarding according to a paradigm of multi-hop communication. The goal was to
ensure that robots would explore an unknown environment, while ensuring that the MANET
would remain connected. The dynamics of the communication data packet structure shared
between robots was described and a set of simple communication rules was proposed in
order to reduce the communication overhead within swarms of robots. Several experimental
results with up to fifteen real robots in a large scenario clearly allowed us to observe the
advantages of such an optimised strategy regarding the scalability of the algorithm, thus
paving the way for future swarm applications of hundreds or thousands of robots.

The use of explicit communication can ensure the accuracy of the exchange of information
between robots. However, the communication load of a system will increase as the number
of robots increases. This may cause a decrease in system performance or else lead to an
overall system failure in extreme cases.

2.1.2. Implicit communication

This type of communication uses the environment as a communication medium. This
should be achieved by embedding different kinds of sensors in the robot. Implicit commu-
nication can be categorised into two types: active implicit communication (e.g., interaction
via the environment) and passive implicit communication (e.g., interaction via sensing).
Active implicit communication refers that the robots communicate by collecting the infor-
mation of others in the environment. Passive implicit communication refers that the robots
communicate by perceiving a change of environment through the use of sensors [54].

According to Beckers et al. [4], robots that use implicit communication, interact with
each other through the effects they leave on the environment. An example is ant foraging
behaviour where some ants lay pheromone on the way of their food foraging. Using the
smell of pheromone trails they exchange the information of food source and the shortest
path of the food to the hive. Authors presented several experiments, where a group of
randomly distributed robots were trying to build a single cluster. The robots were completely
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autonomous and independent. They interacted with each other and with the experimental
environment using an indirect method of communication mimicking stigmergy. This type of
communication needs no encoding or decoding, no knowledge of place, no memory and it is
not transient. In brief, the robots only react to the local configuration of the environment.
However, with the increasing number of robots, the number of interaction also increases,
which is time consuming and sometimes destroys the existing cluster as the robots have
no knowledge to detect whether the task was completed or not. Kube and Zhang [27]
constructed a multi robot system to perform a cooperative task (e.g., box pushing) without
any centralised control or explicit communication system. The authors have designed an
algorithm solely based on the local information of the environment. The advantage of this
type of communication is that one can increase the number of robots for certain tasks. Yet,
increasing the number of robots decreases the response time and as a result, the robots may
be unable to complete the collective task.

Nevertheless, as discussed in Section 1 neither explicit communication nor implicit com-
munication architectures are suitable in all adverse environments or all application scenarios,
e.g., security applications. In these particular situations, we advocate passive action recog-
nition as an alternative reliable communication technique.

2.1.3. Passive action recognition

In a different approach, according to Huber and Durfee [22], considered the use of passive
action recognition, where robots should be able to observe the behaviour and actions of their
teammates, e.g., their body languages. Robots communicate among themselves without
any medium or language. For such communication, robots should be able to recognise other
robots’ behaviour and identify what their actions mean. The authors developed a concept of
coordination through observation. An agent coordinates its behaviour using plan recognition
techniques to obtain the coordination information. This is useful in dangerous situations
where the agent cannot communicate its plans and goals to other teammates. However, there
are some costs associated with such recognition, specially the uncertainty due to imperfect
observation and inference. Novitzky et al. [34] focused on the cooperative interaction in
a MRS using the ability to understand the behaviour and action of other robots. The
authors defined a task performed by an autonomous robot using its own dance behaviour,
called Infinity Pattern, to indicate the location of a mine-like object (MLO). An autonomous
surface vehicle (ASV) using behaviour recognition technique decoded the Infinity Pattern
and recognised the location of MLO. Though it is advantageous to predict team members’
behaviour, which improves the overall performances, this is a time consuming technique.

Ballagi et al. [3] introduced an action selection method for a multi robot task sharing
problem. The authors proposed to use a fuzzy signature evaluation and decision-making
system for intention guessing and efficient action selection. A code book was built to allow
robots recognising the situation and taking action accordingly. In this case, two robots
should possess the same part of the code book, otherwise, the information to be transmitted
might be distorted and may end up with a deadlock combination. Ghosh and Marshall [16]
proposed a suitable model for collective decision-making method in a swarm of robots, where
each robot has to choose the better option among several alternatives having different profits.
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One of the drawbacks of this model is the use of perfect communication, which is unrealistic
in a real-world context.

Although passive action recognition embraces complex mechanisms and is a major re-
search topic in itself, this paper presents a simplistic, and still reliable way to passively
communicate in a MRS by getting inspiration from honeybee’s life-cycle and waggle dance.

2.2. Honeybees’ life-cycle and waggle dance

Honeybees’ life-cycle is a fascinating biologically inspired computation endeavour due
to their socially complex colonial culture. Although the individual insects have limited
ability, collectively they can perform complex tasks using their self-organising behaviour
without any implicit or explicit communication among themselves. This is achieved by
their body movement known as Waggle Dance [53]. The communication involves pattern
formation depicted in the waggle dance and pattern recognition, which is decoding the
hidden information within the dance actions.

Nectar collection is a major activity in honeybees’ daily lives and involves a group of
worker bees. There are two types of worker bees present in a beehive depending on their
work load: a) forager or scout bee and b) follower bee. A forager honeybee randomly visits
different flower sites searching for promising nest site and food resource (i.e., nectar). The
foraging behaviour depends on the environmental temperature and time of the year. They
rely on direction of the sun, polarised light pattern (if it is cloudy day), smell of flowers and
earth’s magnetic fields. They start flying to a particular direction with respect to the azimuth
angle of the sun to the hive. Janson et al. [23] described how does the scouting behaviour
of honeybee allow selecting good quality nest/food sites that is far away. Once nectar was
collected, the forager bee returns to the hive, and attempts to attract other follower bees for
the visited site. To convince other bees and communicate the site information, the forager
bee performs the Waggle Dance. Two types of dance pattern are generally observed: if
food source is too close, they make a round shape dance which indicates only direction
and whereas small eight like shape represents a far away food source. The waggle dance is
correlated with the direction and the distance of the suitable nectar resource to the hive.
Dance direction depends on the azimuth angle of the sun to the food source with respect to
gravity. Figure 1a) shows how does the direction of waggle dance depends on the azimuth
angle of sun to hive. The forager bee also adjusts her dance accordingly to accommodate any
time lapse to the changing direction of the sun. Therefore, the follower bees can accurately
move towards the food source although the angle of the sun changes continuously. The
duration of the waggle dance and the number of waggle movement changes with the distance
are described by Esch and Burns [15] and Seeley et al. [44]. Distance vs waggle phase graph
is shown in Figure 1b).

Multiple forager bees participate in the dancing competition and, at the same time, they
try to attract other follower bees. The follower bees closely observe the forager bee’s body
movement, dance orientation, vibration of the wings, and duration of the waggle dance.
A forager bee should dance more lively and perform longer so that it can communicate
the detailed information about existence of a highly reliable and quality food source. The
followers decode and recognise the information communicated through the waggle dance

7



(a) (b)

Figure 1: The waggle dance is correlated with the direction, the distance and the azimuth angle of the sun
to the suitable nectar resource. (a) An example of waggle dance direction that depends on the azimuth
angle of the sun to the hive ([6]) and (b) Distance vs Waggle phase graph ([15]).

and then take a decision to follow a particular forager bee. The details of the techniques
used by follower bees to decode and recognise the information provided by the forager bees
through their waggle dance are still largely unknown. Understanding the information is very
challenging as the duration of the waggle dance is small and the forager bee is overcrowded
by the other follower bees. Therefore, the follower bees may need to encode some meaningful
information from the dancing bees as described by Gil and Marco [17]. The communication
between forager and follower bees through waggle dance is generally accurate and robust,
and thus the motivation of this paper.

The literature presents some papers that are inspired by honey bees’ life-cycle or waggle
dance [38, 28, 2]. Recently, Landgraph et al. [29] recorded and analysed honey bee waggle
dance motion trajectories of European honey bees. A set of properties was used as input
parameters to model a biometric honey bee robot, such as global parameter, waggle run
parameter, return run parameter and intra waggle run parameter. This model has been
able to produce trajectories similar to real ones. In this paper, we go a step further by
mimicking the waggle dance in multi-robot communication, with the intent to propose an
alternative passive action recognition technique, robust to environmental variations.

3. MRoCS design

In order to mimic the honeybees’ waggle dance accumulation system, we proposed and
developed a novel communication infrastructure for a multi-robot-system using UAVs. This
section describes the overall system design and the experimental setup used in this work.
The details of the methodology are discussed later in Section 4.
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Figure 2: System overview: A forger UAV forms pattern using pre-defined geometrical shapes; The follower
UAV captures the patterns using onboard front camera and streams the video wireless to a base computer
for further processing; and the patterns are recognised using proposed image / video processing algorithm
running at the base computer.

System overview:. Passive action recognition based communication models (e.g., waggle
dance), include two distinct phases: a) action or pattern formation; and b) pattern recog-
nition [7]. In a MRS, the former step can be achieved by forming different shapes using
robotic motion of individual agents, while we propose a computer vision based algorithm for
the latter step. The proposed approach reveals an effect of communication between robots,
similar to broadcasting or, more specifically, geocasting, by updating neighbourhood robots
knowledge, which affects their own decision-making and, inevitably, the collective decision-
making of the team. The key difference is that no explicit messages are exchanged between
robots, making the system more robust, unpredictable and secure. For the design of our sys-
tem, we chose UAVs as robotic agents due to their flexibility and capability to form patterns
in every direction (X, Y and Z-axis). On the other hand, recognising objects or patterns
can be achieved using various sensors, including infra-red [31], LiDAR [20], ultra-sound [33]
or optical camera sensor [45]. In this paper, we chose the latter one due to its availability
with popular UAVs, e.g., AR Drone [25], and the availability of robust computer vision
algorithms [49].

An overview of the system is shown in Figure 2. The overall system and the algorithms
are developed using ROS (for pattern formation) and MATLAB3 (for pattern recognition).
As the proposed method relies on various software tool-sets and UAV hardware, descriptions
for those are necessary in order to understand and justify the proposed work.

3http://www.mathworks.com/products/matlab/
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(a) (b)

Figure 3: AR.Drone 2.0 configurations for (a) Outdoor navigation (light configuration) and (b) Indoor
navigation (protected by external hull).

System requirements:. In designing the system, we built two environmental setups for sim-
ulation and real-life implementations. In simulation, we ran all the experiments using
tum simulator4 using virtual UAVs, and Parrot AR Drones were used in real environment.
Flight manoeuvres for pattern recognitions were done by series of several ROS commands.
In real environment, the AR. Drone was controlled by ROS commands through a standard
WiFi network between a laptop and the AR Drone. ardrone autonomy5, a ROS driver that
was used to control the paths, altitude and orientation of the AR Drones. OpenCV6 and
MATLAB were used for video streaming and video processing to detect patterns, respec-
tively.

In this work, we chose AR. Drone 2.0, equipped with optical sensors, for two reasons: a)
it has the capability to mimic forager honeybees since it is lightweight and easily controllable
and b) accessibility of the onboard 2D RGB sensor which is suitably used for pattern recog-
nition using a novel image processing algorithm. AR. Drone 2.0 was developed by Parrot
in 2010, and resembles a toy with sensors, cameras, and basic autonomous behaviours, such
as take-off, hovering and landing. According to [25], the AR. Drone has become a popular
platform for research and education due to its relatively high performance and low cost. It
has been used for object following, position stabilisation and autonomous navigation. When
flying outdoor, the AR.Drone 2.0 uses a lighter configuration (as shown in Figure 3a)).
When flying indoor, it is protected by external bumpers (as shown in Figure 3b)).

The mechanical structure contains four rotors attached to the four ends. When moving
forward, each pair of opposite rotors is turning the same way, as shown in Figure 4. One pair
is turning clockwise, while the other anti-clockwise. The AR. Drone manoeuvres by changing
Roll (φ), Yaw (ψ) and Pitch (θ) value. The AR. Drone yields roll movement by varying left
and right rotors speeds in the opposite directions. This allows to go forth and back. Varying
front and rear rotors speeds the opposite way, it yields pitch movement. Varying each rotor

4http://wiki.ros.org/tum_simulator
5http://wiki.ros.org/ardrone_autonomy
6http://opencv.org/
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(a) (b)

Figure 4: (a) Mechanical movement of an AR. Drone with pairs of opposite rotors, (b) AR. Drone direction
of movement control by changing Roll (φ), Yaw (ψ) and Pitch (θ) value.

Figure 5: Different sensors and hardware dimensions of AR. Drone 2.0.

pair speed the opposite way, the drone yields yaw movement, which allows turning left and
right. With reference to Figure 5, the outdoor drone measures 451 mm by 451 mm, without
the protective hull attached, with a weight of 380 gm. The indoor drone is 517 mm by 517
mm, with the protective hull, and its body weighs 420 gm.

One 720 HD-30 fps camera is at the front of the vehicle and one 60 fps bottom facing
camera is attached aiming towards the ground to get round speed measurements for auto-
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matic hovering and trimming. An ultrasound sensor is attached for altitude measure and
vertical speed control. It also encompasses a pressure sensor to measure the altitude at any
height. The AR.Drone 2.0 requires a charged 1000mAh, 11.1V LiPo batteries to fly, which
allows 12 minutes of flying time. It is powered with four 14.5W 28000 RMP brush-less
engines with three phase current controlled by an ARM Cortex A8 processor. It can detect
if any of the propeller is blocked, and in such case, stops all engines immediately. It has a
master USB port, with a standard USB-A connector. It can communicate over WiFi with
external devices, such as the control Linux unit, and can be controlled using iOS and android
devices. However, due to the limitations in terms of processing and operating system within
AR.Drone’s embedded ARM, the high-level behaviour was implanted in the control Linux
unit by benefiting from ROS.

ROS is a flexible framework for writing robot software. We used ROS framework to
build a communication system between AR. Drone and computer over WiFi network. ROS
fuerte version was installed on Ubuntu 12.04 workspace, including ardrone autonomy and
OpenCV. ROS is a collection of hardware abstractions, device drivers, libraries, visualisers,
message-passing, package management, etc., to develop and create robot applications across
a wide variety of robotic platforms. Ardrone autonomy is a ROS driver for Parrot AR. Drone
quadcopter. This driver is based on an official AR. Drone SDK version 2.0 and supports both
AR. Drone 1.0 and 2.0. ardrone autonomy is used to plan and execute missions by describing
the path, altitude and orientation of the drone to follow. Many ROS control commands were
generated to manoeuvre the AR. Drone flight. Changing the angular velocity and the linear
velocity one can form different types of pattern. For example, flying forward and backward
can be done by simply using following commands:

fly forward:

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist

’{linear: {x: 1.0, y: 0.0, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}’

fly backward:

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist

’{linear: {x: -1.0, y: 0.0, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}’

In this work we used OpenCV to stream real-time video file captured by follower UAV to
the computer.

4. Methods

This section describes and discusses the herein proposed methodology. The functional
blocks of the overall system are shown in Figure 6 and described in detail in Section 4.1 and
Section 4.2.

4.1. Pattern formation by forager UAV

To create patterns using UAVs, we developed stacks using ROS framework, which would
then issue series of control commands to the quadcopter’s rotors (AR. Drone here). We
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Figure 6: Functional block diagram of the overall system.

selected three basic geometric shapes as they are easy to build and recognise: 1) circle; 2)
triangle; and 3) rectangle. In all three cases, the UAV flew in the air and autonomously
formed those shapes in the XY plane represented in Figure 4(b). The ROS framework was
used to iteratively manoeuvre the directions so as to determine the adequate predefined
flight path. The size of these patterns was varied by increasing or decreasing the values of
the parametric rotor combinations. Due to the imperfect synchronisation among the rotors,
slight instability of the flight paths were observed. To address this issue, the experiments
were repeated 24 times for each pattern (12 in simulations and 12 in real scenarios), to
ensure the robustness of the results (Section 5). Initially, all the patterns were created in
tum simulator, following a similar test in real environment. In the simulator, we ran all
experiments in two different environmental scenarios, as shown in Figure 7a. In real life,
we performed all the experiments in the laboratory, as well as in a large astrodome pitch
(shown in Figure 7b).

4.2. Pattern recognition by follower UAV

To implement the pattern recognition step, we capture the videos of the forager UAVs
forming pattern using a camera attached to the follower UAV and stream it for further
processing in MATLAB. It is worth noting that, any onboard real-time processing of the
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3boxes room environment.

outdoor flight environment.

(a) tum simulator environment.

Inside laboratory environment.

Inside astrodome pitch.

(b) Real environment.

Figure 7: Example of various environments used in this work.

system is not within the scope of this paper. We are particularly interested in proposing
the passive action recognition communication model with a proof-of-concept implemented
in both simulated and real UAVs. The main objectives of the pattern recognition step are
to locate, identify, and categorise patterns in images and videos. To that end, the modelling
of object motion and appearance changes are necessary for video-based object recognition.
Existing algorithms either rely on appearance model, which is either fixed or rapidly chang-
ing, or on the motion model. Often, background clutter or illumination changes make the
recognition or tracking problem extremely challenging. Further information fundamentals
of image processing and computer vision algorithms can be found in [18] and [50].

In this work, the goal is to identify the region of interest (the pattern formed by forager
UAV) in each frame of the video, and track it efficiently, so as to identify a pattern created
by the forager UAV. Finally, the patterns can be recognised using machine learning or
template matching algorithms. The proposed pattern detection and recognition process is
developed using five functional processes. A summary of the complete algorithmic flow of
these functions is shown in Algorithm 1 and described later in the text. It is worth noting
that, in this work we considered that the follower drone is stationary while recognising the
patterns. In the real life scenario, the follower drone can either be static or moving depending
on the circumstances. The pattern recognitions of a moving target from a moving drone
using image processing techniques are far more challenging problem and are outside the
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Input: Video sequence (V) with waggle dance pattern by foraging bees;
Initialise foreground detector;

Read first frame: F = videoread(V);
Foreground detection: Fmask = foreGroundDetector(F);
Median filtering with 7× 7 window: Ffilt = meadianfilter(Fmask, [7× 7]);
Initialise frame fusion: Ffuse = Ffilt;

repeat

Input: Receive next frame;
F = videoread(V);
Fmask = foreGroundDetector(F);
Ffilt = meadianfilter(Fmask, [7× 7]);
Ffuse = OR(Ffuse,Ffilt);

until end of sequence;

Region filling of the flight path: Ishape = imfill(̥fuse, ‘Holes’);
Region detection: R = regionprop(Ishape, ‘all’);
Calculate extent value: Rextent = extent(R);

Pattern (P ) detection:

if 0.45 < Rextent < 0.65 then

P = Triangle ;
else if 0.65 < Rextent < 0.82 then

P = Circle ;
else if 0.82 < Rextent < 1.0 then

P = Rectangle ;
else

P = No Pattern ;

Algorithm 1: Summary of the pattern recognition process by follower bees.

scope of this work.

4.2.1. Foreground object detection

Foreground detection is often considered as one of the major tasks in computer vision
research domain and it aims to segment moving foreground objects in image sequences.
Algorithmically, a foreground detector system compares the current video frame with either
a predefined background model or adaptively learned background model [39]. The individual
pixels are compared to determine whether that is part of the background or the foreground.
A foreground mask is then computed using a background subtraction model which segments
foreground objects in an image taken from a stationary camera. In a dynamic scene, where
the background is unknown to the system, first the algorithm tries to model it by considering
the first frame as the entire background of the image. As a following step, it computes any
changes found in the background. However, this is challenging and difficult as the scene
may contain shapes, shadows and moving objects. We chose a state-of-the-art adaptive
foreground detection model [26, 48] available from computer vision toolbox in MATLAB. In
this paper, the foreground detector is used to mask the forager UAV as foreground object in
each frames in the sequence. It returns binary values where the background is represented by
0 and the foreground by 1. An example of this process is shown in Figure 8a and Figure 8b.
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Frame 50

Frame 150

Frame 300

Frame 400

(a) Original video frame

=⇒

Frame 50

Frame 150

Frame 300

Frame 400

(b) Foreground object af-
ter filtering noises.

=⇒

(c) Flight path detection
using image fusion.

=⇒

(d) Image region filling
for shape recognition.

Figure 8: Different stages of pattern recognition.

4.2.2. Image filtering

Digital images are prone to a variety of resulting noises [18]. Noise is the result of errors in
the image acquisition process that result in pixel values that do not reflect the true intensities
of the real scene. Once the object foreground has been recognised, the next step considers
image filtering. By definition, the filtered value of every pixel of an image is the sum of the
weighted intensity value of the current pixel and neighbouring pixel values. These weights
are called filter matrix [18]. In simulation, commonly used mean or average filters are used
to smooth the foreground objects. In average filtering, each output pixel is set to an average
of the pixel values in the neighbourhood of the corresponding input pixel. This helps to
generate a smooth and continuous flight path in the later stage of the functional blocks.
However, in real environments (Figure 9a), average filter is not effective enough to reduce
the noise. Vibration of rotors and shadows created by UAV’s movement affects the light
intensity, as shown in Figure 9b. As a result, the foreground is incorrectly detected which
introduces clutter like noises and makes it challenging to determine the flight path. In this
case, we used median filtering, which is similar to an averaging filter, but instead of averaging
the value of an output pixel, the median of the neighbourhood pixels is considered. Median
filtering is, therefore, better able to remove these outliers without reducing the sharpness of
the image [30]. This is clearly visible in our result as shown in Figure 9c.
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(a) Example frame of a real environment. (b) Processed pattern with average filter. (c) Processed pattern with median filter.

Figure 9: Example of applying average filter and median filter in real environment. Vibration of rotors and
shadows created by UAV’s movement, affects the light intensity and generates noise. Unlike an average
filter, a median filter effectively removed the background clutter.

4.2.3. Image fusion

Image fusion is the process of combining relevant information from two or more images
into a single image [8]. The resulting image will be more informative than any of the input
images. In this work, we intend to recognise a single pattern from a sequence of images
(video). Therefore, fusion of the foreground images is a logical choice which effectively cre-
ates a single image of the flight path. The fused image is then used for the geometric shape
recognition. There are many sophisticated and complex image fusion algorithms available.
However, in our case, the filtered foreground masks are binary images. Therefore, we consid-
ered simple ‘OR’-ing between successive images as the most effective and computationally
efficient fusion operation, as shown in Figure 8c.

4.2.4. Image filling

The region filling, or hole filling, is a technique to fill target region, or hole, in the image
[47]. This is particularly useful for image segmentation and shape recognition applications.
A region, or hole, is defined as a background region surrounded by a connected border of
foreground pixels. This is useful for our purpose as this eases the geometric shape recognition
problem as shown in Figure 8d.

4.2.5. Extent value calculation and shape recognition

After processing the image sequences, we obtained a fused image region with 2D geo-
metrical shapes. In this functional block, we aim to measure the properties of this region in
order to quantify the shape (region of interest). Our interest is to calculate the extent value
as it helps to identify the geometric shape of the region and is used to recognise shapes in
image processing applications [40]. The extent value of a region is calculated by finding the
ratio between the area of the region and the area of its bounding box:

Extent =
Area of the object

Area of bounding box
. (1)

For circles, this value is fixed at 0.78, irrespective of the radius. The corresponding value
for rectangles and squares leans towards 1, provided the sides are parallel to the axes and
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Extent value= 0.597 Extent value= 0.809 Extent value= 0.903

Figure 10: Different geometric shapes with bounding box and their extent values.

the bounding box and sides overlap. Triangles are tricky as it is difficult to find the correct
inclinations of the three vertices. In an ideal case, the Extent value of a triangle must always
be less than or near to 0.5. These values are true for the cases where the observations are
orthogonal to the shape. However, in this work we faced two issues: 1) due to instability
in rotor synchronisation, the UAV flight paths do not follow an ideal circular, triangular or
rectangular path and often generate a slightly curved path towards the corners; 2) viewing
angle of the follower UAV may not be orthogonal to the patterns formed by forager UAVs.
Therefore, we have empirically extended the ranges of the extent values to detect the correct
pattern. The values were defined as (0.45−0.65) for a triangle, (0.65−0.82) for a circle and
(0.82− 1.0) for a rectangle. Examples of the different geometric shapes with bounding box
and their associated extent values from our experiments are shown in Figure 10.

5. Experimental results

Initially, all the experiments were carried out in tum simulator for two different scenar-
ios: 1) outdoor environment; and 2) indoor environment (refer Figure 7a). Afterwards,
we performed all the experiments in real environment in two other different scenarios: 1)
lab environment; and 2) astrodome environment, as shown in Figure 7b. For statistical
significance, we have repeated the experiments for at least twelve times for each pattern
individually in simulation and real environment, generating combined 72 experimental se-
quences. The patterns, formed in the experiments are shown in Figure 11 and Figure 12 and
the results of the experiments are shown in Figure 13, for triangular, circular and rectangular
flight paths, respectively. In Figure 11 and Figure 12, first three rows in each figure represent
different image frames from three different video files of circular, triangular and rectangu-
lar patterns following a column to show captured flight path after image fusion. Finally
processed 2D shapes after image filling operation are shown in Row 5. The extent values
calculated from all 72 sequences are shown in Figure 13 where Columns 1 and 2 are for
simulation (36 sequences) and real (36 sequences) environments, respectively. In each graph,
the patterns are grouped by sequences with triangular (Sequence 1-12), circular (Sequence
13-24) and rectangular (Sequence 25-36) patterns. The x-axis of the graphs represents the
sequence number and the y-axis shows the calculated extent value after pattern recognition
steps described in Section 4.2. Different shades of grey are overlaid to show the ranges of
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extent values for correct pattern detection. It is evident from the graphs that simulation
results are more consistent (with little variation) over real environment. This can also be
observed at various stages of pattern recognition shown in Figure 11 and in Figure 12.

In simulation, the experiments showed promising results for all three patterns. The
geometrical shapes were correctly identified 11 times out of 12 experimental run. The extent
values were most stable for circular flight path, whereas the rectangular and triangular
patterns displayed a wider range of extent values. In real environment, triangular patterns
show more promising results followed by the circular patterns. Rectangular patterns exhibit
relatively more errors than other two patterns. A statistical analysis is presented in Section 6
followed by an in-depth discussion of the results obtained.

6. Analysis and Discussion

In order to statistically evaluate, firstly we generated confusion matrixes which were
then used to compute sensitivity and precision. We briefly described the results against
each matrix.

A confusion matrix contains information about actual and predicted classifications done
by a classification system. Each column of the matrix represents the instances in a pre-
dicted class, while each row represents the instances in an actual class. Performance of
such systems is commonly evaluated using the data in the matrix. The confusion matrices
for our experiments for three different geometric patterns are shown in Figure 14a and in
Figure 14b. Higher values in the diagonals of the confusion matrix represent a successful
outcome of our experiments.

We have measured the statistical performances such as sensitivity and precision, generally
known as classification functions in statistics. The measurements are done by calculating the
a) number of true positive values (TP), b) number of false positive values (FP), c) number of
false negative values (FN) and d) number of true negative values (TN). Sensitivity measures
the proportion of actual positives which are correctly identified. Mathematically, this can
be expressed as:

Sensitivity =
TP

(TP + FN)
. (2)

The precision of a measurement system is referred to how close the estimates are from
expected value under unchanged conditions. Precision or positive predictive value is defined
as the proportion of the true positives against all the positive results (both TP and FP).
Mathematically, this can be expressed as:

Precision =
TP

(TP + FP)
. (3)

Sensitivity and precision analysis are appropriate here as we measure the performance of
the recognised patterns. The results are shown in Table 1 and in Table 2 for simulation and
real environment, respectively.

Sensitivity is basically how good a test is at finding the pattern if it is there. It is a mea-
sure of how often the test correctly identifies the actual pattern, among all the experiments
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Triangular pattern Circular pattern Rectangular pattern

(a) Frame No. 50
⇓ ⇓ ⇓

(b) Frame No. 150
⇓ ⇓ ⇓

(c) Frame No. 250
⇓ ⇓ ⇓

(d) Flight path
⇓ ⇓ ⇓

Extent = 0.597 Extent = 0.809 Extent = 0.903

Figure 11: Different stages of pattern recognition in simulation environment. Rows 1-3 show example frames
from the sequences, row 4 shows the flight path captured by applying foreground detection and image fusion,
and row 5 represents the shapes after image region filling and corresponding extent values. Columns 1, 2
& 3 represent triangular, circular and rectangular pattern, respectively.
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Triangular pattern Circular pattern Rectangular pattern

(a) Frame No. 50
⇓ ⇓ ⇓

(b) Frame No. 150
⇓ ⇓ ⇓

(c) Frame No. 350
⇓ ⇓ ⇓

(d) Flight path
⇓ ⇓ ⇓

Extent = 0.521 Extent = 0.768 Extent = 0.875

Figure 12: Different stages of pattern recognition in real environment. Rows 1-3 show example frames from
the sequences, row 4 shows the flight path captured by applying foreground detection and image fusion, and
row 5 represents the shapes after image region filling and corresponding extent values. Columns 1, 2 & 3
represent triangular, circular and rectangular pattern, respectively.
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Figure 13: Extent value for three different pattern formations and their corresponding detected pattern in
simulation (column 1 ) and real (column 2 ) environment.
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(a) Simulation environment.

Predicted Class

Circle Rectangle Triangle

Circle 11 1 0

Rectangle 4 8 0
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Triangle 0 0 12

(b) Real environment.

Figure 14: Confusion matrix of experimental results. Higher values in the diagonals represent a successful
outcome of our experiments.

performed. Precision is how close the measured values are to each other. By determining
precision values we can realise the range of the extent values of the correctly identified pat-
terns. Higher values of both Sensitivity and Precision represent a stable and robust system.
These measures for our experiments are shown in Table 1 and in Table 2. In the simula-
tion, more than 92% sensitivity is reported for all patterns whereas the precision is recorded
as more than 84% and in the real environment, sensitivity is more than 67% whereas the
precision is more than 73%. Therefore, it is safe to say that our recognition algorithm is
efficient and robust enough in the simulator environment as well as in the real environment.
However, it is also worth noting that the success of pattern formation depends on the stabil-
ity of the rotors of UAVs whereas the pattern recognition algorithm considerably relies on
the viewing angle of the recorded video streamed by the follower AR. Drone, illumination
changes, noise etc.

Additionally during pattern formation, AR. Drones are not very stable when it hovers
close to the wall or the floor of the laboratory. AR Drone has four propellers with diagonally
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TP FP FN TN Sensitivity Precision

Circle 11 2 1 22 0.92 0.84

Rectangle 11 1 1 23 0.92 0.92

C
la
ss

Triangle 11 0 1 24 0.92 1.00

Table 1: Sensitivity and precision in simulation environment. Higher values of both Sensitivity and Precision
represent a stable and robust system in the simulation environment.

TP FP FN TN Sensitivity Precision

Circle 11 4 1 20 0.92 0.73

Rectangle 8 1 4 23 0.67 0.89

C
la
ss

Triangle 12 0 0 24 1.00 1.00

Table 2: Sensitivity and precision in real environment. Higher values of both Sensitivity and Precision
exhibit a stable and robust system in real environment.

same directional rotation. When they hover in the air, the propeller blades produce forces
that create propulsion pushing, the AR. Drone from the wall or floor. As a remedy we
chose environments that have larger open space and height such as astrodome to avoid
such instability. Detecting pattern of an object in a cluttered environment is a highly
challenging problem. Lighting, contrast and poor viewing angle can often make it difficult
to distinguish actual pattern from other random clutter. Examples of clutter and lighting
conditions creating noises are evident in our experiments. To address such problem we used a
median filter replacing an average filter during the filtering stages of the pattern recognition
process (as described in Section 4.2.2).

It is evident from the results that, especially in real life scenarios, rectangular patterns
are relatively difficult to recognise when compared to the other two patterns. This is due to
the viewing angle of the follower UAV. In this case, the lines closer to the camera appear
larger than the lines far away from the camera. Therefore, the rectangles appear to be
trapezium on a 2D image plane. Similarly, circles are often represented by elliptical shapes.
This is a classical multiple view geometry problem in computer vision community [19] and
can be solved by geometric triangulation. This is outside the scope of our current work and
we aim to address it in future. Alternatively, one can also consider either view invariant
shapes or a viewing angle orthogonal to the flight paths of the forager UAVs.

7. Conclusions

In this work we proposed and designed a novel swarm robotic communication system.
The system mimics the honey bees’ waggle dance, which is a form of passive action recogni-
tion technique. Two scenarios were proposed to represent various stages of the waggle dance:
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pattern formation of scouting or forager bees (to convey information to other follower bees
about the source of food/nest) and pattern recognition of follower bees (to recognise and
decode the observed pattern by the follower bees). These stages were first designed, im-
plemented and verified on simulation and later realised on a group of Parrot AR. Drones.
We considered scenarios with three fundamental geometric patterns: circle, triangle and
rectangle. In recognising the patterns, an image processing base algorithm was proposed to
track and identify flight paths (patterns) generated by forager UAVs.

During the experiments, the pattern recognition process successfully reported 92% and
67% or more sensitivity and more than 84% and 73% precision value for three different
patterns in simulation and the real environment, respectively. The outcome of this work
can be beneficial in the circumstances where traditional communication systems (implicit
and explicit communication) often fail. Communication based on passive action recognition
is very useful as it is more robust to environmental changes where teams of robots must
adapt by continually forming and reforming their swarm behaviour. The proposed model
is also useful in energy constrained scenarios as the robots do not need to use any active
communication channels e.g., wireless.

Although three fundamental geometric patterns were used in this work, this can be
further extended to many complex behavioural patterns of real life honeybees. In the future,
we aim to extend the algorithm for complex patterns that represent both directional and the
distance information to closely mimic communications of the honeybee waggle dance. We
also intend to perform several experiments in various cluttered environments with variable
illumination. This is a challenging problem as robust foreground object segmentation via
background modelling algorithms is difficult in a real life outdoor environment with unknown
clutters and changing lighting conditions. Current work considers formation and recognition
of the patterns in 2D plane, while we consider future work by generating 3D patterns which
can be captured by a depth camera (along with RGB camera). This will improve the
robustness of pattern formation and recognition process. One of the motivations of future
work is to develop a group of mobile robots that can operate robustly and fully autonomously
in a real world scenarios. An on-board processing unit can be developed to perform all
sensing and computation work, making the system independent of any remote base station.
Additionally, high level navigation using Simultaneous Localisation and Mapping (SLAM)
techniques [32], computer vision and control algorithms can add more automaticity in similar
MRS.
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