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ABSTRACT 

Based on the well-known Singular Value Decomposition 

(SVD), Singular Spectrum Analysis (SSA) has been widely 

employed for time series analysis and forecasting in 

decomposing the original series into a sum of components. 

As such, each 1-D signal can be represented with varying 

trend, oscillations and noise for easy enhancement of the 

signal. Taking each spectral signature in Hyperspectral 

Imaging (HSI) as a 1-D signal, SSA has been successfully 

applied for signal decomposition and noise removal whilst 

preserving the discriminating power of the spectral profile. 

Two well-known remote sensing datasets for land cover 

analysis, AVIRIS 92AV3C and Salinas C, are used for 

performance assessment. Experimental results using Support 

Vector Machine (SVM) in pixel based classification have 

indicated that SSA has suppressed the noise in significantly 

improving the classification accuracy. 

 

Index Terms— Singular Spectrum Analysis (SSA), 

Hyperspectral Imaging (HSI), feature extraction, noise 

removal, data classification. 

 

1. INTRODUCTION 

Hyperspectral Imaging (HSI) has powerful capabilities in 

data analysis and mining, as images are captured in both 

spatial and spectral domains, providing 2-D scenes where 

pixels present high resolution and wide range spectral 

information. For all this, HSI is used in emerging data 

analysis as food quality or verification of documents [1-2]. 

In HSI, classification of the pixels from a scene can be 

accurate thanks to the dimension of features (spectral bands) 

provided, especially for powerful classifiers as Support 

Vector Machine (SVM) [3-4]. Nonetheless, since HSI data 

is prone to noise, it is encouraging the idea of a potential 

decomposition in the spectral domain of the pixels so noise 

can be avoided. Regarding this decomposition idea, an 

inspiring research for us is [4], where the Empirical Mode 

Decomposition (EMD) technique is applied to the pixels and 

briefly evaluated for classification tasks. 

Being part of the Hilbert Huang Transform (HHT), an 

algorithm used for non-linear and non-stationary data [5], 

EMD decomposes a 1-D signal into few components called 

Intrinsic Mode Functions (IMFs) for a later reconstruction 

by only specific IMFs. Although the reconstruction aim was 

to achieve higher accuracy in classification tasks, [4] showed 

deterioration. Now, it is turn for Singular Spectrum Analysis 

(SSA) technique to be evaluated in a similar way. 

 

2. THE APPROACH 

SSA [6] is a recent technique for time series analysis and 

forecasting, but also allowing interesting possibilities in 

other applications. SSA is able to decompose an original 

series into several independent components that are 

interpretable as varying trend, oscillations or noise. In fact, 

extraction of trends, smoothing or periodic components are 

summarized in [6] as some of the main capabilities of SSA. 

Given a 1-D signal defined as N
Nxxx  ],,,[ 21 x ; 

the SSA algorithm can be applied in the following steps. 

2.1. Embedding 

Defining a window size ZL  where ],1[ NL , the 

trajectory matrix X  of the vector x  can be constructed as: 
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Columns of X  are 
L

Lkkk xxx  
T

11 ],,[ kC , lagged 

vectors where ],1[ Kk  and 1 LNK . Matrix X  has 

equal values along the anti-diagonals and this is a Hankel 

matrix by definition.  

Based on properties of the matrix X [6], SSA algorithm 

can be implemented symmetrically in two intervals, i.e. 

)]2/(,1[ NroundL  and ]),2/)1(([ NNceilL  . For a 

given L , the equivalent implementation can be found for 

another KL ' , leading to the same results. 
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2.2. Singular Value Decomposition 

Defining a matrix S  from the trajectory matrix X  as 
T

XXS  , the Eigen values of S  and their respective Eigen 

vectors are then denoted respectively as  L  21  

and  L21 UUU ,,,  . 

The Singular Value Decomposition (SVD) of the 

matrix X  is formulated below, where although the value of 

d  equals to the rank of X , we consider Ld   for simplicity. 
 

d21 XXXX     (2) 
 

Therefore, the trajectory matrix X  is actually built by 

the addition of several matrices ],1[| diiX , which are 

called elementary matrices, related to the respective Eigen 

value as defined by: 
 

ii  /, UXVVUX
T
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iii        (3) 

 

Matrices U  and V below are called matrix of empirical 

orthogonal functions and matrix of the principal 

components, respectively.  
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2.3. Grouping 

The total set of L  individual components is now grouped 

into M disjoint sets denoted as M21 III ,,,  , where 

  LmI  and ],1[ Mm . Let  piii ,,, 21 I  be one of 

the disjoint sets, the matrix IX  related to I  is then defined 

by ipi2i1I XXXX   . After the grouping, trajectory 

matrix X  is represented as: 
 

IMI2I1 XXXX     (5) 
 

Please note that the basic grouping is the one 

with LM  , and 1p , where each set is made of just one 

component. 

2.4. Diagonal Averaging and Projection 

After grouping, matrices ],1[, MmImX  obtained above 

are not necessarily of Hankel type as the original trajectory 

matrix. Therefore, it is necessary for each one of these 

matrices to be hankelised (averaged in their anti-diagonals) 

before the projection into 1-D signals, as values in the anti-

diagonals of each ImX  contribute to the same element in the 

derived 1-D vector. 

Denoting 1,  jnja  as the elements of ImX , it can be 

projected to the 1-D signal N
mNmm zzz  ],,,[ 21 mz  by 

means of the diagonal averaging below: 
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Finally, repeating this for every matrix ImX , the 

original 1-D signal x  can be expressed as: 
 





M

m 1

mM21 zzzzx    (7) 

 

where the original signal can be now reconstructed by means 

of specific components, discarding those no significant or 

prone to noise. 

 

3. DATASET AND EXPERIMENTAL RESULTS 

Our experiments, carried out in Matlab environment, are 

described by sequential stages. These are: (1) data 

description and conditioning, (2) experimental settings and 

classification, (3) results in noise removal, and (4) results in 

data classification. 

3.1. Data Description and Conditioning 

Two datasets for remote sensing purposes and with available 

ground truth are employed in our experiments (Figs. 1-2).  
 

 
 

Fig. 1.  One band image at wavelength 667nm (left) and the ground truth 

maps (right) for the 92AV3C dataset. 

 



Firstly, AVIRIS 92AV3C dataset [7] is a sub-scene 

from Indiana, USA, with 145×145 pixels in 220 spectral 

reflectance bands. It contains 16 labeled classes. Secondly, 

AVIRIS Salinas C dataset is a sub-scene extracted from a 

largest dataset [8], which was taken over California, USA, 

made of 150×150 pixels, 224 spectral bands with 9 classes. 

In the conditioning, as recommended by others [3-4, 8], 

some bands are removed, so they are finally reduced from 

220 to 200 and 224 to 204, respectively. For the 92AV3C 

dataset, only 9 out of the original 16 classes are evaluated, 

as stated statistically better by some researchers [3-4]. 
 

 
 

Fig. 2.  One band image wavelength 667nm (left) and the ground truth 

maps (right) for the Salinas C dataset. 

3.2. Experimental Settings and Classification 

EMD and SSA techniques, by reconstructing pixels in the 

HSI scene, are evaluated for noise removal. Also the use of 

original pixels is included as Baseline reference. 

On one hand, for EMD, the code available in [9] is 

implemented, adopting the default stop threshold. For 

reconstruction, combinations of the 1
st
, 1-2

nd
 and 1-3

rd
 IMFs 

are selected as in [4]. On the other hand, for SSA, several 

combinations of window L and EVG, shown in Table 1, are 

selected to evaluate the corresponding performance. 
 

TABLE 1 

DIFFERENT IMPLEMENTATIONS FOR NOISE REMOVAL 

Method Parameters Values adopted 

Baseline N/A N/A 

EMD 
Stop threshold k 0.05 (default) 

IMF Grouping (IMFG) 1st, 1-2nd , 1-3rd  

SSA 
Window size L 5, 10, 20, 40 

EV Grouping (EVG) 1st , 1-2nd, 1-5th, 1-10th  

 

In order to classify the data, SVM is implemented, 

which presents a wide usage in HSI [3-4] and many other 

applications, even in embedded systems [10]. LibSVM 

library [11] with Gaussian RBF kernel is used here [3-4], 

with penalty (c) and gamma (Ȗ) parameters selected every 

time through a grid search procedure. 

Every experiment is repeated 10 times, varying the sub-

sets for training and testing, in order to avoid systematic 

errors. Data partitions are randomly selected by stratified 

sampling, using an equal sample rate of 20% for training 

each class. Finally, the averaged testing results and 

McNemar’s tests [4] over the 10 repetitions are reported. 

3.3. Results in Noise Removal 

An original spectral pixel in HSI data can be reconstructed 

in an improved way by the main Eigen value components, 

discarding those less representatives that usually contain 

noise presence. 

The SSA reconstruction depends on two parameters. 

Firstly, the window size L, which states the total number of 

components extracted in the decomposition stage. Secondly, 

the Eigen Value Grouping (EVG), which denotes the 

selected combination of extracted components used for a 

desired reconstruction. 
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Fig. 3.  Original and reconstructed by SSA profiles for a pixel in HSI. The 

reconstruction is derived from the 1st and the 1-5th Eigen value 

component(s) out of 10. 

 

In Fig. 3 a spectral pixel reconstruction is shown where 

the new profiles preserve the trend of the original signal but 

with potential reduction of noise. 

3.4. Results in Data Classification 

Final results are given in Table 2, where it is proved that 

SSA de-noising improves the Baseline reference accuracy, 

while the EMD usage decreases it, as shown in [4]. 

McNemar’s tests with respect to the Baseline case, showing 

statistical significance at a confidence level of 95% when 

｡Z｡> 1.96, also support the SSA improvement. Only some 

cases for Salinas C dataset are below this value because the 

improvement is small due to the already high initial 

accuracy, being difficult to increase it. 



Further analysis is provided in Table 3, to clearly shown 

that the SSA de-noising improvement is detected in terms of 

not only Overall Accuracy but also Average and Class by 

Class Accuracy, regardless the number of samples per class. 
 

TABLE 2 

MEAN OVERALL ACCURACY (%) OVER TEN REPETITIONS AND MEAN 

MCNEMAR’S TEST [Z] FOR THE TWO DATASETS AND THREE METHODS 

Method Parameters 92AV3C  Salinas C  

Baseline - 89.04 [-] 98.91 [-] 

EMD 

IMFG=1st 59.43 [-43.0] 96.89 [-14.3] 

IMFG=1-2nd 70.66 [-31.2] 97.18 [-13.1] 

IMFG=1-3rd  79.96 [-18.5] 97.87 [-9.43] 

SSA 

L=5, EVG=1st  91.48 [+7.50] 99.03 [+1.53] 

L=5, EVG=1-2nd  90.76 [+5.67] 99.01 [+1.31] 

L=10, EVG=1st 91.55 [+7.65] 98.96 [+0.50] 

L=10, EVG=1-2nd  91.40 [+7.34] 99.08 [+2.55] 

 

TABLE 3 

MEAN OVERALL, AVERAGE AND CLASS BY CLASS ACCURACIES (%) OVER 

TEN REPETITIONS FOR THE TWO DATASETS WITH BASELINE AND SSA (L=5, 

EVG=1ST) METHODS, INCLUDING NUMBER OF SAMPLES (NS) 

92AV3C Salinas C 

Class-NS Baseline SSA Class-NS Baseline SSA 

 1434 84.52 88.47  240 98.13 98.80 

 834 78.67 86.03  3400 99.96 99.95 

 497 93.88 95.72  1957 99.76 99.83 

 747 98.56 98.93  599 98.89 98.58 

 489 98.98 99.16  1155 98.89 98.94 

 968 81.94 85.81  1414 100 100 

 2468 87.66 89.13  848 99.76 99.79 

 614 86.86 90.39  5890 99.39 99.57 

 1294 98.63 98.75  159 34.96 39.29 

Average 89.97 92.49 Average 92.19 92.75 

Overall 89.04 91.48 Overall 98.91 99.03 

 

Although not included in Table 2 and Table 3, results 

for different SSA parameters show an interesting behavior, 

where the relation among the window L for the 

decomposition and the EVG for the reconstruction, suggests 

that SSA application can lead to three different regions: 

noisy region, when large EVG are selected given a small L, 

so noise is not removed, lossy region, when EVG is small in 

relation to a large L, so useful information is missing, and 

stable region, as an intermediate case where the performance 

is near to an optimum. According to that, L=5 with EVG=1
st
 

gives the best result (intermediate case), and as long as more 

components are included, accuracy decreases (noisy region) 

where EVG=5
th

 finally degrades it to the Baseline case. 

 

4. DISCUSSIONS AND CONCLUSIONS 

Effective feature extraction is one of the key challenges in 

hyperspectral imaging, where a number of approaches have 

been proposed [12], including PCA, its variations such as 

folded-PCA [13] and beyond. As a recent technique with 

large potential in a number of applications, SSA algorithm 

provides an alternative approach for feature extraction in 

HSI. With the extracted trends, oscillatory components or 

noise from an original 1-D signal, SSA can be used for 

improved reconstruction of the signal whilst removing the 

effect of noise or others. 

Based on the well-known SVD, SSA allows many 

possibilities in HSI remote sensing [14], where the SSA 

application to each spectral pixel leads to a pixel based de-

noising that traduces in higher classification accuracies. 

According to our experiments, SSA behavior is dependent 

on the selected values for its parameters, being possible to 

state recommendations. 
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