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Abstract 

This paper presents a method of anomaly detection within a 

gearbox by way of standardising temperature data. Assessing 

measured parameters in isolation is not sufficient to detect 

faults within a wind turbine. This technique uses temperature, 

rotational speed and generator torque to detect a bearing fault 

within the gearbox. Standardising data allows a parameter to 

be analysed which also takes into consideration the operating 

state of the wind turbine, therefore providing a more holistic 

view of the health of the wind turbine and component being 

monitored. 

1 Introduction 

Wind power is now the second largest energy producer in 

Europe with an installed capacity of 169GW [1]. Although 

the cost of energy from wind power has fallen significantly in 

recent year’s operations and maintenance costs still account 

for a significant proportion (around 30% [2]) of the costs, 

especially for offshore wind farms.  Condition monitoring 

systems are now beginning to play a major role in reducing 

the operations and maintenance costs by allowing better 

scheduling of maintenance and the avoidance of major 

component failures. Of these major component failures it is 

the generator and gearbox which account for the largest loss 

of production due to the downtime resulting from a failure 

[3].   

 

The work presented here focuses on the detection of faults 

within the wind turbine gearbox. Unlike conventional power 

generation methods, detecting faults within a wind turbine 

gearbox is more challenging due to varying frequencies that 

result from the continuously changing wind speed. The 

varying wind speed means that the load on the generator and 

gearbox is continuously changing in order to allow for 

maximum energy capture. The ever changing operating state 

coupled with the changing ambient weather conditions means 

that a holistic view must be taken when monitoring the health 

of a wind turbine.   

 

There are a number of techniques in literature which take into 

account the need to look at multiple parameters when 

attempting to detect faults and these are often known as multi-

variate techniques. Guo et al. [4] present a method which is 

based on the nonlinear state estimation technique (NSET). 

The method presented builds a model which represents 

normal behaviour for the wind turbine generator. This model 

can then be used to determine what the temperature should be 

at different points in time. The residuals between the 

modelled temperature and actual temperature can then be 

used to detect abnormal behaviour. Zaher et al. [5], as do 

many others, discuss the use of neural networks (NN) to build 

normal behaviour models for gearboxes. NNs have the ability 

to model nonlinear complex relationships between numerous 

input parameters and their associated outputs. They have been 

used with high levels of accuracy for detecting faults in a 

number of methods presented in literature [6, 7]. NNs 

however do rely on a large volume of historic data in order to 

train the models and the lengthy time required to train the 

model can be seen as a disadvantage of the technique.  

Schlechtingen et al. [8] seek to overcome some of the 

disadvantages associated with NNs through the use of 

Adaptive Neuro-Fuzzy Interference Systems (ANFIS). 

ANFIS, like NN’s, are also able to model nonlinear 
relationships between parameters and do this by setting up a 

set of fuzzy rules which can be tuned during the training 

phase. In comparison to NNs, ANFIS requires fewer 

parameters to train the models which results in faster training 

[9].  

 

A number of techniques such as those discussed have been 

shown to be capable of detecting anomalies however their 

uptake within industry remains limited. This is due to the 

difficulty in training NNs and the complex computations 

required in data driven techniques [10]. Coupled with the risk 

of false alarms, operators are hesitant to use these more 

complex techniques. 

 

The method presented in this work provides a more simplistic 

technique than those discussed through the use of 

standardised data.  Within literature normalising is often 

something that is carried out in the pre-processing stage of 

analysis. The term normalisation is often used 

interchangeably with the term standardisation however it is 

worth noting the difference.  

 

Normalisation can be defined by the equation: 

 

                        ܺ୬ୣ୵ ൌ ሺݔ െ ୫ୟ୶ݔ୫୧୬ሻȀሺݔ െ  ୫୧୬ሻ             (1)ݔ

 

and has the purpose of scaling the data to a range of -1 to +1. 

This allows parameters with different units and scales to be 

directly compared.    
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   Standardisation on the other hand transforms the data to 

have a mean of zero and unit variance, as defined by: 

 

                                   ܺ୬ୣ୵ ൌ ሺݔ െ  (2)                         ߪሻȀߤ

 

where µ is the mean and ı is the standard deviation of the 

dataset. It can be described as the number of standard 

deviations from the mean and is also known as a z-score.  

 

The work presented in this paper describes a method of 

detecting abnormal behaviour through standardising data for 

multiple parameters. This standardised data can be used to 

construct a probability density function (PDF) for normal 

operating behaviour and thresholds applied based on the 

probability of a failure occurring. As would be expected, 

standardising the data produces a PDF with a normal (or 

Gaussian) distribution. This is convenient for anomaly 

detection by allowing standardised raw temperature data to be 

analysed in relation to the thresholds to detect a fault or 

abnormal behaviour.  

 

2 Data Normalisation 

2.1 The structure of the data 

The SCADA and failure data used in this paper was obtained 

from 10 wind turbines located in 8 different wind farms 

throughout Europe. All turbines are the same in terms of 

manufacturer, turbine type, rated power, rotor diameter and so 

on. Exact turbine details cannot be provided for 

confidentiality reasons, however it can be stated that the 

turbines are modern multi-MW wind turbines from a leading 

wind turbine manufacturer and have a rated power of between 

1.5 and 4MW with a rotor diameter of between 80 and 120 

meters.  

 

The failure mode used in this paper is the same for all ten 

turbines. It is a gearbox planet bearing issue and is located on 

the low speed planetary stage of the gearbox. The bearing 

issue initiates in the raceway of the bearing and eventually 

results in complete failure of the bearing and subsequently the 

gearbox. When this occurs the turbine is shut down and only 

restarted once a complete gearbox exchange takes place. 

Figure 1 shows a borescope image of the bearing in the lead 

up to failure in which indents in the raceway and rolling 

element can be seen. 

 

As with all “real data” there is an element of pre-processing 

which must be done to allow for batches of varying length, 

turbine downtime, and outliers. 

 

 
Figure 1: Borescope image of bearing issue showing indents 

[11] 

 

2.2 Parameter Selection 

Parameters were required to be selected which not only 

provided information about the health of the gearbox but 

which also provide information about the operating state of 

the wind turbine.  Naturally there are certain parameters 

which will have a stronger correlation than others, such as 

wind speed and power output (before rated wind speed is 

reached). Others such as gearbox oil temperature and ambient 

temperature will have some level of correlation however this 

is often outweighed by the effect of the loading on the 

turbine.  

 

Based on the available data and the type of fault it was 

decided that bearing temperature would provide the clearest 

change in signal given the presence of a fault in the bearing 

itself. The SCADA data included 5 different measurements 

for bearing temperature on the gearbox however following the 

initial analysis it was found that it was the high speed 

generator side sensor which gave the clearest indication. As 

previously discussed however, taking this single parameter in 

isolation is not sufficient to detect a fault. The other 

parameters that were selected were therefore based on gaining 

knowledge of the operational state of the wind turbine.  

 

The parameters available in the SCADA data which could 

give an indication of the operational state of the wind turbine 

are wind speed, rotational speed and generator power output. 

Although the operational state of the wind turbine is directly 

related to the wind speed, the wind speed isn’t a reliable 
indicator of the operating state of the wind turbine. One 

reason for this is that when wind speed reaches and exceeds 

the rated wind speed, the rotational speed and power will 

become independent of the wind speed in order to maintain 

rated power. Generator power output is able to give a good 

indication of the operating state of the wind turbine however 

it doesn’t provide the whole description of the operating state. 
The healthy gearbox losses (and hence heat and ultimately 

temperature) are a mixture of torque dependent losses and 

rotational speed dependent losses. As turbine control is based 

on torque and rotational speed parameters, these can give a 

better indication of the operating state. Although generator 
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torque isn’t provided in the SCADA data it can be calculated 
using: 

 

                                          ܳ ൎ ଷఠగ                                        (3) 

 

where Q is the torque, P is the generator electrical power 

output and Ȧ is the rotational speed of the generator. Equation 

(3) is approximate as it neglects the generator losses. 

 

The three parameters used for the standardisation model are 

therefore: 

 

 Bearing temperature 

 Generator rotational speed 

 Generator torque 

 

It should be noted that the bearing temperature was chosen 

based on the type of fault being examined; however given a 

different type of fault it is likely that a different sensor 

location would provide better results. 

 

2.3 Normal behaviour model 

As is the case with many condition monitoring methods, this 

method is based on building a normal behaviour model.  This 

was achieved through the use of data which was known to be 

healthy. Using the Matlab Curve Fitting Toolbox, a model 

was developed for bearing temperature, rotational speed and 

torque. The temperature function is represented by a 

polynomial function with three degrees of freedom for 

rotational speed and two degrees of freedom for torque, as 

represented by Equation 4 and shown in Figure 2.     

 

 ܶሺ߱ǡ ܳሻ ൌ   ଵ߱  ଵܳ  ଶ߱ଶ  ଵଵ߱ܳ ଶܳଶ  ଷ߱ଷ  ଶଵ߱ଶܳ   ଵଶ߱ܳଶ                            (4)

 

 

 

 
Figure 2: Normal behaviour model for bearing temperature, 

rotational speed and torque 

 

To achieve an accurate result in fitting the surface plot to the 

data, it was necessary to remove some outliers and data that 

would cause the normal behaviour model to be wrongly 

represented. This consisted of data that was captured when 

the turbine was not generating any power and was removed 

by setting a threshold to the rotational speed. The removed 

data is represented by the red data points in Figure 2.  

 

2.4 Standardising Algorithm 

The aim of standardising the data was to be able to provide a 

measure of bearing temperature which also takes into 

consideration the rotational speed and generator torque. The 

general method of standardising data is described by equation 

(2) where the value being standardised has the dataset mean 

subtracted from it and is then divided by the standard 

deviation of the dataset. Rather than subtracting the mean of 

the dataset, this method uses the value obtained from the 

normal behaviour function. The data is therefore standardised 

using the Equation 5: 

                            ୱܶ୲ୟ୬ ൌ ሺܶ െ ܶሺ߱ǡ ܳሻሻȀ(5)                         ߪ    

                           

where Tstan is the standardised temperature, T is the measured 

temperature, ܶሺ߱ǡ ܳሻ is the healthy temperature obtained 

from equation (4) and ı is the standard deviation for the 

healthy temperature dataset.   

 

This method of standardising the data is described by the 

flowchart in Figure 3.  
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3 Anomaly Detection  

The purpose of standardising in this work is to transform the 

data into a format which can be used for anomaly detection. 

Anomaly detection has been defined as the problem of 

finding patterns in data that do not conform to expected 

behaviour [12]. By standardising as described above, data 

which describes normal behaviour will, as expected, have a 

normal distribution as shown in Figure 4.  

 

 
Figure 4: Distribution for Normal Behaviour 

   

Therefore as a standardised temperature value is fourther 

away from zero it increasingly indicates ‘less normal’ 
behaviour. This characteristic of moving away from the norm 

will allow anomalies to be detected.  

 

Taking the case of the bearing fault, Figure 5 below shows 

how the distribution of the data changes in the presence of a 

fault. In this case the faulty data is ‘standardised’ with the 
expected value and standard deviation of the healthy data set. 

As can be seen, in the presence of a fault the distribution of 

the data has a higher mean and larger standard deviation as 

compared to the healthy dataset. 

 

 
Figure 5: Distributions for normal behaviour and one month 

to failure 

  

To define when a standardised temperature value is abnormal, 

thresholds can be applied to an estimate of the probability 

density function as shown in Figure 6. 

 

Is Tstan greater 

or less than 

thresholds? 

Historic 

Healthy 

Data 

Calculate Q 

and ı 

Remove 

outliers & data 

below x RPM 

Generate normal 

behaviour model 

 

Calculate normal 

temperature for 

given Ȧ & Q 

T (Ȧ, Q) =? 

Failure/ 

Raw Data 

Standardise Data 
Tstan = (T – T (Ȧ, Q)) / j 

Estimate PDF 

& 

Set thresholds 

Figure 3: Standardising methodology flowchart 

Is variance of 

failure data 

greater than 

normal data? 
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Figure 6: Probability density function showing abnormal 

thresholds 

 

In this case, we would expect the higher threshold (with a 

standardised temperature of 0.5) to indicate a fault. The level 

at which to set the thresholds is an important parameter for 

the success of the technique in an application setting. If the 

probability of detecting an anomaly is too high – i.e. the 

upper standardised threshold is too close to the standardised 

temperature of 0 – then there is greater chance of false alarms. 

The thresholds were chosen in this case based on the data 

being normal when it has a probability greater than 0.01% 

and abnormal when the probability is less than 0.01%.  

 

4 Results across a Fleet 

Analysis using the data standardising method was carried out 

for the 10 wind turbines described in Section 2.1. Initially a 

normal behaviour model was used which represented all 10 

wind turbines however it was found that although all 10 were 

of the exact same type and size of machine, there were 

significant differences between normal operating temperature 

ranges for each (i.e. mean and standard deviation were 

significantly different). It was therefore required that a normal 

behaviour function be generated for each specific wind 

turbine. 

 

Using the standardising method of analysis, the presence of a 

fault could be detected in all of the wind turbines analysed. 

For one turbine it was possible to see the development of the 

fault two months prior to the failure, as shown in Figure 7, 

and one month before failure for all of the other cases. 

 

 
Figure 7: Distribution of data for normal, one month to failure 

and two months to failure 

 

As can be seen from Figure 7, as the fault develops the 

distribution of data moves in the positive x-axis indicating an 

increase in temperature. It can also be seen that as the fault 

develops the standard deviation also increases.  Figure 7 is an 

example in which the presence of the fault can be clearly seen 

due to the change in both mean and standard deviation, 

however throughout all of the data analysed the standard 

deviation is the more reliable indicator of a fault. This 

increase in standard deviation could be seen for all 10 of the 

wind turbines analysed as shown in Figure 8. One of way of 

checking this is through an F-test which checks the null 

hypothesis that the variance for the distributions of normal 

and failure data is equal and that the variance of the failure 

data is greater than the variance of the normal data. As 

expected this null hypothesis verified that the variance was 

always higher for the data where a fault was present. F-scores 

and their changes can be used to statically flag up abnormal 

failures. 

 

 
Figure 8: Comparison of standard deviation for normal and 

failure data 

 

In practice a batch of data may not be available to detect a 

fault but rather individual data points are assessed in relation 

to the thresholds shown in Figure 6.  

 

 

 
Figure 9: Time series of standardised temperature data for 

Park 1 Turbine 1 

 

Figure 9 shows how the time series of the standardised data 

would be used for anomaly detection. The thresholds that 

were defined are based on the probability density function 

used to detect abnormal behaviour. The wind turbine that 
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relates to Figure 9 gave a clear indication that a fault was 

present in the gearbox. There were a few data points classed 

as normal behaviour but fell above the upper threshold and it 

may be that the thresholds require adjustment to reduce the 

likelihood of false alarms.  

 

Not all wind turbines gave the same clarity of fault detection 

as can be seen from the wind turbine represented by Figure 

10. The fault in this case doesn’t progress in the same manner 
as that in Figure 9. In this case it may not be possible to detect 

the fault until it has developed further and a more obvious 

increase in standardised temperature is observed. In these 

cases, the ability to compare samples/batches of recent data 

by standard deviation is a useful tool.   

 

 
Figure 10: Time series of standardised temperature data for 

Park 8 Turbine 1 

5 Conclusion 

Detecting anomalies within the wind turbine gearbox is made 

more challenging by the stochastic nature of the wind and the 

different operating states of the wind turbine. This paper has 

presented a method of anomaly detection which uses 

temperature, rotational speed and torque to provide a 

standardised temperature value which gives a more holistic 

view of the condition of the gearbox. An expected 

temperature function for a healthy gearbox (based on a fitted 

polynomial function in torque and rotational speed) was used 

as part of the standardised process, along with the standard 

deviation of the healthy data set. The standardised 

temperature value allows gearbox anomalies to be detected, 

either by comparing the statistical properties of sub-

populations of data to the healthy data set or by comparing 

individual data points to systematically chosen thresholds on 

the standardised temperature distribution. 

 

Although the work in this paper has focussed on detecting a 

gearbox bearing using the three discussed parameters, the 

same technique could be applied to other types of faults 

within the wind turbine gearbox or generator.  The success of 

this detection method is very much dependant on the quality 

of data used. Large numbers of outliers in the normal 

behaviour data will reduce the accuracy of the normal 

behaviour model. This will result in the standardised data 

being skewed. To avoid this care should be taken to filter out 

outliers for start-up and shut-down. Care must also be taken 

in setting the thresholds as false alarms are detrimental to the 

overall success of a condition monitoring system.     
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