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ABSTRACT: The increasing demand for isotopically labeled compounds has provided appreciable impetus for the development of 

improved methods for the late stage introduction of isotopes of hydrogen (deuterium or tritium). Moreover, sp3-rich molecules are 

becoming increasingly common in the exploration of chemical space for drug design. Herein, we report an efficient iridium(I) cata-

lysed C-H activation method for the hydrogen isotope exchange of sp3 C-H bonds. A wide range of substrates have been labeled, 

including active pharmaceutical ingredients, delivering excellent levels of isotope incorporation and predictable regiocontrol, with 

low catalyst loadings, in short reaction times, and under mild reaction conditions. 
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Transition metal-mediated C-H activation has received 

significant attention in recent years, and continues to produce 

prominent new methods for complex chemical synthesis.1 

Despite such widespread use, the majority of applications are 

aimed towards sp2 C-H bonds, which are intrinsically more 

readily activated, with considerably fewer applications target-

ing the activation of sp3 C-H bonds. Furthermore, iridium-

catalyzed sp3 C-H activation processes are rare,1o,2,3 with re-

ported catalytic applications focused upon alkylation,3a,e 

alkenylation,3b,c oxidation,3d and amidation.3f However, in the 

majority of these cases, high temperatures and extended reac-

tion times are required. In relation to this, hydrogen isotope 

exchange (HIE) provides a fundamental basis for the investi-

gation of new C-H activation processes, as well as providing a 

means of generating valuable, specifically deuterated molecu-

lar units for mechanistic studies.4 Additionally, such flexible 

and direct methods of producing isotopically-labeled com-

pounds are of appreciable importance for the pharmaceutical 

industry, especially within absorption, distribution metabo-

lism, excretion, toxicity, and stability (ADMETS) studies of 

active pharmaceutical ingredients (APIs).4a,5 

Inspired by the structural architecture of Crabtree’s cata-

lyst,6,7 we developed a series of iridium(I) complexes of the 

type [(COD)Ir(IMes)(PR3)]X, capable of delivering heavy 

isotopes of hydrogen (deuterium, D, and tritium, T) to aro-

matic and olefinic compounds via a directed sp2 C-H activa-

tion process, under mild conditions and short reaction times 

with a plethora of directing groups (Scheme 1, (a)).8-10 Com-

plementary to the directing group approach, the growing inter-

est in this area of research is further exemplified by recent 

reports detailing iron,11a cobalt,11b and photoredox12 catalysis 

methods for the introduction of an isotopic label at sterically 

unencumbered aryl (sp2) and oxidatively active alkyl (sp3) 

positions, respectively (Scheme 1 (b) and (c)). Accordingly, a 

general method for the directed introduction of a hydrogen 

isotope at sp3 centers would deliver this previously unmet re-

quirement, whilst also having the potential to provide further 

insight into sp3 C-H activation processes. Following the recent 

Scheme 1. Complementary approaches to hydrogen iso-

tope exchange. 

disclosure of methylene labelling in a range of amides,3g we 

now report the selective C-H activation and hydrogen isotope 

exchange on sp3 centers utilizing our developed iridium(I) 

NHC/phosphine complexes as directed by a range of pharma-

ceutically-relevant heterocyclic units, in turn expanding the 

utility of these catalysts and providing expedient access to a 

new range of important labeled chemical entities (Scheme 1 

(d)). 

Our studies commenced with the application of a range of 

developed iridium(I) complexes 1a-1e, as well as Crabtree’s 

catalyst 1f and related BArF analogue 1g, in a HIE reaction 

using commercially available 4-(pyridine-2-yl)morpholine 2, 

as a typical, drug-like heterocyclic motif.13 Pleasingly, when 

applying the NHC/phosphine complex 1a, we observed selec-

tive D-incorporation at the four positions  to the morpholine 

nitrogen only (Table 1, Entry 1). This incorporation was im-

proved to deliver excellent levels of labeling by utilizing com-

plex 1b bearing the less coordinating BArF counterion (Table 

1, Entry 2).8e,h,j Further manipulation of the iridium complex 

by variation of the phosphine ligand resulted in a small de-

crease in D-incorporation (Table 1, Entries 3 and 4). Also, 

despite its reported use in sp2 HIE,9a-c the neutral complex 1e 

proved to be inactive for sp3 exchange under these conditions 

(Table 1, Entry 5). Similarly, the smaller ligand sphere of 

Crabtree catalysts 1f and 1g delivered only low levels of D-

incorporation (Table 1, Entries 6 and 7). With catalyst 1b se-

lected for further exploration of reaction parameters, we  



 

Table 1. Screening of Catalysts 1a-g.a 

 

Entry L1, L2, Xb Catalyst Solvent %Dc 

1 IMes, PPh3, PF6 1a DCM 79 

2 IMes, PPh3, BArF 1b DCM 90 

3 IMes, PBn3, BArF 1c DCM 85 

4 IMes, PMePh2, BArF 1d DCM 78 

5 IMes, Cl 1e DCM 0 

6 Py, PCy3, PF6 1f DCM 24 

7 Py, PCy3, BArF 1g DCM 26 

8 IMes, PPh3, BArF 1b tAmylOH 76 

9 IMes, PPh3, BArF 1b MTBE 87 

10 IMes, PPh3, BArF 1b tBuOAc 86 

aEach entry displayed is the average of two reaction runs. Condi-

tions: 2 (0.086 mmol), solvent (1 mL), catalyst (0.00215 mmol). 
bBArF = tetrakis(3,5-triflouromethylphenyl)borate. cPercentage 

deuterium incorporation calculated from LCMS, with the position 

confirmed by 1H NMR spectroscopy. 

 

examined the flexibility of the reaction medium, understand-

ing that many APIs are not soluble in DCM. Encouragingly, 

the reaction could be performed in a range of alcohol, ether 

and ester-derived solvents, with only a slight reduction in D-

incorporation when applying t-amyl alcohol, MTBE or t-

BuOAc (Table 1, Entries 8-10) (see ESI for full range of sol-

vents tested). 

Subsequent investigations examined the reaction condi-

tions thoroughly, applying a design of experiments (DoE) 

approach14 to optimization of the labelling process using cata-

lyst 1b with substrate 2 in DCM. To this end, we applied a 

three-factor, two-level, full factorial design investigating the 

catalyst loading, reaction time, and reaction volume (see ESI 

for full details). This study clearly demonstrated that catalyst 

loading, and to a lesser extent reaction time, influenced the D-

incorporation. Additionally, increasing the reaction volume 

was found to have a small positive effect upon the result, indi-

cating that substrate complexation and subsequent product 

decomplexation influences the catalyst turnover,15 in accord-

ance with our mechanistic observations in sp2-HIE systems.8d 

Following a detailed examination of the results garnered 

from the DoE, an optimized protocol using notably low cata-

lyst loadings for sp3 C-H activation and HIE was developed 

(Scheme 2, Conditions A: 1b (1 mol%), D2, DCM (1 mL), 1 

h), and applied to a range of saturated heterocyclic substrates 

(Scheme 2a). Initial studies focused on the influence that other 

N-heterocycles had when acting as a directing group for the C-

H activation. Beyond previously applied pyridine substrate 2, 

exchange was facilitated well with pyrimidine, quinoline, and 

isoquinoline directing groups, delivering ≥94% D-

incorporation across the four specific C-H labeling sites of the 

morpholine ring in 3-5. In addition to the sp3-exchange, D-

incorporation was observed at positions ortho to the nitro and 

ester directing groups in 6 and 7. Pleasingly, the sp3-exchange 

was preferred in the case of ester 7, presumably because the 

greater Lewis basicity of the N-heterocyclic directing group 

favors coordination to the catalyst and subsequent sp3-

exchange. This hypothesis is further supported by the example 

of N-acetyl morpholine 8, where, under the optimized condi-

tions, no D-incorporation was observed, and heating the reac-

tion (5 mol% 1b, D2, MTBE, 50 °C, 3 h) resulted in only min-

imal incorporation. 

Similar trends were observed within piperidine-derived 

substrates 9 and 11-15, with consistently high D-incorporation 

being obtained (Scheme 2b). The level of labeling with thia-

zole 10 remained high despite the anticipated increase in ring 

strain present in the cyclometallated intermediate with this 5-

membered directing heterocycle. Notably, compound 14 is 

insoluble in DCM, but the broad solvent compatibility of cata-

lyst 1b allowed this substrate to be labeled in 2-MeTHF, re-

sulting in good levels of D-incorporation. In addition, where 

the axial and equatorial protons can be distinguished by 1H 

NMR spectroscopy (11-15), the equatorial exchange is favored 

slightly, plausibly indicating a stronger agostic interaction 

between the catalyst and the equatorial C-H bond. 

Following successful application to a range of morpholines 

and piperidines, we applied optimized Conditions A to pipera-

zines (Scheme 2c), with initial results yielding lowered levels 

of D-incorporation (Conditions A, 16-20). However, we ob-

served that when the free amine was converted to an N-methyl 

unit, high incorporations were re-established (19 vs 21, and 20 

vs 22). Therefore, the decreased activity of these compounds 

clearly relates to an interaction between the free amine and 

catalyst, generating a different species from the active catalyst, 

as has been observed by 31P NMR spectroscopy (see ESI for 

full details).16 However, since the exchange process still con-

tinues, albeit to a lesser degree, the unreactive complex is pre-

sumed to form reversibly. 

With this information in hand, we applied a second DoE 

phase, this time utilizing 1-(pyridin-2-yl)piperazine 16 as a 

reference substrate, to develop conditions that would facilitate 

exchange without protection of the piperazine. This DoE ap-

proach returned a similar dependency upon catalyst loading, 

reaction time, and reaction volume (see ESI for full details), 

and provided a second protocol (Conditions B: 5 mol% 1b, D2, 

DCM (1 mL), 3 h). Pleasingly, under the newly developed 

conditions, high levels of D-incorporation were observed and, 

crucially, without protection of piperazines 16-20. 

Keen to develop a general protocol for the labeling of satu-

rated N-heterocycles, we next considered the effect of chang-

ing the size of the ring being labeled (Scheme 2d). Under 

Conditions A, HIE occurs to deliver a moderate D-

incorporation within both azepane 23 and pyrrolidine 24, but 

with no incorporation in azetidine 25. In contrast, by utilizing 

Conditions B, high levels of D-incorporation can be achieved 



 

 

Scheme 2. Hydrogen isotope exchange on saturated N-heterocycles. Conditions A or B with substrate (0.086 mmol) in DCM (1 

mL). Percentage deuterium incorporation at each site calculated by 1H NMR spectroscopy. a1b (5 mol%), MTBE, 50 °C, 3 h. 
bReaction performed in 2-MeTHF instead of DCM. 

in 23 and 24, and a small level of labelling is evolved in 25. 

This series indicates that the heterocycle ring size can affect 

the efficiency of the HIE process, presumably by influencing 

the strain in the metallacyclic intermediate following C-H 

activation. 

Following our success with saturated heterocycles, we next 

turned our attention to non-cyclic substrate components 

(Scheme 2e). Initial reactions with N-ethyl-N-methylpyridin-2-

amine 26 and N-methylpyridin-2-amine 27 delivered no incor-

poration, and O-methylquinoline 28 showed only low levels of 

exchange on the O-methyl group. Accordingly, we turned to 

our second protocol, Conditions B, which gave high levels of 

incorporation at both the methyl- and methylene positions of 

26, and the O-methyl of 28. In contrast, substrate 27 under-

went only moderate levels of exchange, perhaps due to the 

unprotected secondary amine. Next, we examined several sub-

strates with sp3 C-H bonds which do not possess an -

heteroatom, but which instead are adjacent to acid and ester 

functionalities (29-30). Under Conditions B, somewhat more 

moderate levels of D-incorporation were observed at the site 

arising from C-H activation via a 5-membered metallocycle. 

Having established the utility of our labelling process on a 

broad range of heterocycles and acyclic substrates, we applied 

the developed method to several commercially available drug 

compounds (Scheme 2f). The anti-depressant Mirtazapine 31 

does not contain any sp2 centers which could be labelled via 

directed HIE, however its pyridine nitrogen could direct sp3 

labelling. Applying conditions A, we were pleased to observe 

a high D-incorporation of 94% on the piperazine ring. Similar-

ly, a high incorporation was obtained on the piperazine ring of 

the tranquilizer Azaperone 32, and notably with excellent se-

lectivity versus the ortho sp2-exchange directed by the ketone. 

Finally, application of conditions B to the stimulant Caffeine 

33 resulted in a highly selective labelling at the 7-methyl posi-

tion, directed by the imidazole nitrogen. 

We next looked to investigate the mechanism through 

which the exchange occurs. Firstly, we confirmed a homoge-

neous catalysis process by continuation of the reaction in the 

presence of metallic mercury.17 Secondly, a mechanism in-

volving more than one molecule of catalyst during the rate 

determining step was discounted, by observing a first order 

rate dependence with respect to catalyst (see ESI for full de-

tails). Finally, by measuring the rate of reaction for both the 



 

installation and removal of deuterium (Scheme 3), a kinetic 

isotope effect of 3.22 was established, which indicates an irid-

ium-mediated C-H activation as the rate determining step.18 

Scheme 3. Kinetic isotope studies. 

Taken together, these pieces of experimental evidence are 

consistent with our mechanistic observations in the sp2 C-H 

activation and hydrogen isotope exchange catalyzed by com-

plexes of type 1a-e.8d,9b As a result, it is plausible to propose a 

similar mechanistic pathway (Scheme 4), beginning with acti-

vation of the pre-catalyst 1 to the key iridium(III) dihydride 

intermediate I. Displacement of solvent and coordination of 

substrate, including the key agostic interaction with the ex-

change site, delivers II. Subsequent C-H insertion results in 

metallacycle III, followed by deuterium-hydrogen fluxionality 

affording complex IV. This intermediate can then undergo C-

D bond formation to generate V, prior to product decomplexa-

tion and regeneration of active intermediate I. 

 

Scheme 4. Proposed mechanism for sp3-hydrogen isotope 

exchange. 

To conclude, we have developed new protocols for di-

rected and selective hydrogen isotope exchange at sp3 C-H 

centers, resulting in high levels of D-incorporation with low 

catalyst loadings and under mild reaction conditions. Explora-

tion of a broad variety of substrates has shown the protocols to 

be efficient and reliable across a wide range of saturated het-

erocycles and aliphatic units. Application of the labelling con-

ditions to commercial drug compounds also results in high 

levels of exchange selective for sp3 positions. Beyond the sub-

strate scope, we have investigated the mechanism of this pro-

cess, providing evidence for a pathway proceeding via sp3-C-

H activation as the rate determining step. Further work is un-

derway in our laboratory to further explore the sp3-HIE of 

complex molecules and these studies will be reported in due 

course. 
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1. General experimental information 

All reagents were obtained from commercial suppliers (Table S1) and used without further purification, unless 

otherwise stated. Purification was carried out according to standard laboratory methods. 

Table S1. Starting materials and suppliers. 

Entry Structure Supplier / Synthesis 

1 
1a 

Strem 

2 
1b 

Prepared according to reference [1] 

3 
1c 

See ESI page S8 

4 
1d 

Prepared according to reference [2] 

5 
1e 

Prepared according to reference [1] 

6 
1f 

Strem 

7 
1g 

Prepared according to reference [3] 

8 

2 

Sigma-Aldrich 

9 

3 

Combi-Blocks 

10 

4 

Sigma-Aldrich 

11 

5 

Sigma-Aldrich 

12 

6 

Alfa-Aesar 

13 

7 

Maybridge 

14 
8 

Sigma-Aldrich 

15 

9 

Fluorochem 
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16 
10 

Fluorochem 

17 

11 

Synchem 

18 

12 

Maybridge 

19 

13 

Fluorochem 

20 

14 

Enamine 

21 

15 

Fluorochem 

22 

16 

Sigma-Aldrich 

23 

17 

Fluorochem 

24 

18 

Apollo Scientific 

25 

19 

ABCR 

26 
20 

Fluorochem 

27 

21 

Apollo Scientific 

28 
22 

Fluorochem 

29 

23 

Fluorochem 

30 

24 

Fluorochem 
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31 
25 

Fluorochem 

32 
26 

TCI 

33 
27 

Sigma-Aldrich 

34 
28 

Combi-Blocks 

35 
29 

Fluorochem 

36 
30 

Fluorochem 

37 

31 

TCI 

38 

32 

Sigma-Aldrich 

39 

33 

ABCR 

40 
Sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate (NaBArF) 
Sigma Aldrich 

41 Tribenzylphosphine (PBn3) Sigma Aldrich 

 

Hydrogen isotope exchange reactions were carried out on a Heidolph Synthesis 1 Liquid 16 device (Figure S1). 

 

Figure S1. Heidolph synthesis 1 liquid 16 device. 

 

1H (300, 500 MHz) and 13C (75, 125 MHz) NMR spectra were obtained on Bruker spectrometers in the solvents 

indicated. Chemical shifts are reported in ppm. Coupling constants are reported in Hz and refer to 3JH-H couplings, 
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unless otherwise stated. 1H NMR spectra of labeled products were obtained using a 10 second delay to allow full 

relaxation of all hydrogen environments (D1 = 10). 

IR spectra were obtained on a Shimadzu IRAffinity-1 Spectrophotometer machine and values are reported in cm-1, 

unless stated otherwise. 

Thin layer chromatography was carried out using Camlab silica plates coated with fluorescent indicator UV254. The 

plates were analysed using a Mineralight UVGL-25 lamp or developed using vanillin or KMnO4 solution. 

Flash column chromatography was carried out using Prolabo silica gel (230-400 mesh). 

Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University. 

The distribution of hydrogen isotopes in the products was determined by a liquid chromatography-mass 

spectrometry (LC-MS) system with a Symmetry Shield RP18 column, 3.9 x 150 mm, with a gradient program. LC 

column conditions were as follows:  

Mobile phase A: water (900 mL), acetonitrile (100 mL), TFA (1 mL)  

Mobile phase B: water (100 mL), acetonitrile (900 mL), TFA (1 mL) 

Gradient program:  0-4 min: 5% A/95% B 

   4-7 min: 10% A/90% B 

Flow rate: 1.0 mL/min 

Detection: UV 254 nm. 
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2. General procedure for exchange reactions using Heidolph synthesis 1 liquid 16 device.  

The apparatus was evacuated then filled with argon, and the water condenser was turned on. To a carousel tube was 

added the substrate of choice (0.086 mmol), and iridium catalyst (0.00086 mmol (1 mol%) or 0.00215 mmol (2.5 

mol%) or 0.0043 mmol (5 mol%)). The requisite solvent was then added, rinsing the inner walls of the tube. The tube 

was then sealed at the screw cap (with the gas inlet left open) under argon. The flask was then twice evacuated and 

refilled with deuterium via a balloon. The carousel gas inlet tube was then closed, creating a sealed atmosphere of 

deuterium, the carousel shaking motion was initiated (750 rpm) and the temperature set (25 °C unless otherwise 

stated). After starting the device, the timer was initiated and a rapid red/orange to clear/yellow colour change was 

observed. The reaction mixture was stirred for the allotted time (1 h or 3 h) before removing excess deuterium and 

replacing with air. The yellow solution was then prepared for analysis by LC-MS and 1H NMR spectroscopy. 

The level and regioselectivity of deuterium incorporation in the substrate was determined by 1H NMR spectroscopy. 

The integrals were calibrated against a peak corresponding to a position not expected to be labelled. Equation 1 was 

then used to calculate the extent of labelling. 

% 𝐷𝑒𝑢𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 100 − [(
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑠𝑖𝑡𝑒𝑠
) × 100] 

Equation 1 

For example, in a substrate containing four possible positions of exchange, the percentage given refers to the level of 

deuterium incorporation over the total number of positions (see page S34 for an example of such a spectrum). 

 

The incorporation of deuterium into each substrate was verified by LC-MS, observing a shift in the isotope 

distribution in the starting material (M) to show M+1 (d1), M+2 (d2), M+3 (d3), etc. 

Example LC-MS analysis of compound 2: 

~5 µL of the labelling reaction mixture was removed and diluted with 0.5 mL of MeCN, and the sample analysed by 

LC-MS. Data processing was performed using ADvion Mass express analysis software and the given formula: 

# of D atoms incorporated D0 D1 D2 D3 D4 

Integral of MS peak 0 0.2 0.23 1.2 1.3 

Percentage 0% 6.3% 15.6% 37.5% 40.6% 

 

Total incorporation = (%D1 × 0.25) + (%D2 × 0.5) + (%D3 × 0.75) + (%D4 × 1) 

Total incorporation = (6.3 × 0.25) + (15.6 × 0.5) + (37.5 × 0.75) + (40.6 × 1) 

Total incorporation = (1.6) + (7.8) + (28.1) + (40.6) = 78.1% 
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3. Preparation of [(COD)Ir(IMes)(PBn3)]BArF 1c 

The catalyst was prepared according to a modified procedure from reference [1]. 

 

To a flame-dried, argon-cooled Schlenk tube was added IMes/chloride complex 1e1 (320 mg, 0.5 mmol, 1 eq), dry 

DCM (10 mL) and NaBArF (443 mg, 0.5 mmol, 1 eq). After stirring at 25 °C for 30 min, tribenzylphosphine (152 mg, 

0.5 mmol, 1 eq) was added slowly, initiating an orange to red colour change. Following a further 30 min stirring, the 

solvent was removed in vacuo leaving a red oily solid. The residue was purified by flash column chromatography, 

eluting with DCM/petroluem ether 40-60 °C (50/50). The isolated catalyst was dried in a vacuum oven (40 oC, 1 

mbar) for 24 h, yielding 1c as a deep red solid (762 mg, 86% yield). 

Melting Point (°C): >175 (dec). 

FTIR (neat): (cm-1): 2978, 2361, 1495. 

1H NMR (400 MHz, CDCl3): δ 7.79 (8H, t 4J = 2.3 Hz, Ar-H), 7.58 (4H, s, Ar-H), 7.37-7.27 (13H, m, Ar-H), 7.25-7.21 (2H, 

m, Ar-H), 6.92-6.87 (6H, m, N-CH and Ar-H), 4.66-4.61 (2H, m, COD-CH), 3.31-3.27 (2H, m, COD-CH), 2.90 (6H, d 2J = 

8.7 Hz, P-CH2-Ar), 2.51 (6H, s, Ar-CH3), 2.50 (6H, s, Ar-CH3), 2.33 (6H, s, Ar-CH3), 1.86-1.73 (2H, m, COD-CH2), 1.65-

1.49 (4H, m, COD-CH2), 1.43-1.32 (2H, m, COD-CH2). 

13C NMR (101 MHz, CDCl3): δ 176.5 (d 2JC-P = 7.7 Hz), 161.2 (q 1JC-B = 49.5 Hz), 140.4, 135.6, 135.3, 134.3, 134.2, 132.2, 

132.1, 130,0, 129.5, 129.33, 129.28, 128.4 (q 2JC-F = 32.9 Hz), 128.3, 127.1, 125.7, 124.1 (q 1JC-F = 269 Hz), 116.9, 86.1, 

85.9, 75.5, 31.3, 31.0, 30.0, 29.7, 20.5, 19.6, 19.0. 

31P NMR (162 MHz, CDCl3): δ -7.98 (PBn3). 

19F NMR (376 MHz, CDCl3): δ -62.42 (BArF). 

11B NMR (128 MHz, CDCl3): δ -6.65 (BArF). 

HRMS (NSI): m/z calculated for C50H57IrN2P [M]+: 607.3867; found: 607.3860. 

See page S29 for spectra. 
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4. Screening of Catalysts 1a-1g and Extended Solvent Screen (Manuscript Table 1) 

 

Reactions were carried out following the general procedure on page S7, using 4-(pyridin-2-yl)morpholine 2 (14.1 mg, 

0.086 mmol, 1 eq), with catalyst (0.00215 mmol, 2.5 mol%) in 1 mL of solvent (0.086 M) under D2 for 1 h at 25 °C. 

The full details are tabulated below in Table S2. Entries 11-15 are supplementary to the manuscript Table 1 entries. 

Each reaction was performed in duplicate. The deuterium incorporation was analysed by LCMS and the deuterium 

distribution was confirmed by 1H NMR spectroscopy. 

Table S2. Screening of Catalysts 1a-1g and Extended Solvent Screen. 

Entry Complex 
mass (mg) of 
catalyst used 

Solvent 
Deuterium Incorporation (%D) 

Run 1  Run 2  Average  

1 
1a 

2.2 DCM 76 81 79 

2 
1b 

3.7 DCM 88 92 90 

3 
1c 

3.8 DCM 85 84 85 

4 
1d 

3.5 DCM 75 81 78 

5 
1e 

1.4 DCM 0 0 0 

6 
1f 

1.7 DCM 26 22 24 

7 
1g 

3.3 DCM 25 26 26 

8 
1b 

3.7 t-AmylOH 76 75 76 

9 
1b 

3.7 MTBE 87 86 87 

10 
1b 

3.7 t-BuOAc 86 86 86 

11 
1b 

3.7 MeOH 65 67 66 

12 
1b 

3.7 i-PrOH 60 55 58 

13 
1b 

3.7 2-MeTHF 64 73 69 

14 
1b 

7.4 CPME 83 83 83 

15 
1b 

3.7 i-PrOAc 80 72 76 
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5. Design of Experiment 

5.1. Optimisation for Conditions A. 

Experimental design was used to assess the effect of varying catalyst loading, reaction time, and reaction 

concentration [Conditions: 2 (14.1 mg, 0.086 mmol), 1b (catalyst loading), DCM (concentration), D2, 25 °C, (reaction 

time)]. As such, ‘high’ and ‘low’ values for each of these three variables were chosen. To generate a series of 

experiments to study optimal conditions within the variable ranges chosen, Design ExpertTM software v9.0 (Stat_Ease 

Inc., Minneappolis, Mn) was used. This generated a 2 level, 3 factorial design containing three centre points, giving 

11 experiments in total. The deuterium incorporation of 4-(pyridin-2-yl)morpholine 2 was used as the response 

(Table S3). 

Table S3. Design of Experiment: Optimisation for Protocol 1 

Runa Variable A:  
Catalyst Loading (mol%) 

Amount of 1b 
(mg (mmol)) 

Variable B: 
Reaction Time (min) 

Variable C: 
DCM Volume 

(mL) 

Response:  
 Incorporation (%D) 

1 (++-) 1.5 2.2 (0.00129) 40 0.5 52 

2 (--+) 0.5 0.7 (0.0043) 20 2.5 24 

3 (+++) 1.5 2.2 (0.00129) 40 2.5 94 

4 (000) 1.0 1.5 (0.00086) 30 1.5 72 

5 (-+-) 0.5 0.7 (0.0043) 40 0.5 45 

6 (000) 1.0 1.5 (0.00086) 30 1.5 73 

7 (---) 0.5 0.7 (0.0043) 20 0.5 30 

8 (+--) 1.5 2.2 (0.00129) 20 0.5 51 

9 (000) 1.0 1.5 (0.00086) 30 1.5 69 

10 (-++) 0.5 0.7 (0.0043) 40 2.5 37 

11 (+-+) 1.5 2.2 (0.00129) 20 2.5 70 
a (+) = high value, (-) low value, and (0) = centre point of a variable. (-+-) = combination of low A, high B, and low C 

 

Entries 4, 6, and 9 represent the centre points of the design. These were employed in order to: 

(i) assess any curvature in the response of conversion changes in the variables; and 

(ii) assess the repeatability of the hydrogen isotope exchange reaction. 

A response surface was created in the same design program. This generated a half-normal plot (Graph S1), inferring 

that increasing the catalyst loading, reaction time, DCM volume, and the combination of catalyst loading and DCM 

volume have a positive impact upon the efficacy of the labeling reaction.  
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Graph S1 

Finally, provided below is a graph of Residuals versus Predicted plot. This is a plot of the residuals versus the 

ascending predicted response values (lower conversion to higher conversion) and tests the assumption of constant 

variance in the data (Graph S2). 

 

Graph S2 
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5.2. Optimisation for Conditions B 

Experimental design was used to assess the effect of varying catalyst loading, reaction time, and reaction 

concentration [Conditions: 16 (14.0 mg, 0.086 mmol), 1b (catalyst loading), DCM (concentration), D2, 25 °C, (reaction 

time)]. As such, ‘high’ and ‘low’ values for each of these three variables were chosen. To generate a series of 

experiments to study optimal conditions within the variable ranges chosen, Design ExpertTM software v9.0 (Stat_Ease 

Inc., Minneappolis, Mn) was used. This generated a 2 level, 3 factorial design containing three centre points, giving 

11 experiments in total. The deuterium incorporation of 4-(pyridin-2-yl)piperazine 16 was used as the response 

(Table S4). 

Table S4. Design of Experiment: Optimisation for Protocol 2 

Runa Variable A:  
Catalyst Loading (mol%) 

Amount of 1b 
(mg (mmol)) 

Variable B: 
Reaction Time (min) 

Variable C: 
DCM Volume 

(mL) 

Response:  
 Incorporation (%D) 

1 (000) 3.0 4.5 75 1.5 62 

2 (+++) 5.0 7.4 120 2.5 83 

3 (+--) 5.0 7.4 30 0.5 48 

4 (--+) 1.0 1.5 30 2.5 7 

5 (000) 3.0 4.5 75 1.5 62 

6 (++-) 5.0 7.4 120 0.5 69 

7 (---) 1.0 1.5 30 0.5 5 

8 (-+-) 1.0 1.5 120 0.5 10 

9 (-++) 1.0 1.5 120 2.5 14 

10 (+-+) 5.0 7.4 30 2.5 57 

11 (000) 3.0 4.5 75 1.5 64 
a (+) = high value, (-) low value, and (0) = centre point of a variable. (-+-) = combination of low A, high B, and low C 

 

Entries 1, 5, and 11 represent the centre points of the design. These were employed in order to: 

(i) assess any curvature in the response of conversion changes in the variables; and 

(ii) assess the repeatability of the hydrogen isotope exchange reaction. 

A response surface was created in the same design program. This generated a half-normal plot (Graph S3), inferring 

that increasing the catalyst loading, reaction time, DCM volume, and the combination of catalyst loading and DCM 

volume have a positive  impact upon the efficacy of the labelling reaction.  
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Finally, provided below is a graph of Residuals versus Predicted plot. This is a plot of the residuals versus the 

ascending predicted response values (lower conversion to higher conversion) and tests the assumption of constant 

variance in the data (Graph S4). 

 

Graph S4 
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6. Substrate Scope (Manuscript Scheme 2) 

 

Conditions A 

Reactions were carried out following the general procedure on page S7, using substrate (0.086 mmol, 1 eq), with 

catalyst 1b (1.5 mg, 0.00086 mmol, 1.0 mol%) in 1 mL of DCM (0.086 M) under D2 for 1 h at 25 °C. 

Conditions B 

Reactions were carried out following the general procedure on page S7, using substrate (0.086 mmol, 1 eq), with 

catalyst 1b (7.4 mg, 0.0043 mmol, 5.0 mol%) in 1 mL of DCM (0.086 M) under D2 for 3 h at 25 °C. 

Each reaction was performed in duplicate. The extent and position of labeling was established using 1H NMR 

spectroscopy. The average deuterium incorporation for each molecule across all labeled positions was further 

confirmed by LCMS analysis. The details of the substrate scope described within the manuscript are given in Table S5 

below. 

Table S5. Substrate Scope. 

Entry Substrate 
Mass of 

Substrate  
Used (mg) 

Protocol 

Deuterium Incorporation (%D) 

LC-MS 1H NMR 
Distribution Run 1 Run 2 Average 

1 

[D]-2 

14.1 A 82 78 80 80 

2 

[D]-3 

21.0 A 95 95 95 95 

3 

[D]-4 

18.4 A 85 91 88 94 

4 

[D]-5 

18.4 A 96 92 94 99 

5 

[D]-6 

18.0 A 85 86 86 

Da = 87 

Db = 91 

Dc = 57 

  



S15 
 

6 

[D]-7 

19.1 A 82 83 83 

Da = 95 

Db = 5 
 

7 

[D]-8 

11.1 

A 0 0 0 0 

B* 11 13 12 12 

8 

[D]-9 

20.8 A 94 96 95 91 

9 

[D]-10 

14.5 A 78 82 80 86 

10 

[D]-11 

15.4 A 88 90 89 

Dax = 83 

Deq = 84 

11 

[D]-12 

16.6 A 89 89 89 

Dax = 86 

Deq = 89 

12 

[D]-13 

17.7 A 78 83 81 

Dax = 73 

Deq = 87 

13 

[D]-14 

22.6 A** 83 81 82 

Dax = 77 

Deq = 87 

14 

[D]-15 

23.6 A 95 89 92 

Dax = 90 

Deq = 93 
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15 

[D]-16 

14.0 

A 17 18 18 18 

B 90 94 92 89 

16 

[D]-17 

19.9 

A 11 12 12 
Da = 11 

Db = 0 

B 64 70 67 
Da = 79 

Db = 17 

17 

[D]-18 

20.8 

A 24 25 25 
Da = 24 

Db = 0 

B 86 86 86 
Da = 92 

Db = 34 

18 

[D]-19 

20.9 

A 7 8 8 7 

B 77 82 80 77 

19 

[D]-20 

14.6 

A 24 19 22 30 

B 90 90 90 89 

20 

[D]-21 

22.1 A 87 94 91 92 

21 

[D]-22 

15.8 A 87 82 85 84 

22 

[D]-23 

22.0 

A 47 47 47 47 

B 86 84 85 84 

23 

[D]-24 

19.6 

A 58 56 57 57 

B 94 94 94 94 
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24 

[D]-25 

18.4 

A 0 0 0 0 

B 8 9 9 9 

25 

[D]-26 

11.7 

A 0 0 0 
Da = 0 

Db = 0 

B 96 95 96 
Da = 92 

Db = 92 

26 
[D]-27 

9.3 

A 0 0 0 0 

B 32 28 30 37 

27 
[D]-28 

13.7 

A 13 15 14 14 

B 70 77 74 80 

28 
[D]-29 

13.0 

A 16 19 18 16 

B 58 63 61 65 

29 
[D]-30 

15.4 

A 0 0 0 
Da = 0 

Db = 0 

B 25 21 23 
Da = 23 

Db = 7 

30 

[D]-31 

22.8 A 95 94 95 94 

31 

[D]-32 

28.2 A 71 72 72 

Da = 97 

Db = 13 

32 

[D]-33 

16.7 

A 41 41 41 41 

B 93 91 92 92 

* Reaction conditions = substrate (0.086 mmol, 1 eq), with catalyst 1b, (7.4 mg, 0.0043 mmol, 5.0 mol%) in 1 mL of 
MTBE (0.086 M) under D2 for 3 h at 50 °C. ** Reaction conditions = substrate (0.086 mmol, 1 eq), with catalyst 1b, 

(1.5 mg, 0.00086 mmol, 1.0 mol%) in 1 mL of 2-MeTHF (0.086 M) under D2 for 1 h at 25 °C. 
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Substrate 1H NMR data4 

[D]-2 

1H NMR (300 MHz, DMSO-d6): δ 8.12 (1H, dd, J = 5.1 Hz, 4J = 1.5 Hz, Ar-H), 7.54 
(1H, ddd, J = 8.7 Hz, 7.1 Hz, 4J = 1.5 Hz, Ar-H), 6.81 (1H, d, J = 8.7 Hz, Ar-H), 6.66 
(1H, dd, J = 7.7 Hz, 4J = 5.1 Hz, Ar-H), 3.72-3.64 (4H, m, O-CH2), 3.44-3.37 (4H, 
m, N-CH2). 
Incorporation expected at δ 3.44-3.37. 
Determined against integral at δ 6.66. 

LCMS data 

Retention time: 0.28 min; Mass ion: 165.1 (M+H)+ 

 

[D]-3 

1H NMR data5 

1H NMR (300 MHz, DMSO-d6): δ 8.46 (2H, s, Ar-H), 3.70-3.60 (8H, m, CH2). 
Incorporation expected at δ 3.70-3.60. 
Determined against integral at δ 8.46. 

LCMS data 

Retention time: 2.69 min; Mass ion: 244.1 (M+H)+ [using 79Br] 

 

[D]-4 

1H NMR data6 

1H NMR (300 MHz, DMSO-d6): δ 8.05 (1H, d, J = 9.3 Hz, Ar-H), 7.70 (1H, d, J = 
7.9 Hz, Ar-H), 7.61-7.48 (2H, m, Ar-H), 7.28-7.18 (2H, m, Ar-H), 3.76-3.69 (4H, 
m, O-CH2), 3.68-3.59 (4H, m, N-CH4). 
Incorporation expected at δ 3.68-3.59. 
Determined against integral at δ 7.28-7.18. 

LCMS data 

Retention time: 0.49 min; Mass ion: 215.1 (M+H)+ 

 

[D]-5 

1H NMR data7 

1H NMR (300 MHz, DMSO-d6): δ 8.15-8.08 (2H, m, Ar-H), 7.88 (1H, d, J = 8.2 Hz, 
Ar-H), 7.75-7.66 (1H, m, Ar-H), 7.63-7.54 (1H, m, Ar-H), 7.39 (1H, d, J = 5.7 Hz, 
Ar-H), 3.90-3.80 (4H, m, O-CH2), 3.33-3.27 (4H, m, N-CH2). 
Incorporation expected at δ 3.33-3.27. 
Determined against integral at δ 7.39. 

LCMS data 

Retention time: 0.80 min; Mass ion: 215.1 (M+H)+ 

 

[D]-6 

1H NMR data8 

1H NMR (300 MHz, DMSO-d6): δ 8.96 (1H, d, 4J = 2.8 Hz, Ar-H), 8.23 (1H, dd, J = 
9.6 Hz, 4J = 2.8 Hz, Ar-H), 6.93 (1H, d, J = 9.6 Hz, Ar-H), 3.81-3.59 (8H, m, CH2). 
Incorporation expected at δ Da 3.81-3.59, Db 8.96, Dc 8.23. 
Determined against integral at δ 6.93. 

LCMS data 

Retention time: 2.38 min; Mass ion: 210.1 (M+H)+ 
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[D]-7 

1H NMR data9 

1H NMR (300 MHz, DMSO-d6): δ 8.65 (1H, d, 4J = 2.5 Hz, Ar-H), 7.96 (1H, dd, J = 
9.1 Hz, 4J = 2.4 Hz, Ar-H), 6.87 (1H, d, J = 9.2 Hz, Ar-H), 3.78 (3H, s, O-CH3), 
3.71-3.64 (4H, m, O-CH2), 3.63-3.56 (4H, m, N-CH2). 
Incorporation expected at δ Da 3.63-3.56, Db 8.65, Dc 7.96. 
Determined against integral at δ 3.78. 

LCMS data 

Retention time: 2.00 min; Mass ion: 223.2 (M+H)+ 

 

[D]-8 

1H NMR data10 

1H NMR (300 MHz, DMSO-d6): δ 3.59-3.48 (4H, m, O-CH2), 3.45-3.36 (4H, m, N-
CH2), 1.97 (3H, s, CO-CH3). 
Incorporation expected at δ 3.45-3.36. 
Determined against integral at δ 1.97. 

LCMS data 

Retention time: 0.41 min; Mass ion: 130.1 (M+H)+ 

 

[D]-9 

1H NMR data11 

1H NMR (300 MHz, DMSO-d6): δ 8.38 (2H, br s, Ar-H), 3.75-3.62 (4H, m, N-CH2), 
1.66-1.56 (2H, m, CH2), 1.55-1.43 (4H, m, CH2). 
Incorporation expected at δ 3.75-3.62. 
Determined against integral at δ 1.55-1.43. 

LCMS data 

Retention time: 3.54 min; Mass ion: 242.1 (M+H)+
 [using 79Br] 

 

[D]-10 

1H NMR data12 

1H NMR (300 MHz, DMSO-d6): δ 7.11 (1H, d, J = 3.7 Hz, Ar-H), 6.75 (1H, d, J = 
3.6 Hz, Ar-H), 3.45-3.33 (4H, m, N-CH2), 1.65-1.52 (6H, m, CH2). 
Incorporation expected at δ 3.45-3.33. 
Determined against integral at δ 1.65-1.52. 

LCMS data 

Retention time: 0.67 min; Mass ion: 169.0 (M+H)+ 

 

[D]-11 

1H NMR data13 

1H NMR (300 MHz, DMSO-d6): δ 8.31 (2H, d, J = 4.7 Hz, Ar-H), 6.55 (1H, t, J = 4.7 
Hz, Ar-H), 4.64 (1H, d, J = 4.2 Hz, O-H), 4.24 (2H, ddd, 2J = 13.0 Hz, J = 5.6 Hz, 4.1 
Hz, N-CH2), 3.72 (1H, oct, J = 4.2 Hz, O-CH), 3.24 (2H, ddd, 2J = 13.0 Hz, J = 9.1 
Hz, 3.7 Hz, N-CH2), 1.81-1.70 (2H, m, CH2), 1.39-1.23 (2H, m, CH2). 
Incorporation expected at δ 3.24 axial, 4.24 equatorial. 
Determined against integral at δ 1.39-1.23. 

LCMS data 

Retention time: 0.72 min; Mass ion: 180.1 (M+H)+ 
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[D]-12 

1H NMR data14 

1H NMR (300 MHz, DMSO-d6): δ 8.30 (2H, d, J = 4.7 Hz, Ar-H), 6.53 (1H, t, J = 4.7 
Hz, Ar-H), 4.70-4.58 (2H, m, N-CH2), 4.40 (1H, t, J = 5.3 Hz, O-H), 3.33-3.20 (2H, 
m, O-CH2), 2.83 (2H, td, J = 12.7 Hz, 2.7 Hz, N-CH2), 1.77-1.55 (3H, m, CH2-CH & 
CH2), 1.14-0.95 (2H, m, CH2). 
Incorporation expected at δ 2.83 axial, 4.70-4.58 equatorial. 
Determined against integral at δ 1.14-0.95. 

LCMS data 

Retention time: 0.71 min; Mass ion: 194.1 (M+H)+ 

 

[D]-13 

1H NMR data15 

1H NMR (300 MHz, DMSO-d6): δ 12.15 (1H, br s, O-H), 8.08 (1H, dd, J = 5.2 Hz, 4J 
= 2.0 Hz, Ar-H), 7.49 (1H, ddd, J = 8.7 Hz, 7.1 Hz, 4J = 2.0 Hz, Ar-H), 6.80 (1H, d, J 
= 8.7 Hz, Ar-H), 6.58 (1H, dd, J = 7.1 Hz, 5.2 Hz, Ar-H), 4.16 (2H, ddd, 2J = 13.3 
Hz, J = 4.3 Hz, 3.2 Hz, N-CH2), 2.92 (2H, ddd, 2J = 13.3 Hz, J = 11.5 Hz, 2.9 Hz, N-
CH2), 2.52-2.42 (1H, m, CH), 1.91-1.79 (2H, m, CH2), 1.61-1.40 (2H, m, CH2). 
Incorporation expected at δ 2.92 axial, 4.16 equatorial. 
Determined against integral at δ 1.61-1.40. 

LCMS data 

Retention time: 0.39 min; Mass ion: 207.1 (M+H)+ 

 

[D]-14 

1H NMR data16 

1H NMR (300 MHz, CD3CN): δ 9.05 (1H, br-s, O-H), 7.68 (1H, d, J = 7.5 Hz, 4J = 
1.5 Hz, Ar-H), 7.44 (1H, d, J = 7.5 Hz, Ar-H), 7.28 (1H, td, J = 7.5 Hz, 4J = 1.5 Hz, 
Ar-H), 7.07 (1H, td, J = 7.5 Hz, 4J = 1.5 Hz, Ar-H), 4.04 (2H, ddd, 2J = 12.6 Hz, J 
= 4.2 Hz, 4.1 Hz, N-CH2), 3.25 (2H, ddd, 2J = 12.6 Hz, J = 11.4 Hz, 3.0 Hz, N-
CH2), 2.62 (1H, tt, J = 11.1 Hz, 4.0 Hz, CH), 2.07-1.96 (2H, m, CH2), 1.81-1.64 
(2H, m, CH2). 
Incorporation expected at δ axial 3.25, equatorial 4.04. 
Determined against integral at δ 1.81-1.64. 

LCMS data 

Retention time: 2.49 min; Mass ion: 263.1 (M+H)+ 

 

[D]-15 

1H NMR data17 

1H NMR (300 MHz, DMSO-d6): δ 12.11 (1H, br s, O-H), 8.37 (1H, br s, Ar-H), 7.74 
(1H, dd, J = 9.1 Hz, 4J = 2.6 Hz, Ar-H), 6.93 (1H, d, J = 9.1 Hz, Ar-H), 4.27 (2H, 
ddd, 2J = 13.5 Hz, J = 3.8 Hz, 3.8 Hz, N-CH2), 3.08 (2H, ddd, 2J = 13.5 Hz, J = 11.2 
Hz, 3.0 Hz, N-CH2), 2.56 (1H, tt, J = 11.0 Hz, 4.0 Hz, CH), 1.94-1.81 (2H, m, CH2), 
1.61-1.41 (2H, m, CH2). 
Incorporation expected at δ 3.08 axial, 4.27 equatorial. 
Determined against integral at δ 1.61-1.41. 

LCMS data 

Retention time: 3.19 min; Mass ion: 275.1 (M+H)+ 
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[D]-16 

1H NMR data18 

1H NMR (300 MHz, DMSO-d6): δ 8.08 (1H, dd, J = 4.9 Hz, 4J = 2.1 Hz, Ar-H), 7.49 
(1H, ddd, J = 8.7 Hz, 7.1 Hz, 4J = 2.1 Hz, Ar-H), 6.75 (1H, d, J = 8.7 Hz, Ar-H), 6.59 
(1H, dd, J = 7.1 Hz, 4.9 Hz, Ar-H), 3.43-3.32 (4H, m, N-CH2), 2.81-2.70 (4H, m, 
NH-CH2). 
Incorporation expected at δ 3.43-3.32. 
Determined against integral at δ 2.81-2.70. 

LCMS data 

Retention time: 0.37 min; Mass ion: 164.0 (M+H)+ 

 

[D]-17 

1H NMR data19 

1H NMR (300 MHz, DMSO-d6): δ 8.37 (1H, br s, Ar-H), 7.73 (1H, dd, J = 9.1 Hz, 4J = 
2.7 Hz, Ar-H), 6.88 (1H, d, J = 9.1 Hz, Ar-H), 3.59-3.48 (4H, m, N-CH2), 2.88-2.60 (4H, 
m, NH-CH2). 
Incorporation expected at δ Da 3.59-3.48, Db 8.37. 
Determined against integral at δ 2.88-2.60. 

LCMS data 

Retention time: 1.12 min; Mass ion: 232.3 (M+H)+ 

 

[D]-18 

1H NMR data20 

1H NMR (300 MHz, DMSO-d6): δ 8.40 (1H, br s, Ar-H), 7.77 (1H, dd, J = 9.2 Hz, 4J = 
2.5 Hz, Ar-H), 6.92 (1H, d, J = 9.4 Hz, Ar-H), 3.64-3.46 (4H, m, N-CH2), 2.88-2.71 (4H, 
m, NH-CH2). 
Incorporation expected at δ Da 3.64-3.46, Db 8.40. 
Determined against integral at δ 2.88-2.71. 

LCMS data 

Retention time: 2.24 min; Mass ion: 242.1 (M+H)+ [using 79Br] 

 

[D]-19 

1H NMR data21 

1H NMR (300 MHz, DMSO-d6): 8.46 (2H, br s, Ar-H), 3.89-3.75 (4H, m, N-CH2), 
2.90-2.78 (4H, m, NH-CH2). 
Incorporation expected at δ 3.89-3.75. 
Determined against integral at δ 2.90-2.78. 

LCMS data 

Retention time: 2.24 min; Mass ion: 243.1 (M+H)+ [using 79Br] 

 

[D]-20 

1H NMR data22 

1H NMR (300 MHz, DMSO-d6): δ 7.14 (1H, d, J = 3.6 Hz, Ar-H), 6.79 (1H, d, J = 3.6 
Hz, Ar-H), 3.36-3.26 (4H, m, N-CH2), 2.83-2.73 (4H, m, NH-CH2). 
Incorporation expected at δ 3.36-3.26. 
Determined against integral at δ 2.83-2.73. 

LCMS data 

Retention time: 0.29 min; Mass ion: 170.1 (M+H)+ 
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[D]-21 

1H NMR data23 

1H NMR (300 MHz, DMSO-d6): δ 8.42 (2H, s, Ar-H), 3.76-3.63 (4H, m, N-CH2), 2.38-
2.29 (4H, m, NMe-CH2), 2.19 (3H, s, N-CH3). 
Incorporation expected at δ 3.76-3.63. 
Determined against integral at δ 2.19. 

LCMS data 

Retention time: 0.41 min; Mass ion: 257.1 (M+H)+
 [using 79Br] 

 

[D]-22 

1H NMR data24 

1H NMR (300 MHz, DMSO-d6): δ 7.15 (1H, d, J = 3.6 Hz, Ar-H), 6.81 (1H, d, J = 3.6 Hz, Ar-
H), 3.43-3.33 (4H, m N-CH2), 2.46-2.35 (4H, m, NMe-CH2), 2.21 (3H, s, N-CH3). 
Incorporation expected at δ 3.43-3.33. 
Determined against integral at δ 2.21. 

LCMS data 

Retention time: 0.29 min; Mass ion: 184.1 (M+H)+ 

 

[D]-23 

1H NMR data25 

1H NMR (300 MHz, DMSO-d6): δ 8.39 (2H, br s, Ar-H), 3.73-3.60 (4H, m, N-CH2), 
1.77-1.61 (4H, m, CH2), 1.54-1.39 (4H, m, CH2). 
Incorporation expected at δ 3.73-3.60. 
Determined against integral at δ 1.54-1.39. 

LCMS data 

Retention time: 0.29 min; Mass ion: 256.1 (M+H)+ [using 79Br] 

 

[D]-24 

1H NMR data26 

1H NMR (300 MHz, DMSO-d6): δ 8.40 (2H, br s, Ar-H), 3.53-3.38 (4H, m, N-CH2), 
2.01-1.85 (4H, m, CH2). 
Incorporation expected at δ 3.53-3.38. 
Determined against integral at δ 2.01-1.85. 

LCMS data 

Retention time: 2.85 min; Mass ion: 228.1 (M+H)+ [using 79Br] 

 

[D]-25 

1H NMR data27 

1H NMR (300 MHz, DMSO-d6): δ 8.40 (2H, br s, Ar-H), 4.02 (4H, t, J = 7.5 Hz, N-CH2), 
2.30 (2H, quin, J = 7.6 Hz, CH2). 
Incorporation expected at δ D 4.02. 
Determined against integral at δ 2.30. 

LCMS data 

Retention time: 2.30 min; Mass ion: 214.0 (M+H)+ [using 79Br] 

 

[D]-26 

1H NMR data28 

1H NMR (300 MHz, DMSO-d6): δ 8.04 (1H, dd, J = 4.9 Hz, 4J = 2.1 Hz, Ar-H), 
7.45 (1H, ddd, J = 8.7 Hz, 7.1 Hz, 4J = 2.1 Hz, Ar-H), 6.57 (1H, d, J = 8.7 Hz, Ar-
H), 6.50 (1H, dd, J = 7.1 Hz, 4.8 Hz, Ar-H), 3.53 (2H, q, J = 7.1 Hz, N-CH2), 2.94 
(3H, s, N-CH3), 1.05 (3H, t, J = 7.1 Hz, CH2-CH3). 
Incorporation expected at δ Da 3.53, Db 2.94. 
Determined against integral at δ 1.05. 

LCMS data 

Retention time: 0.30 min; Mass ion: 137.2 (M+H)+ 
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[D]-27 

1H NMR data29 

1H NMR (300 MHz, DMSO-d6): δ 7.96 (1H, dd, J = 5.0 Hz, 4J = 2.0 Hz, Ar-H), 7.34 
(1H, ddd, J = 8.4 Hz, 7.0 Hz, 4J = 2.0 Hz, Ar-H), 6.50-6.37 (2H, m, Ar-H), 6.31 (1H, 
br s, N-H), 2.75 (3H, d, J = 4.9 Hz, NH-CH3). 
Incorporation expected at δ 2.75. 
Determined against integral at δ 7.34. 

LCMS data 

Retention time: 0.25 min; Mass ion: 109.2 (M+H)+ 

 

[D]-28 

1H NMR data30 

1H NMR (300 MHz, DMSO-d6): δ 8.21 (1H, d, J = 8.9 Hz, Ar-H), 7.86 (1H, dd, J = 
7.8 Hz, 4J = 1.6 Hz, Ar-H), 7.78 (1H, d, J = 8.3 Hz, Ar-H), 7.65 (1H, ddd, J = 8.4 Hz, 
7.0 Hz, 4J = 1.6 Hz, Ar-H), 7.42 (1H, ddd, J = 8.1 Hz, 6.9 Hz, 4J = 1.4 Hz, Ar-H), 
7.00 (1H, d J = 8.9 Hz, Ar-H), 3.98 (3H, s, O-CH3). 
Incorporation expected at δ 3.98. 
Determined against integral at δ 7.00. 

LCMS data 

Retention time: 3.00 min; Mass ion: 160.1 (M+H)+ 

 

[D]-29 

1H NMR data31 

1H NMR (300 MHz, DMSO-d6): δ 12.10 (1H, br s, O-H), 8.46 (1H, dd, J = 5.1 Hz, 
4J = 1.9 Hz, Ar-H), 7.68 (1H, dd, J = 7.7 Hz, 4J = 1.9 Hz, Ar-H), 7.26 (1H, d, J = 7.9 
Hz, Ar-H), 7.19 (1H, dd, J = 7.7 Hz, 5.0 Hz, Ar-H), 2.96 (2H, t, J = 7.4 Hz, Ar-CH2), 
2.65 (2H, t, J = 7.4 Hz, CO-CH2). 
Incorporation expected at δ 2.65. 
Determined against integral at δ 7.68. 

LCMS data 

Retention time: 0.29 min; Mass ion: 152.1 (M+H)+  

 

[D]-30 

1H NMR data32 

1H NMR (300 MHz, DMSO-d6): δ 8.45 (1H, d, J = 4.9 Hz, Ar-H), 7.68 (1H, td, J = 
7.7 Hz, 4J = 1.8 Hz, Ar-H), 7.26 (1H, d, J = 7.5 Hz, Ar-H), 7.18 (1H, dd, J = 7.3 Hz, 
4.8 Hz, Ar-H), 4.02 (2H, q, J = 7.2 Hz, O-CH2), 2.99 (2H, t, J = 7.3 Hz, Ar-CH2), 
2.72 (2H, t, J = 7.3 Hz, CO-CH2), 1.13 (3H, t, J = 7.2 Hz, CH2-CH3). 
Incorporation expected at δ Da: 2.72, Db: 8.45. 
Determined against integral at δ 1.13. 

LCMS data 

Retention time: 0.46 min; Mass ion: 180.2 (M+H)+ 
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[D]-31 

1H NMR data33 

1H NMR (300 MHz, DMSO-d6): δ 8.08 (1H, dd, J = 4.9 Hz, 4J = 1.9 Hz, Ar-H), 7.43 
(1H, d, J = 7.3 Hz, Ar-H), 7.30-7.07 (4H, m, Ar-H), 6.77 (1H, dd, J = 7.3 Hz, 4.9 Hz, 
Ar-H), 4.39-4.19 (2H, m, N-CH & Ar-CH2), 3.67 (1H, d, 2J = 13.5 Hz, Ar-CH2), 3.48-
3.36 (2H, m, N-CH2), 2.84-2.66 (2H, m, NMe-CH2), 2.52-2.45 (1H, m, NMe-CH2), 
2.36-2.19 (4H, m, N-CH3 & NMe-CH2). 
Incorporation expected at δ 3.48-3.36. 
Determined against integral at δ 3.67. 

LCMS data 

Retention time: 0.50 min; Mass ion: 266.3 (M+H)+ 

 

[D]-32 

1H NMR data34 

1H NMR (300 MHz, DMSO-d6): δ 8.15-7.91 (3H, m, Ar-H), 7.49 (1H, ddd, J = 
8.5 Hz, 7.7 Hz, 4J = 2.2 Hz, Ar-H), 7.39-7.24 (2H, m, Ar-H), 6.76 (1H, d, J = 
8.6 Hz, Ar-H), 6.60 (1H, dd, J = 7.7 Hz, 4.8 Hz, Ar-H), 3.43-3.32 (4H, m, Ar-
N-CH2), 3.01 (2H, t, J = 7.0 Hz, N-CH2), 2.45-2.27 (6H, m, CH2 & N-CH2), 
1.90-1.77 (2H, m, CH2). 
Incorporation expected at δ Da 3.43-3.32, Db 8.15-7.91. 
Determined against integral at δ 1.90-1.77. 

LCMS data 

Retention time: 0.38 min; Mass ion: 328.4 (M+H)+ 

 

[D]-33 

1H NMR data35 

1H NMR (300 MHz, DMSO-d6): δ 7.98 (1H, s, Ar-H), 3.87 (3H, s, N-CH3), 3.40 (3H, 
s, N-CH3), 3.21 (3H, s, N-CH3). 
Incorporation expected at δ 3.40. 
Determined against integral at δ 3.87. 

LCMS data 

Retention time: 0.92 min; Mass ion: 195.1 (M+H)+ 
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7. NMR Studies Regarding Piperazine NH Binding 

 

Experiments were run to determine the effect of secondary amines on the unactivated pre-catalyst, and activated 

catalyst species. Below, “Unactivated” refers to experiments run without catalyst activation with H2, and “Activated” 

refers to experiments run after catalyst activation with H2. 

“Activated” protocol: In an oven dried NMR tube, substrate (9: 4.8 mg, 0.02 mmol or 19: 4.9 mg, 0.02 mmol), 

catalyst 1a (10 mg, 0.01 mmol) and DCM (0.5 mL) were added and the tube capped with a rubber septum. Hydrogen 

was bubbled through the solution at a constant rate for 5 min to activate the catalyst, and a red to yellow colour 

change was observed. Following the catalyst activation the NMR tube was cooled to 0 °C in an ice bath prior to 

injection into the NMR spectrometer. 31P NMR experiments were run at 0 °C to allow observation of changes in the 

active catalytic species. 

“Unactivated” protocol: This follows the above “Activated” protocol, but without the introduction of hydrogen gas. 

31P NMR data for the experiments are displayed below (Fig. S2).  

The experiments reveal that when unactivated, the pre-catalyst remains unaffected by the substrate, showing the 

same shift of 18.3 ppm. Similarly, in the case of piperidine-containing substrate 9 a single catalytic species is formed, 

with a 31P NMR shift of 24.9 ppm after activation. However, with piperazine containing substrate 19, several signals 

are observed, with none appearing at 24.9 ppm, clearly indicating several different phosphine-containing species are 

being formed. 

 

Figure S2. 
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8. Mechanistic Investigations 

8.1. Mercury Nanoparticle Test 

 

The reaction was carried out as described on page S7, except with the addition of a mercury drop prior to catalyst 

activation with D2. The reaction proceeded to similarly high incorporation (78%) as without added mercury (91%), 

indicating that the reaction is homogeneous in nature, and is not catalysed by heterogeneous nanoparticles formed 

in situ. 
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8.2. Order of Reaction 

 

Reactions were carried out following the general procedure on page S7, using 5-bromo-2-(piperidin-1-yl)pyrimidine 9 

(20.8 mg, 0.086 mmol, 1 eq), with catalyst 1b (1.5 mg, 0.00086 mmol, 1.0 mol% or 0.7 mg, 0.00043 mmol, 0.5 mol%) 

in 1 mL of solvent (0.086 M) under an atmosphere of D2 for the stated time at 25 °C. The deuterium incorporation 

was assigned by 1H NMR spectroscopy. The full incorporation data are given below in Table S6, and in Graph S5. 

Table S6. Reactions carried out to determine the order of the reaction with respect to catalyst. 

Entry Time (min) Catalyst Loading (mol%) Deuterium Incorporation (%D) 

1 
3 

0.5 8 

2 1.0 12 

3 
5 

0.5 17 

4 1.0 32 

5 
7 

0.5 23 

6 1.0 46 

7 
9 

0.5 32 

8 1.0 61 

9 
11 

0.5 39 

10 1.0 67 

 

Graph S5. Rate study to determine the order of reaction with respect to catalyst. 

The data points for 3 min were discarded as they could occur within the catalyst activation period. The data points 

for 11 min were discarded as product inhibition has been observed when the incorporation is >60%. 

The gradient of the line is proportional to the reaction rate constant. Therefore, the rate increases by a factor of 1.93 

(1.93 ≈ 2) in changing the catalyst loading from 0.5 to 1.0, indicating a first order rate dependence upon the catalyst. 
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8.3. Kinetic Isotope Effect 

 
Reactions to incorporate deuterium were carried out following the general procedure on page S7, using 5-bromo-2-

(piperidin-1-yl)pyrimidine 9 (20.8 mg, 0.086 mmol, 1 eq), with catalyst (0.00086 mmol, 1.0 mol%) in 1 mL of solvent 

(0.086 M) under an atmosphere of D2 for the stated time at 25 °C.  

Reactions to incorporate hydrogen were carried out following the general procedure on page S7, using 5-bromo-2-

(2,2’,6,6’-d4
-piperidin-1-yl)pyrimidine [D]-9 (21.1 mg, 0.086 mmol, 1 eq), with catalyst (0.00086 mmol, 1.0 mol%) in 1 

mL of solvent (0.086 M) under an atmosphere of H2 for the stated time at 25 °C. 

The deuterium/hydrogen incorporation was assigned by 1H NMR spectroscopy. The full incorporation data are given 

below in Table S7, and Graph S6. 

Table S7. Reactions carried out to determine the kinetic isotope effect. 

Entry Time (min) Substrate used  Isotope Introduced Incorporation (%) 

1 
3 

[D]-9 H 14 

2 9 D 7 

3 
5 

[D]-9 H 30 

4 9 D 32 

5 
7 

[D]-9 H 34 

6 9 D 46 

7 
9 

[D]-9 H 39 

8 9 D 61 

9 
11 

[D]-9 H 45 

10 9 D 67 

 

Graph S6. Rate study to determine the kinetic isotope effect. 

The data points for 3 min were discarded as they could occur within the catalyst activation period. The data points 

for 11 min were discarded as product inhibition has been observed when the incorporation is >60%. The gradient of 

the line is proportional to the reaction rate constant. Therefore, the kinetic isotope effect (kH/kD) is (7.25 / 2.25) 3.22. 
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9. Compound Spectra 

9.1. Catalyst [(COD)Ir(IMes)(PBn3)]BArF, 1c. 

 

1H NMR 
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13C NMR 
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19F NMR 
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31P NMR 
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11B NMR 
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9.2. Example LC-MS and NMR data of unlabelled and labelled substrates (2 and [D]-2) 

 
2 

 
[D]-2 
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