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Abstract: This study develops an ordinary state-based peridynamic coarse-graining 

(OSPD-CG) model for the investigation of fracture in single layer graphene sheets 

(SLGS), in which the peridynamic (PD) parameters are derived through combining the 

PD model and molecular dynamics (MD) simulations from the fully atomistic system 

via energy conservation. The fracture failure of pre-cracked SLGS under uniaxial 

tension is studied using the proposed PD model. And the PD simulation results agree 

well with those from MD simulations, including the stress-strain relations, the crack 

propagation patterns and the average crack propagation velocities. The interaction effect 

between cracks located at the center and the edge on the crack propagation of the 

pre-cracked SLGS is discussed in detail. This work shows that the proposed PD model 

is much more efficient than the MD simulations and, thus, indicates that the PD-based 

method is applicable to study larger nanoscale systems.  
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1. Introduction 

Graphene sheets have gained increasing research interests for the reason that they are 

regarded as very promising materials in nanotechnology, electronics and other fields of 

material science and technology due to their unique and exceptional mechanical and 

electronic properties. For example, they can be used in display screens of mobile 

devices [1], to design ultra-capacitors with better performance than batteries [2] and for 

water desalination [3]. Especially in engineering, they are incorporated in composite 

materials as reinforcements [4, 5], which makes it of fundamental importance to 

understand its physical properties and behaviors beforehand because the mechanical 

performance of composites is affected significantly by the reinforcements. As a 

common phenomenon, failure may occur in the form of generation and growth of 

discontinuities such as cracks in such structures when they are under certain loading 

conditions. Therefore, it is of great significance to take this feature into consideration 

and understand the damage process or the way of crack growth sufficiently. Currently, 

numerical methods are the most favored ways for damage prediction due to their high 

efficiency and low cost. 

Traditionally, two main types of approaches are employed to study the mechanical 

behavior of nanostructures such as graphene sheets and carbon nanotubes. The first one 

is based on the Classical Continuum Mechanics (CCM) theory which has been used in 

many studies to investigate the mechanical characters of graphene sheets [6-8]. 
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Kitipornchai et al. [6] and He et al. [7] investigated the resonance phenomena of 

multi-layered graphene sheets. In their study, an explicit formula was derived to 

describe the van der waals (vdW) interaction between any two layers of graphene sheets. 

Based on the derived formula, a continuum-plate model was used for the study of the 

vibration of multi-layer graphene sheets. Reddy et al. [8] studied the elastic properties 

of finite sized graphene and found the elastic constants of the graphene sheet conform to 

orthotropic material behavior. In addition, Zou et al. [9] derived close-form expressions 

of the Young’s moduli and the fracture stresses of graphene. Zhang et al. [10] proposed 

a continuum model based on the triangular lattice to accurately capture the stress and 

displacement fields of defects in single crystalline graphene and to design various 3D 

curved graphene structures. The second type of methods to analyze graphene is based 

on the atomistic simulation, such as the classical MD simulation with which the bond 

breaking can be presented. With this method, Zhao et al. [11] , Ansari et al. [12], Wang 

et al. [13] and Dewapriya et al. [14] studied the effects of temperature, strain-rate and 

defects on the fracture mechanisms of graphene sheets. Zhao et al. [11] showed that 

graphene can be a strong material even when subjected to variations in temperature, 

strain rate, and cracks and Dewapriya et al [14] found the central crack can be arrested 

by holes at certain positions in graphene. Zhang et al. [15] also reported that the fracture 

of nanocrystalline graphene is insensitive to the flaws. Detailed literature review about 

graphene can be found in the papers by Zhang et al. [16] and Rajasekaran et al. [17]. 

Although traditional CCM-based methods, such as finite element method (FEM) 

[18, 19], extended finite element method (XFEM) [20] and so on, are widely adopted, 
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they may fail to apply in discontinuous problems such as fracture failure due to the fact 

that the traditional approaches are based on the assumption of continuum media. The 

MD method can be used for the discretized atomic system. But compared with the 

traditional continuum-based method, this method is not practical for real-life structures 

due to its high computational cost for the simulation of large nano-scale systems. To 

save computational efforts in MD simulation, coarse-grained MD (CGMD) methods 

were proposed to study mechanical properties of graphene sheets [21-23]. However, 

they still work under MD framework and the computational efficient is limited. Thus, a 

new continuum-based theory, i.e. PD theory which was proposed by Silling [24], may 

be an alternative method for the discontinuous problems. It was originally known as 

“Bond-based PD (BPD) theory” and generalized as “State-based PD (SPD) theory” [25] 

afterwards. 

To date, PD theory has been adopted successfully for damage prediction in various 

specific problems. Silling [26] simulated a Kalthoff-Winkler experiment in which a 

plate with two parallel notches was under impact load and successfully captured the 

angle of crack growth in the experiment. Ha and Bobaru [27] successfully captured the 

crack branching characteristics which agree well with experiments. Vazic et al. [28] 

investigated interactions between a macro-crack and many other micro-cracks and 

found combinations of micro-cracks can slow down the propagation of a macrocrack. 

Wang et al. [29] studied the crushing failure of ice under the action of a rigid cylinder 

and showed the crushing forces are on the same order as experimental data. Lai et al. 

[30] proposed a PD formulation for simulating geomaterial fragmentation under 
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impulsive loading. At micro-scale, Agwai et al. [31] applied PD theory to predict crack 

paths in multilayer thin film structures of electronic packages and showed that the 

results compare well with the experiments. Taylor et al. [32] simulated the formation of 

spontaneous ruptures in supported phospholipid double bilayer bio-membranes using 

PD modeling and concluded that pinning sites may indirectly determine the rupture 

morphology of membranes. Zhu et al. and De Meo et al. [33, 34] also modeled granular 

fracture in polycrystalline material with size of micrometer scale and successfully 

captured the trans- and inter-granular failure modes. Owing to the length-scale 

parameter, horizon, in PD theory, it is capable of capturing phenomena occurring at 

different length scales, including the nano-scale [35]. For example, Silling et al. [36] 

proposed 3D PD models for nanofiber networks and carbon nanotube reinforced 

composites in which vdW forces are included. The effect of vdW forces on the 

mechanical behavior, strength, and toughness properties of nanofiber networks under 

stretch deformation was also investigated by Bobaru et al. [37, 38], and they found fiber 

reorientation and accretion control the deformation of nanofiber networks. Celik et al. 

[39] studied the mechanical characterization of ultra-thin films under nano-indentation. 

Ebrahimi et al. [40] analyzed the nano-scale friction and wear behavior of amorphous 

carbon thin films, in which the obtained material properties are shown to be in good 

agreement with published experimental results. For more detailed introduction to PD 

theory and its applications the readers can be referred to Refs. [41-43]. 

Above works show that PD theory can be another efficient method compared with 

MD and CGMD to study the mechanical characteristics of larger nanoscale graphene. 
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Heretofore, some PD-based studies on graphene have been performed. Martowicz et al. 

[44] studied elastic wave propagation in graphene nanoribbons and discussed its 

capability of recovering the physical nature of the reactions at the atomic scale using 

dispersion characteristics. Oterkus et al. [35] investigated the fracture property in 

graphene sheets based on a linear elastic BPD model. However, the original PD theory 

is based on the CCM theory, which makes it unsuitable to study the mechanical 

characters of nanoscale materials. To overcome such limitation, an OSPD-CG model is 

developed in this work based on the fully atomistic system to study the mechanical 

characteristics of SLGS.  

In this study, the continuum-based OSPD-CG model is introduced first by using a 

nonlinear material model. Then the approach to determine the PD parameters in the 

OSPD-CG model for the modeling of fracture in SLGS is presented. Next the 

OSPD-CG model is validated using the fully atomistic MD simulations. Finally, fracture 

behaviors and mechanisms in SLGS with different defects under uniaxial tensile loading 

are investigated and analyzed based on the OSPD-CG model. 

2. OSPD-CG model of SLGS 

In PD theory, it assumes that a continuum medium is composed of infinitesimally small 

material points and each material point interacts with other points inside its influence 

domain, H, called horizon with radius of ߜ (Figure 1). Each pair of material points 

interact through a PD bond and the interaction is defined by PD force density vectors in 

which all the constitutive information about the material is contained. Figure 1 shows 

the configurations before and after deformation, in which ܠ௞, ܠ௝ and ܡ௞, ܡ௝ stand for 
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the position vectors of material points k and j in the undeformed and deformed 

configurations, respectively. ࢚௞௝ represents the PD force density vector on material 

point k from point j. Similarly, the PD force density vector applied on material point j by 

point k is ௝࢚௞. 

The PD equation of motion of a material point k at time t can be obtained by 

summing all PD forces acting on it and expressed as [43] 

ሷܝ௞ߩ ௞ ൌ ෍൫ܜ௞௝ െ ௝௞൯ܜ ௝ܸே
௝ୀଵ ൅  ௞ (2.1)܊

in which ܜ௞௝ െ  ௝௞ can be seen as the net PD force density vector acting on materialܜ

point k, ߩ௞ is the density, ܝሷ ௞ is the acceleration, ܊௞ is the body force density, N is 

the number of material points inside the horizon of the material point k and ௝ܸ 

represents the volume of material point j. The PD force density vectors can be expressed 

by the corresponding strain energy density function, W, as 

௞௝ܜ ൌ ͳܸ௝  ߲ ௞ܹ߲ሺหܡ௝ െ ௝ܡ ௞หሻܡ െ ௝ܡ௞หܡ െ  ௞ห (2.2)ܡ

௝௞ܜ ൌ െ ͳܸ௞  ߲ ௝ܹ߲ሺหܡ௝ െ ௝ܡ ௞หሻܡ െ ௝ܡ௞หܡ െ  ௞ห (2.3)ܡ

where ܸ represents the volume of corresponding material point. ȁڄȁ denotes the length 

of the corresponding vector. According to ref. [57], the nonlinear elastic strain energy 

density of can be expressed in term of the strain invariants as ܷ ൌ ሺͳʹܧߥ െ ଶሻߥ Trሺ૓ሻଶ ൅ ሺͳʹܧ ൅ ሻߥ Trሺ૓ଶሻ ൅ ͳͶ ሺܥଵଵଵ െ ଵଵଶሻTrሺ૓ሻTrሺ૓ଶሻ൅ܥ ͳͶ ൬ܥଵଵଶ െ ͳ͵ ଵଵଵ൰ܥ Trሺ૓ሻଷ 

(2.4) 

where the Young’s modulus ܧ  and the Poisson’s ratio ߥ  are two linear elastic 

constants and ܥଵଵଵ and ܥଵଵଶ are two nonlinear elastic constants. According to ref. [45], 
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the PD integral form of the strain invariants in equation (2.4) can be written as  Trሺ૓ሻ ൌ Trሺ૓ଶሻ (2.5) ߠ ൌ ͳʹ ሺͶܵ െ  ଶሻ (2.6)ߠ

Substituting equations (2.5) and (2.6) into equation (2.4), the PD strain energy density 

of material point k can be obtained as 

௞ܹ ൌ ቈ൬͵ͅ ଵଵଶܥ െ ͷʹͶ ଵଵଵ൰ܥ ௞ߠ ൅ ߥ͵ሺܧ െ ͳሻͶሺͳ െ ଶሻ቉ߥ ௞ଶߠ
൅ ൤ͳʹ ሺܥଵଵଵ െ ௞ߠଵଵଶሻܥ ൅ ͳܧ ൅ ൨ߥ ܵ௞ 

(2.7) 

Wherein the dilatation term ߠ௞ and the stretching term ܵ௞ are expressed as [45] 

௞ߠ ൌ ʹ݉ ෍ ௝ܡ௞௝൫หݓ െ ௞หȦ௞௝ܡ െ หܠ௝ െ ௝ܠ௞ห൯หܠ െ ௞หܠ ௝ܸே
௝ୀଵ  (2.8) 

ܵ௞ ൌ ʹ݉ ෍ ௝ܡ௞௝൫หݓ െ ௞หȦ௞௝ܡ െ หܠ௝ െ ௞ห൯ଶܠ ௝ܸே
௝ୀଵ  (2.9) 

in which ݓ௞௝ is an influence function to determine the influence of material points 

away from the current material point k. And according to ref. [43], it can be known 

௞௝ݓ ൌ ௝ܠหߜ െ  ௞ห (2.10)ܠ

Ȧ௞௝ ൌ ௝ܡ െ ௝ܡ௞หܡ െ ௞หܡ ή ௝ܠ െ ௝ܠ௞หܠ െ  ௞ห (2.11)ܠ

Then the parameter ݉ can be calculated as [45] ݉ ൌ ʹ͵  ସ (2.12)ߜ݄ߨ

Finally, a general form of the strain energy density of material point k can be obtained as 

equation (2.13) which is consistent with the form in ref. [43]. 

௞ܹ ൌ ሺܽଵߠ௞ ൅ ܽ଴ሻߠ௞ଶ ൅ ሺܾଵߠ௞ ൅ ܾ଴ሻ ෍ ௝ܡ௞௝൫หݓ െ ௞หȦ௞௝ܡ െ หܠ௝ െ ௞ห൯ଶܠ ௝ܸே
௝ୀଵ  (2.13) 

in which ܽଵ, ܽ଴, ܾଵ and ܾ଴ are PD parameters. Comparing equations (2.13) and (2.7), 



9 

 

it can be known that the PD parameters are related with the elastic constants and 

evaluated as  ܽଵ ൌ ͵ͅ ଵଵଶܥ െ ͷʹͶ ଵଵଵ (2.14) ܽ଴ܥ ൌ ߥ͵ሺܧ െ ͳሻͶሺͳ െ ଶሻߥ  (2.15) ܾଵ ൌ ସߜ݄ߨʹ͵ ሺܥଵଵଵ െ ଵଵଶሻ (2.16) ܾ଴ܥ ൌ ସሺͳߜ݄ߨܧ͵ ൅  ሻ (2.17)ߥ

Analogously, the PD strain energy density for material point j can be derived as well. 

According to the assumption in PD theory, the SLGS is composed of infinitesimally 

small material points and each material point consists of a cluster of atoms, for which 

the current model is called the OSPD-CG model. In an early study, Silling [46] 

proposed a linear BPD-CG method, which could accurately reproduce the effective 

elastic properties of a composite as well as the effect of a small defect in a 

homogeneous medium. Based on a linear material model, Oterkus et al. [35] simulated 

the fracture of SLGS using peridynamics and captured the crack branching behavior in 

SLGS, but the final fracture pattern was different from the fully atomistic MD 

simulation results due to the nonlinear material property of SLGS. Therefore, the 

nonlinear OSPD-CG model (Equation (2.13)) is established and it is more applicable to 

the physical nonlinear material, i.e. SLGS. 

According to equations (2.2) and (2.3), PD force density expressions can also be 

written as 
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௞௝ܜ ൌ ௞௝ݓ ቐ ҧ݀Ȧ௞௝หܠ௝ െ ௞หܠ ቎͵ܽଵߠ௞ଶ ൅ ʹܽ଴ߠ௞
൅ ܾଵ ෍ ௝ܡ௞௝൫หݓ െ ௞หȦ௞௝ܡ െ หܠ௝ െ ௞ห൯ଶܠ ௝ܸே

௝ୀଵ ቏
൅ ʹሺܾଵߠ௞ ൅ ܾ଴ሻȦ௞௝൫หܡ௝ െ ௞หȦ௞௝ܡ െ หܠ௝ െ ௞ห൯ቑܠ ௝ܡ െ ௝ܡ௞หܡ െ  ௞หܡ

(2.18) 

௝௞ܜ ൌ െݓ௝௞ ቐ ҧ݀Ȧ௝௞หܠ௞ െ ௝หܠ ቎͵ܽଵߠ௝ଶ ൅ ʹܽ଴ߠ௝
൅ ܾଵ ෍ ௞ܡ௝௞൫หݓ െ ௝หȦ௝௞ܡ െ หܠ௞ െ ௝ห൯ଶܠ ௞ܸே

௝ୀଵ ቏
൅ ʹሺܾଵߠ௞ ൅ ܾ଴ሻȦ௝௞൫หܡ௞ െ ௝หȦ௝௞ܡ െ หܠ௞ െ ௝ห൯ቑܠ ௝ܡ െ ௝ܡ௞หܡ െ  ௞หܡ

(2.19) 

where ҧ݀ is a PD parameter which is equal to ҧ݀ ൌ  ସ (2.20)ߜ݄ߨ͵

(a) PD parameters in the OSPD-CG model 

Equations (2.14~2.17) show that the PD parameters can be determined if the linear and 

nonlinear elastic moduli are known. The PD parameters in the general PD strain energy 

density expression also can be determined through calibration [43]. At present, two 

calibration ways are popular to determine the PD parameters. These are strain energy 

density-based [43] and stress-based [47] methods. The difference between these two 

methods is that the stress-based method is performed in the PD discretized model while 

the strain energy density-based one is more general. In this work, the strain energy 

density-based method is employed. However, different from the general approach, the 

PD parameters are derived by equating the PD strain energy density with the one 

obtained from the fully atomic scale system rather than the CCM counterpart. 
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(i) Strain energy density in the OSPD-CG model 

Figure 2 shows the fully atomistic SLGS model, the corresponding OSPD-CG model 

and the states after deformation under different loading conditions. 

Through MD simulations, it is found that the nonlinear material property of the 

fully atomistic SLGS can be well characterized by the strain energy density expressed 

with a third order function. Thus, the strain energy density ௞ܹ௉஽ of material point ݇ in 

the PD model under biaxial expansion with strain of ߝ can be expressed as 

௞ܹ௉஽ ൌ ሺʹܽଵߝ ൅ ܽ଴ሻሺʹߝሻଶ ൅ ሺʹܾଵߝ ൅ ܾ଴ሻ න න ߦߜ ሺߦߝሻଶ݄ߦ݀ߠ݀ߦଶగ
଴

ఋ
଴ൌ Ͷ ൬ʹܽଵ ൅ ͳ͵ ܾଵߜ݄ߨସ൰ ଷߝ ൅ ʹ ൬ʹܽ଴ ൅ ͳ͵ ܾ଴ߜ݄ߨସ൰  ଶߝ

(2.21) 

Under uniaxial extension with strain of ߝ, the strain energy density ௞ܹ௉஽ of material 

point ݇ in the PD model is derived as 

௞ܹ௉஽ ൌ ሺܽଵߝ ൅ ܽ଴ሻߝଶ ൅ ሺܾଵߝ ൅ ܾ଴ሻ න න ߦߜ ሾߦߝሺcos ଶగߦ݀ߠ݀ߦሻଶሿଶ݄ߠ
଴

ఋ
଴ൌ ൬ܽଵ ൅ ͳͶ ܾଵ݄ߜߨସ൰ ଷߝ ൅ ൬ܽ଴ ൅ ͳͶ ܾ଴݄ߜߨସ൰  ଶߝ

(2.22) 

Under shear deformation with strain of ߛ, the strain energy density ௞ܹ௉஽ of material 

point ݇ in the PD model is calculated as 

௞ܹ௉஽ ൌ න න ܾ଴ ߦߜ ሺsin ߠ cos ߠ ଶగߦ݀ߠ݀ߦሻଶ݄ߦߛ
଴

ఋ
଴ ൌ ܾ଴ͳʹ  ଶ (2.23)ߛସߜ݄ߨ

Note that ߦ ൌ หܠ௝ െ ௞ห in above equations and that ܽ଴ܠ ,  ܽଵ , ܾ଴ , and ܾଵ  are PD 

parameters which need to be determined in the OSPD-CG model. 

(ii) Strain energy density in the fully atomistic model 

To obtain the PD parameters in the OSPD-CG model, a fully atomistic zigzag SLGS 

cell with size of approximately 15nm ൈ 15nm is considered to calculate the 
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corresponding strain energy densities by performing MD simulations under three 

loading conditions, biaxial expansion, uniaxial extension and simple shear. In this work 

the zigzag SLGS cell is chosen and in MD simulations, the SLGS cell is 

homogeneously deformed with a strain rate of 1ൈ ͳͲ଻/s according to the schematics of 

the three loading conditions shown in figure 3, respectively. Periodic boundary 

conditions are applied in x and y directions to avoid the free boundary effect and the 

temperature is 0K in the MD simulations. Besides, bond interactions between pairs of 

atoms and angle interactions between triplets of atoms in the MD simulations are 

computed based on morse bond potential and harmonic angle potential [48], 

respectively. 

As the strain energy density of the SLGS cell may be different when the strain rate 

or the cell size changes, different strain rates (i.e. 1ൈ ͳͲ଺/s, 1ൈ ͳͲ଻/s, 1ൈ ͳͲ଼/s, and 

1ൈ ͳͲଽ/s) and different cell sizes (i.e. 8nmൈ8nm, 15nmൈ15nm and 30nmൈ30nm) are 

considered in the MD simulations. And it shows that the strain rate and the cell size 

almost have no effect on the strain energy density. Based on MD simulations, the 

relationships between the strain energy density and strain of the fully atomistic SLGS 

cell under three loadings are obtained and fitted with linear least square method as 

presented in figure 4. In the figure, the strain energy density ௞ܹ஺ in the fully atomistic 

model under biaxial expansion with strain of ߝ is obtained as 

௞ܹ஺ ൌ െʹǤʹͳͻ ൈ ͳͲଵଶߝଷ ൅ ͳǤͳ͵ͳ ൈ ͳͲଵଶߝଶ (2.24) 

Under uniaxial extension with strain of ߝ, the strain energy density ௞ܹ஺ in the fully 

atomistic model is expressed as 
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௞ܹ஺ ൌ െͷǤͳͲͺ ൈ ͳͲଵଵߝଷ ൅ ͶǤͶ͹ͺ ൈ ͳͲଵଵߝଶ (2.25) 

Similarly, under shear loading with strain of ߛ, the strain energy density ௞ܹ஺ in the 

fully atomistic model is 

௞ܹ஺ ൌ ͳǤ͸Ͳ͸ ൈ ͳͲଵଵߛଶ (2.26) 

(iii) Determination of PD parameters 

The strain energy density in the OSPD-CG model under different loading conditions 

should be identical with that in the fully atomistic model. Thus, in the case of biaxial 

expansion, equating equations (2.21) and (2.24) yields Ͷܽ଴ ൅ ʹ͵ ସߜ଴݄ܾߨ ൌ ͳǤͳ͵ͳ ൈ ͳͲଵଶ (2.27) ͺܽଵ ൅ Ͷ͵ ସߜଵ݄ܾߨ ൌ െʹǤʹͳͻ ൈ ͳͲଵଶ (2.28) 

In the case of uniaxial extension, equating equations (2.22) and (2.25) results in ܽ଴ ൅ ͳͶ ସߜ଴݄ܾߨ ൌ ͶǤͶ͹ͺ ൈ ͳͲଵଵ (2.29) ܽଵ ൅ ͳͶ ସߜଵ݄ܾߨ ൌ െͷǤͳͲͺ ൈ ͳͲଵଵ (2.30) 

In the case of shear, equating equations (2.23) and (2.26), the following relationship can 

be obtained as ͳͳʹ ସߜ଴݄ܾߨ ൌ ͳǤ͸Ͳ͸ ൈ ͳͲଵଵ (2.31) 

Finally, the PD parameters in the OSPD-CG model of SLGS can be derived from 

equations (2.20) and (2.27-2.31) and are summarized and listed in Table I. 

(b) Damage criteria in the OSPD-CG model 

Damage is introduced in PD equations of motion by eliminating the force density 

vectors between material points in an irreversible way. One general and simple damage 

criterion is the critical stretch-based one [49] which is based on the stretch of the PD 
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bond between material points k and j, i.e. ݏ௞௝. In addition, Foster et al. [50] proposed an 

energy-based damage criterion for a more complex PD model. In some cases, the 

critical stretch or critical energy may be difficult to determine theoretically. Then, 

combination of PD simulations and experiments may be required to obtain the critical 

values [43]. 

௞௝ݏ ൌ หܡ௝ െ ௞หܡ െ หܠ௝ െ ௝ܠ௞หหܠ െ ௞หܠ  (2.32) 

In this study, the critical stretch-based damage criterion is adopted for simplicity, in 

which a history-dependent scalar value is introduced to determine the damage initiation 

[49] and written as ߤ௞௝ ൌ ൜ͳ       ݏ௞௝ ൏ ௞௝ݏ       ௖Ͳݏ ൒  ௖ (2.33)ݏ

When the stretch ݏ௞௝ exceeds the critical value ݏ௖ , the parameter ߤ௞௝  renders the 

corresponding force density vector to be zero, which means the PD bond breaks and 

damage occurs. The critical stretch of PD bonds ݏ௖ can be derived from the critical 

energy release rate ܩ௖ [49]. According to equation (2.1), the PD force density of one 

single PD bond kj can be expressed as ܜ௞௝ െ  ௝௞ which can be obtained from equationsܜ

(2.18) and (2.19). Thus for one single PD bond kj with original length of ߦ due to bond 

stretch of ݏ௖, the induced bond energy can be approximately calculated as equation 

(2.34) by ignoring the dilatation terms. ܧ௉஽଴ ൌ න Ͷݓ௞௝ܾ଴൫หܡ௝ െ ௞หܡ െ หܠ௝ െ ௞௝௦೎଴ݏ݀ߦ௞ห൯ܠ ൌ ʹܾ଴ݏߦߜ௖ଶ (2.34) 

According to the method to determine the critical stretch in [49], all PD bonds crossing 

the crack surface in figure 5 should be broken due to the formation of the crack surface 

and the fracture energy per unit fracture area or the energy release rate in PD can be 
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obtained by integrating the energy of each bond which connects with material point k 

along the line with Ͳ ൑ z ൑ Ɂ and crosses the crack surface at the same time. Thus, the 

critical energy release rate in PD can be calculated as 

௉஽௖ܧ ൌ ʹ න න න ௉஽଴ୡ୭ୱషభሺ௓ܧ కΤ ሻ
଴ ఋ߶݀ߦ݄

௭ ఋߦ݀
଴ ݖ݀ ൌ ܾ଴݄ߜହݏ௖ଶ (2.35) 

Besides, the critical energy release rate ܩ௖ in fully atomistic MD simulation can be 

obtained by equation (2.36). ܩ௖ ൌ ௧ܹ െ ௧ܹାο௧ܣ  (2.36) 

in which ௧ܹ െ ௧ܹାο௧ is the energy difference before and after the formation of crack 

surface with area of ܣ. The critical energy release rate in PD should be identical to that 

in fully atomic system, namely, ܧ௉஽௖ ൌ  ௖ (2.37)ܩ

Solving the equations above, the value of the critical stretch can be expressed as 

௖ݏ ൌ ඨ  ହ (2.38)ߜ௖ܾ଴݄ܩ

Additionally, in order to show damage formation inside a body (i.e. the dynamic 

in-plane fracture process in SLGS), a local damage index is introduced and defined as 

the ratio of the number of broken interactions to the total number of initial interactions 

of a material point with its neighbors inside its horizon (Equation (2.39)). 

߮௞ ൌ ͳ െ σ ௞௝ߤ ௝ܸே௝ୀଵσ ௝ܸே௝ୀଵ  (2.39) 

3. Numerical simulation of fracture in SLGS 

(a) Problem descriptions 

Crack branching behaviors have been observed in graphene in the experiment [51] and 
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such phenomena were also found in zigzag SLGS in fully atomistic MD simulations in 

Ref. [52]. Therefore, in this work the newly developed OSPD-CG model is employed to 

study the fracture of the pre-cracked zigzag SLGS under uniaxial tensile loading. In 

order to validate the OSPD-CG model, MD simulations are also performed on the 

corresponding fully atomistic models. Then the effect of center crack on the fracture of 

the edge pre-cracked SLGS under uniaxial tensile loading is investigated. Figure 6 

presents the OSPD-CG and fully atomistic models of edge pre-cracked SLGS with 

thickness of 0.34nm. The size of the SLGS is 75nmൈ100nm and the edge crack size is 

about 4nmൈ3.5nm. 

(b) Numerical simulation details 

In the OSPD-CG model in figure 6a, the SLGS is discretized into uniformly distributed 

material points with spacing of 0.5nm and contains 30176 material points in total, which 

is 9.5 times less than the atom number of 285906 in the fully atomistic model in figure 

6b. Considering the physical interaction in the fully atomistic system, the radius ߜ of 

the horizon in the OSPD-CG model is set as 1 nm. A discussion on the meaning and 

selection of the PD horizon was made by Bobaru and Hu [53] as well. Based on the 

stability condition in PD numerical simulation [49] and the consideration of numerical 

accuracy and computational efficiency, the time step size used in the OSPD-CG method 

is 5fs which is 5 times larger than the time step of 1fs in MD simulation. In both PD and 

MD simulations, free boundary conditions are imposed in x and y directions and the 

pre-cracked SLGS is stretched by moving left and right boundaries with a speed of 

3.75m/s along –x and x directions in figure 6, respectively. To avoid abrupt application 
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of velocity conditions, the initial velocity along x axis in the region between the left and 

right boundaries is set linearly as -3.75m/s to 3.75m/s from left side to right side in the 

SLGS. Meanwhile, the left and right boundaries are set as 1nm wide or larger to keep 

the completeness of the horizon of material points near the left and right boundaries. 

During the stretch, the temperature of the system is 0K. In addition, the critical energy 

release rate ܩ௖ of the zigzag SLGS is about 9.7 J/m
2
 which can be known from MD 

simulation in which the cutoff is set as 0.185nm [54]. Then according to equation (2.38), 

the critical stretch in the OSPD-CG model ݏ௖ can be obtained as approximately 0.126. 

In this work, all simulations are performed by using the ThinkStation computer with 8 

intel i7 CPUs@3.40GHz and 32GB RAM. It is also observed that the PD simulation of 

the fracture in edge pre-cracked SLGS needs about 5 hours with only one CPU while 

the corresponding MD simulation takes almost 22 hours with one CPU. Obviously, 

larger length scale and time step make PD a more efficient method compared with MD. 

(c) Numerical simulation results and discussion 

(i) Fracture characteristics of edge pre-cracked SLGS under tensile loading 

From PD and fully atomistic MD simulations, the relationships between stress and 

strain in the fracture process of the edge pre-cracked SLGS under tensile loading are 

obtained and shown in figure 7. The stress and strain are calculated through ߪ ൌ ܨ Τܣ  

and ߝ ൌ ȟܮ ଴Τܮ , respectively, where F is the force on the right or left boundary along 

tensile direction, A is the cross sectional area along the right or left boundary, οܮ is the 

extension of the system along tensile direction and ܮ଴ is the original length of the 

system along tensile direction. 
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It can be seen from the figure that the Young’s modulus of the edge pre-cracked 

SLGS in MD and PD simulations are 0.90TPa and 0.86TPa, respectively. The results 

are in agreement with Hao et al.’s [55] in which the elastic modulus changes between 

0.86TPa and 1TPa due to the influence of defects. According to Ref. [56], the fracture 

strength of the defective graphene varies from 30GPa to 120GPa depending on the 

defect size, and it drops sharply from 120GPa at very small initial defect size and 

converges between 30GPa and 60GPa after a certain defect size. In this work it can be 

observed that the fracture strength and strain of the SLGS in MD and PD simulations 

are 33GPa and 4.1% and 35GPa and 4.4%, respectively, which are consistent with those 

in Ref. [56]. The small differences between the current results and those in the 

mentioned references may be due to the different geometrical size and interatomic 

potential. Despite the subtle discrepancy in fracture strength and strain in figure 7, the 

PD simulation results agree very well with the MD simulation results. Therefore, the 

MD simulation validates the current OSPD-CG model for the edge pre-cracked zigzag 

SLGS considered in this study. 

In figure 8, the final crack propagation patterns in the SLGS obtained from the PD 

and MD simulations are presented and very similar fracture patterns have been observed 

by Omeltchenko et al. [52]. Due to high frequency vibration of atoms in the fully 

atomistic system, especially in the propagation process of cracks, the crack branches are 

slightly asymmetric about the initial straight crack line in MD simulation results (Figure 

8b) compared with the PD simulation results. In order to keep the consistency between 

the PD and MD simulation results, the crack propagation paths on the left side are 
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considered. 

In figures. 8a and 8b, the initial edge pre-crack propagates for a short distance 

straightly at first, then the primary crack tip becomes unstable and tends to branch. After 

the primary crack branching, two secondary cracks form and continue propagating 

along their own separate directions. When they propagate near the boundaries, the two 

secondary cracks are reflected by the boundaries and crack turning occurs. Whereafter, 

the two secondary cracks propagate to the bottom edge of the SLGS. Besides, some 

obvious and unobvious microcracks are induced as well in the propagation process of 

the two secondary cracks. In addition, the branching point of the primary crack around 

which the primary crack tip is unstable and apt to branch is about 7.5nm in front of the 

pre-crack tip in PD simulation results (Figure 8a) while the corresponding distance is 

about 7.8nm in MD results (Figure 8b). The position of crack turning point is 11nm 

from the left edge and 32.5nm from the bottom edge in PD simulation (Figure 8a) while 

the corresponding distances are 7nm and 33.5nm in MD simulation (Figure 8b). Before 

and after the crack turning, the angles between the secondary crack paths and horizontal 

direction are about 62.5° and 62°, respectively, in figure 8a, whereas both of the angles 

are about 60° in figure 8b. Such minor differences can be ascribed to two aspects. On 

one hand, the hexagonal lattice cell exists in fully atomistic graphene sheets while the 

fully atomistic system is coarse-grained and discretized into uniform square grids in 

OSPD-CG model. On the other hand, with coarse-graining techniques a cluster with n 

atoms is coarse-grained as a material point, thus resulting in 2n translational degree of 

freedoms (DOFs) reduced to 2 in the two dimensional case. As a result, it becomes 
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stiffer locally at each material point in the OSPD-CG model. Therefore, the fracture 

patterns such as crack branching point, crack turning point, crack propagation direction 

and generation of microcracks are slightly different between the PD and MD simulation 

results as well. Nevertheless, despite such small differences, the fracture characteristics 

in PD simulation are in good agreement with MD simulation results. In addition, 

compared with the results based on the quadratic and third-order strain energy density 

expressions, the fracture characters obtained from the current model can match better 

with the MD simulation results. Again, the MD simulation gives further confidence to 

the OSPD-CG model in this study. And the PD results provide a significant insight on 

multiscale modeling for large nanoscale systems. 

(ii) Dynamic fracture process of edge pre-cracked SLGS under tensile loading 

Figures. 9 and 10 present the dynamic process of crack propagation and the propagation 

speed of crack in the edge pre-cracked SLGS under tensile loading, respectively. Here, οݐ stands for the time period after the initial pre-crack begins to propagate. 

When οݐ ൌ Ͳps in figure 9, the initial pre-crack begins to propagate. Before this 

moment, the SLGS is stretched continuously, which results in accumulation of more and 

more strain energy around the edge pre-crack tip. Propagation of the initial pre-crack 

initiates as soon as the strain energy accumulates to a certain degree and the propagation 

speed quickly reaches an average value of 5Km/s, which can be seen from the PD 

results in figure 10. With this speed, the primary crack continues propagating until οݐ ൌ ͳǤ͹ͷps at which it tends to branch into two secondary cracks (Figure 9). Besides, 

it can be seen that the propagation speed of the primary crack becomes higher and the 
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average value is close to 8Km/s (Figure 10), that the damage zone near the branching 

point becomes a little thicker (οݐ ൌ ͳǤ͹ͷps in figure 9) due to generation of some 

unobvious microcracks in the crack propagation process when the crack velocity is 

higher than 8Km/s and that the strain energy around the primary crack tip also reaches 

another level. These may be the reasons why the primary crack tends to branch at this 

moment. After the primary crack branching, the two secondary cracks keep moving 

along their own directions with an average speed of about 8Km/s (Figure 10). In this 

process, many unobvious microcracks form as well ( οݐ ൌ ͸Ǥ͹ͷps  in figure 9). 

Meanwhile, it can also be observed from the strain energy distribution that there are 

waves continuously emitting from the moving crack tips. From οݐ ൌ ͸Ǥ͹ͷps  to οݐ ൌ ͳͲǤʹͷps (Figure 9), some obvious microcracks sprout from the moving tips of the 

two secondary cracks due to the interaction between the waves reflected by the 

boundaries and the moving crack tips. The interaction becomes more and more 

intensified with the crack tips moving more and more close to the boundaries. 

Consequently, such kind of microcracks become more and more obvious during this 

period and can be seen as tertiary cracks due to branching of the secondary cracks. 

However, they only grow for a very short distance because their growth becomes not 

energetically favorable for the reason that the growth of the secondary cracks dissipates 

more energy and there’s not enough energy for those microcracks to propagate any more. 

At οݐ ൌ ͳͲǤʹͷps (Figure 9), the two secondary cracks propagate near the boundaries 

and begin to branch. However, the branches closer to the boundaries are blocked by the 

boundaries and do not continue propagating. Therefore, it seems that the secondary 
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cracks are reflected by the boundaries and crack turnings happen (οݐ ൌ ͳ͵Ǥͷps in 

figure 9). From figure 10, it can be seen that the crack tip velocity is reduced to about 

6.3Km/s before crack turning because of the influence of the boundaries. Also, the 

stress increases during this crack turning stage in figure 7, which means crack turning 

needs extra energy flowing into the system in the propagation process of cracks. After 

turning of the secondary cracks, they keep propagating at average speed of 7.2Km/s 

(Figure 10) and branch at οݐ ൌ ͳ͵Ǥͷps (Figure 9). Then the two branches propagate to 

the bottom edge at οݐ ൌ ͳͶǤ͹ͷps and the strain energy is also released (Figure 9). In 

addition, similar phenomena, especially the interaction between the reflected waves and 

the moving crack tips, can be observed in fully atomistic MD simulations.  

As shown in figure 10, the crack velocities in both MD and PD simulations are very 

close to each other. Moreover, the crack velocity in PD simulation agrees well with that 

in Ref. [52], in which the average crack propagation speed is between 6Km/s and 

8Km/s. The crack velocity in MD simulation in this work is slightly higher and the 

maximum value is close to 10Km/s, which can be attributed to the effect of interatomic 

potential functions. 

(iii) Fracture of center pre-cracked SLGS under tensile loading 

Beside the fracture of the edge pre-cracked SLGS, the fracture of SLGS with vertically 

center crack of different lengths under uniaxial tensile loading is studied. Figure 11 

shows the effect of center crack length on the fracture strength and the crack 

propagation patterns.  

In figure 11, it can be seen that the vertically center crack of different lengths has 
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big influence on the fracture strength of SLGS. With the length of the center crack 

increasing from 1nm to 15nm, the fracture strength of SLGS decreases from about 

55GPa to 22GPa. Especially, the fracture strength of SLGS is around 40GPa when the 

length of center crack is about 3.5nm. Compared with the edge pre-cracked SLGS case 

in which the fracture strength is about 35GPa and the edge crack length is 3.5nm, it is 

shown that the edge crack has more significant effect on the fracture of SLGS. In 

addition, it is observed that the fracture of the center pre-cracked SLGS initiates from 

both the left and right fixed boundaries at the upper and lower edges when the center 

crack length is 1nm or smaller and such form is also consistent with MD simulation 

result. The propagation forms in SLGS are similar with each other when the center 

crack length is longer than 2nm. In the first stage, the center crack begins to propagate 

straightly from its two ends for a small distance. The two primary cracks branch into 

two secondary cracks with an angle of almost 60° which next extend to the upper and 

lower edges, respectively, in the second stage. Microcracks generate more or less in this 

stage. However, different from the propagation of edge crack, the crack turning stage 

does not occur in all center pre-cracked SLGS for the reason that the center crack may 

not have enough long path to go before it propagates near the left and right boundaries 

compared with the edge crack or the secondary cracks have spread out from the upper 

and lower edges before they are blocked and reflected by the right and left boundaries. 

It is also found that the branching point of the primary crack is more and more far away 

from the initial center crack ends with the length of center crack increasing. This is for 

the reason that more energy can be released out from the crack surface of the longer 
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crack during the initial crack propagation process in the first stage of crack propagation 

and it may lead to the primary crack propagating for longer distance to reach the critical 

crack tip velocity and strain energy around the moving crack tip which are necessary for 

the branching of the primary crack as mentioned above. 

In order to show the consistency of the established OSPD-CG model and the known 

MD method in the fracture simulation of center pre-cracked SLGS, the SLGS with a 

5nm long center crack is chosen to perform another atomistic MD simulation. Figure 12 

presents the corresponding fracture forms of SLGS obtained from OSPD-CG and MD 

simulations. It is shown that the main crack propagation characteristics in both the 

simulation results such as the branching of primary crack with an angle of about 60°, 

the positions of branching points of the primary cracks initiating from the center crack 

(about 6.5nm away from each end of the center crack) and the generation of 

microcracks in the propagation process of the secondary cracks are significantly 

consistent with each other. Moreover, the fracture strength and strain are also very close 

in both simulations, which are about 35 GPa and 4.5%. 

(iv) Effect of center crack on the fracture of edge pre-cracked SLGS under tensile 

loading 

In this section, the effect of vertically center crack of different lengths on the fracture of 

the edge pre-cracked SLGS in section 4.3.1 is investigated and the results such as the 

fracture strength and fracture forms are shown in figure 13. 

It shows that the center crack has little effect on the fracture strength of the edge 

pre-cracked SLGS when the length of center crack is less than 5nm and the fracture 
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strength is close to 35GPa. Besides, the fracture initiates from the edge crack tip. When 

the length of center crack is larger than 5nm, the fracture strength of edge pre-cracked 

SLGS decreases largely with the length of center crack increasing and the fracture 

initiates from the center crack ends. Moreover, the fracture form is obviously affected 

by the vertically center crack. When the center crack is 1nm long, as shown in figure 13, 

the fracture form is almost the same as that of the edge pre-cracked SLGS without 

center crack presented in figure 8. For the edge pre-cracked SLGS with a 2nm long 

center crack, the fracture pattern is a little different from the one with 1nm long center 

crack. After the primary crack from the initial edge crack branching, the two secondary 

cracks again branches into two tertiary cracks at the level of the center crack, 

respectively. Then the four tertiary cracks propagate to the lower edge. In this process, 

the two tertiary cracks along the paths of the two secondary cracks are blocked but not 

reflected by the left and right boundaries and then propagate vertically due to the 

continuous propagation of the other two tertiary cracks. When the length of center crack 

is between 3nm to 5nm, the two secondary cracks propagate to the range which is near 

the lower end of center crack vertically and then stop propagating any more. Then the 

fracture initiates from the center crack and the crack begins to propagate from the lower 

end of the center crack (See the crack propagation paths when the center crack is 5nm 

long in figure 13). When the center crack is longer than 5nm, the fracture form is like 

the one in which the center crack is 8nm long in figure 13. It is also very similar with 

the fracture form of the center pre-cracked SLGS (Figure 12) in the previous section. 

Therefore, the fracture of the edge pre-cracked SLGS with center crack is mainly 
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dominated by the edge crack rather than by the center crack with length less than 5nm. 

On the other hand, the fracture is dominated by the center crack with length larger than 

5nm.  

4. Conclusion 

An OSPD-CG model is developed by generalizing the linear elastic PD model to a 

nonlinear one through extending the original invariable PD parameters to quadratic 

expressions which depend on the dilatation and bond stretch terms. The PD parameters 

in the OSPD-CG model are derived completely from the fully atomic scale system by 

using the energy conservation approach, which is different from the original method in 

which the PD parameters are obtained based on CCM theory. Then, the newly 

developed OSPD-CG model is employed for simulation of crack propagation in zigzag 

SLGS which is a physical nonlinear material. Based on the developed OSPD-CG model, 

the fracture mechanisms in pre-cracked SLGS under uniaxial tensile loading are 

revealed qualitatively through analysis of the crack tip velocity and strain energy around 

moving crack tip. In contrast to MD method, the current OSPD-CG model can be used 

for investigating larger scale systems. 
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cluster atoms coarse-grained as a material point in PD. 

Figure 3  Schematics of different loading conditions applied on the fully atomistic 

SLGS cell. (a) Expansion, (b) Uniaxial extension, (c) Shear. 

Figure 4  The relationships between the strain energy density and strain of the fully 

atomistic SLGS cell under different loading conditions. 

Figure 5  Evaluation of the energy release rate in PD model. 

Figure 6  The OSPD-CG and fully atomistic graphene models. (a) OSPD-CG, (b) Fully 

atomistic. The magnified insets show the pre-crack in both models. 

Figure 7  Stress-strain relationships in the fracture process. The inset in the magenta 

colored region shows the variations in the crack turning stage. 

Figure 8  Crack propagation patterns characterized by local damage index in PD and 

MD simulations. (a) OSPD-CG, (b) MD. 

Figure 9  Dynamic crack propagation patterns characterized by local damage index 

(first and third row) and the corresponding distribution of strain energy (second and 

fourth row) in the pre-cracked SLGS under tensile loading at different time. 

(Supplementary movie 1 shows the dynamic crack propagation and reveals the 

interaction between cracks in the propagating process by using the strain energy 

distribution.) 

Figure 10  Crack tip velocities in the edge pre-cracked SLGS under tensile loading. 

Figure 11  The fracture strength of SLGS with vertically center crack of different 
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lengths and the corresponding crack propagation forms. 

Figure 12  The crack propagation patterns characterized by local damage index in 

SLGS when the length of center crack is 5nm. (a) OSPD-CG, (b) MD. 

Figure 13  The fracture strength of edge pre-cracked SLGS with vertically center crack 

of different lengths and the corresponding crack propagation patterns. (Supplementary 

movies 2~5 show the fracture process of the edge pre-cracked SLGS with centered 

crack 1nm, 2nm, 5nm and 8nm long and reveal the interaction between cracks by using 

the strain energy distribution.) 
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Table I The PD parameters in the OSPD-CG model of SLGS 
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Table I  

Dilatation Bond stretch 

ഥ݀ ൌ  Ͷߜ݄ߨ͵
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