
Chiachio, Juan and Chiachio, Manuel and Sankararaman, Shankar and 

Saxena, Abhinav and Goebel, Kai (2015) Condition-based prediction of 

time-dependent reliability in composites. Reliability Engineering and 

System Safety, 142. pp. 134-147. ISSN 0951-8320 , 

http://dx.doi.org/10.1016/j.ress.2015.04.018

This version is available at https://strathprints.strath.ac.uk/65631/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195293712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Condition-based prediction of time-dependent reliability in composites

Juan Chiachíoa,∗, Manuel Chiachíoa, Shankar Sankararamanb, Abhinav Saxenab, Kai Goebelc

aDept. Structural Mechanics and Hydraulic Engineering, University of Granada, Spain
bSGT Inc., NASA Ames Research Center, Moffett Field, CA 94035-1000

cNASA Ames Research Center, Intelligent Systems Division. Moffett Field, CA 94035-1000

Abstract

This paper presents a reliability-based prediction methodology to obtain the remaining useful life of com-

posite materials subjected to fatigue degradation. Degradation phenomena such as stiffness reduction and

increase in matrix micro-cracks density are sequentially estimated through a Bayesian filtering framework

that incorporates information from both, multi-scale damage models and damage measurements, that are

sequentially collected along the process. A set of damage states are further propagated forward in time by

simulating the damage progression using the models in absence of new damage measurements to estimate the

time-dependent reliability of the composite material. As a key contribution, the estimation of the remaining

useful life is obtained as a probability from the prediction of the time-dependent reliability, whose validity

is formally proven using the axioms of Probability Logic. A case study is presented using multi-scale fatigue

damage data from a cross-ply carbon-epoxy laminate.

Keywords: Model-based prognostics, Time-dependent reliability, Fatigue, Composites.

1. Introduction

In general, the problem of damage prognosis is challenging [1–3] not only due to its complexity and

multidisciplinary nature, but also for its direct impact on safety and cost. While structural health mon-

itoring (SHM) technology has experienced a considerable development over the past two decades, little

effort has gone into integrating SHM with prognostics science for lifecycle reassessment and condition-based

maintenance [4]. The latter is especially significant for composite materials due to their increasing use

in high-performance applications such as aeronautics or space. Composites are well-known for their high

strength-to-weight ratios, but also for being susceptible to damage from the beginning of lifespan [5, 6]. This

damage can be hard to detect [7] and usually becomes a critical issue for reliability and competitiveness
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of composite structures [8]. Continuous assessment of the health state using state-of-the-art SHM tech-

nology, and based on that, the prediction of the remaining time until which the structure is expected to

continue performing the required function, is of key importance for the efficient and reliable use of composite

materials.

Damage prognostics can be defined as the estimation of the remaining useful life (RUL) of a system based

on knowledge about the current damage state and the future degradation process of the system [1]. The

methodology for damage prognostics typically consists of two main steps: first, an estimation of the current

damage state based on (incomplete) up-to-date information from the system response given by SHM data;

and second, a propagation forward in time of the updated state estimate (while no new SHM data are

available) until the failure threshold is reached. The inherent complexity of this process implies uncertainty

that comes not only from uncertain system inputs (upcoming loads, environmental conditions, etc.) but

also from the lack of knowledge about the physics of the damage process. This uncertainty can increase

dramatically when dealing with full-scale composite structures in real environments. Thus, probability-based

frameworks are best suited for prognostics, rather than deterministic or point-valued RUL estimations [9].

In the literature, there is a growing number of articles dealing with probability-based approaches for

damage prognostics, for example in the areas of rotating machinery [10–12], pneumatic valves [13, 14],

fatigue of metals [15–17], just to name but a few. Depending on the chosen modeling option for forward

damage propagation, approaches can be roughly classified into model-based or data-driven [18]. However,

in general, the number of contributions in the context of composites is still very limited [19–21], where the

benefits of the probability-based prognostics approach can be fully exploited to deal with the variability and

complexity of the degradation process in composites.

In the present paper, a model-based prognostics framework is proposed in application to fatigue degra-

dation in composite materials. For the problem of damage state estimation, which takes place before the

problem of damage prognostics, an approach based on particle filters (PF) [22, 23] is adopted to sequentially

estimate the joint probability density function (PDF) of damage states and model parameters as long as

new SHM data are collected. By PF, the analytical joint distribution of states and parameters obtained

by Bayes’ Theorem is approximated through a discrete set of weighted particles, that represent random

sample realizations in the joint states-parameters space [24]. Every time new data become available, the

particles (states and parameters) are updated and further propagated forward in time by simulating the

damage evolution model. Examples of PF-based approaches in the context of damage prognostics are found

in [15, 25–29].

In addition, a general methodology for time-dependent reliability calculation is proposed based on fil-

tered information about the future states of the system. This methodology is particularly useful for damage

prognostics in composites where several damage modes may coexist, since reliability encapsulates informa-

tion about the overall system performance. An approach for predicting time-dependent reliability has been
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adopted by [17, 30] in a similar manner, however in the present paper it is accomplished by PF focusing on

damage in composites. In particular, it is shown that the time-dependent reliability calculation at a given

time can be estimated as the sum of the normalized weights of the predicted particles that lie within a

predefined useful domain, which is defined as the subregion of the state-space where system performance

is authorized. Finally, a method for directly obtaining the RUL as a probability from the time-dependent

reliability is proposed, whose validity is demonstrated using the axioms of Probability Logic [31, 32]. See

Figure A.2 for a scheme of the proposed prediction framework based on reliability.

As a case study, the proposed prognostics approach is demonstrated using SHM data for matrix-crack den-

sity and stiffness reduction from a tension-tension fatigue experiment in a cross-ply CFRP laminate. Damage

data are taken from NASA Ames Prognostics Data Repository (Composites dataset) [33]. Results show the

suitability and potential of the proposed approach in performing RUL prediction with adequate management

of the associated uncertainty.

The remainder of the paper is organized as follows. Section 2 discusses the theory behind fatigue damage

in composites and presents the proposed methodology for fatigue damage modeling. The sequential state

estimation problem by means of PF is presented in Section 3. Section 4 formally defines the prognostics

problem and describes the methodology proposed to obtain the RUL estimation from the time-dependent

reliability. In Section 5, the proposed framework is applied to a set of fatigue damage data to serve as an

example. Finally, concluding remarks are provided in Section 6.

2. Fatigue damage modeling

The progression of fatigue damage in composites involves a progressive or sudden change of the macro-

scale mechanical properties, such as stiffness or strength, as a consequence of different fracture modes that

evolve at the micro-scale along the lifespan of the structure [6]. In this work, the longitudinal stiffness

loss is chosen as the macro-scale damage variable, given that, in contrast to the strength variable, it can

be measured through in-situ non-destructive methods, which is of key importance for the filtering-based

reliability approach proposed here. At the micro-scale level, matrix micro-cracking [34] is selected as the

dominant fracture mode for the early stage of damage accumulation.

To accurately represent the relation between the internal damage and its manifestation through macro-

scale properties, several families of damage mechanics models have been proposed in the literature [35]. These

models are based on first principles of admissible ply stress fields in presence of damage, and can be roughly

classified into 1) analytical models, 2) semi-analytical models and 3) computational models. The two last

families have been shown to be promising, however they are computationally prohibitive in a filtering-based

prognostics approach, where a large amount of model evaluations is required. Therefore, the focus here is

on the set of analytical models, that depending on the level of assumptions adopted to model the stress
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field in presence of damage, they can be classified (from simpler to more complex) into shear-lag mod-

els [36, 37], variational models [38], and crack opening displacement (COD) based models [39, 40]. Among

them, the shear-lag models have received the most attention in the literature and, as a consequence, a vast

number of extensions and variations can be found [35]. Shear-lag models use one-dimensional approxima-

tion of the equilibrium stress field after cracking to derive expressions for stiffness properties of the cracked

laminate. The main modeling assumption of shear-lag models is that, in the position of matrix cracks, axial

load is transferred to uncracked plies by the axial shear stresses at the interfaces. These models are usually

restricted to cross-ply laminates or
[

φnφ
2
/90n90

/φnφ
2

]

lay-ups, where φ ∈ [−90◦, 90◦] is the ply-angle of the

outer sublaminates (see Figure A.1). For general laminates with arbitrary stacking sequence, COD-based

models are best suited. These models are expected to better capture the various damage mechanisms since

they involve more complex damage mechanics, but it might be at expense of more information extracted

from the data [41]. Then, if such models are utilized for future prediction, as in prognostics, the results are

expected significantly dependent on the available data. However, it should be noted that the methodology

proposed in this paper is not restricted to the above models but applicable to any damage modeling option.

In this work, the classical shear-lag model [36, 42] is the method chosen to represent the relation between

the micro-cracks density and the stiffness loss, as it provides reasonable accuracy results while it depends

less on the data quality. Therefore, it is expected to be less sensitive to the noise on data, as has been shown

to hold true for composites materials by a recent study [41].

2.1. Stiffness reduction model

Following the unifying formulation by [43] for shear-lag models, the effective longitudinal Young’s mod-

ulus E∗
x can be calculated as a function of the crack-spacing in the 90◦ layers as:

E∗
x =

Ex,0

1 + a 1
2l̄
R(l̄)

(1)

where Ex,0 is the initial longitudinal Young’s modulus of the undamaged laminate and l̄ = l
t90

is the half

crack-spacing normalized by the 90◦ sublaminate thickness. The normalized half-crack spacing l̄ can be

expressed as a function of ρ, the matrix crack density, as: l̄ = 1
2ρt90

. The term a in Equation 1 is a function

of mechanical and geometrical properties of the laminate as defined in Appendix A. The function R(l̄),

known as the average stress perturbation function, is defined as:

R(l̄) =
2

ξ
tanh(ξl̄) (2)

where ξ, the shear-lag parameter, can be obtained for the classical shear-lag model [36, 42] as follows:

ξ =

√
√
√
√G23

(

1

E2
+

t90

tφE
(φ)
x

)

(3)

The superscript (φ) denotes: "property of the
[

φnφ
2

]

-sublaminate" (see Figure A.1 for further details).
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2.2. Damage propagation model

Having identified the model to express the relationship between the effective Young’s modulus and micro-

cracks density, the next step is to address the time evolution of the micro-cracks density. To this end, the

shear-lag model is used to obtain the energy released per unit crack area due to the formation of a new crack

between two existing cracks, denoted here by G. This energy, known as energy release rate (ERR), can be

calculated as [44]:

G =
σ2
xh

2ρt90

(

1

E∗
x(2ρ)

− 1

E∗
x(ρ)

)

(4)

where σx is the applied axial tension, and h and t90 are the laminate and 90◦ sublaminate half-thickness,

respectively. The term E∗
x(ρ), as a function of ρ, is the effective laminate Young’s modulus due to the current

damage state which can be calculated using Equation 1. The energy released calculated by Equation 4 can

be further introduced into the modified Paris’ Law [45] to obtain the evolution of matrix-cracks density as

a function of fatigue cycle n, as shown below:

dρ

dn
= A(∆G)α (5)

where A and α are fitting parameters, and ∆G is the increment in ERR for a specific stress amplitude,

i.e., ∆G = G(σx,max) − G(σx,min). Since the term ∆G involves the expression for the micro-damage me-

chanics model E∗
x(ρ), a closed-form solution for Equation (5) is hard to obtain. To overcome this drawback,

the resulting differential equation can be solved by approximating the derivative using unit-time finite dif-

ferences, assuming that damage evolves cycle-to-cycle as:

ρn = ρn−1 +A (∆G(ρn−1))
α

(6)

where ρn is the matrix-cracks density at fatigue cycle n ∈ N.

3. Bayesian state estimation

Having defined the model for damage propagation forward in time, the next step is to develop a method

for sequential damage state estimation as new SHM data are collected. This is accomplished by Bayesian

state estimation [46], that recursively uses Bayes’ Theorem to incorporate the information from current SHM

measurements along with the output of the damage propagation model, while accounting for the underlying

uncertainties (e.g., modeling errors and measurement noise). To this end, a probabilistic description of the

deterministic models described in Section 2 is required, which is developed in the next section. The Bayesian

state estimation methodology is presented next. The proposed procedure will make extensive use of the

concept of damage state, as a damage event predicted at a certain time or fatigue cycle, as explained below.
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3.1. Stochastic system modeling

Let us consider a generic damage progression model defined in state-space form using the following

discrete state transition equation:

xn = g(xn−1,un,θ) + vn (7)

where g(xn−1,un,θ) : R
nx × R

nu × R
nθ → R

nx is a possibly nonlinear function of the latent damage state

xn ∈ R
nx that may depend on a set of nθ (uncertain) model parameters θ ∈ Θ ⊂ R

nθ along with a set

of input parameters to the system un ∈ R
nu . Here vn ∈ R

nx is a model-error term that represents the

difference between the actual system response xn and the model output g. This model error is assumed

to be modeled as a zero-mean Gaussian distribution, which is supported by the Principle of Maximum

Information Entropy (PMIE) [31, 47]. It follows that the entire state transition equation is also modeled as

a Gaussian distribution, as:

p(xn|xn−1,un,θ) = ((2π)nx |Σvn
|)− 1

2 exp

(

−1

2
(xn − x̄n)

T
Σ−1

vn
(xn − x̄n)

)

(8)

where x̄n , g(xn−1,un,θ), and Σvn
∈ R

nx×nx is the covariance matrix of the model error vn. Observe that

the state transition equation, as defined in Equation 8, satisfies the Markov property [48], i.e., the modeled

process is conditionally dependent on the past sequence only through the last state. Thus the proposed state

transition equation describes a Markovian process of order one.

As discussed in Section 2, the progression of damage is studied in this paper by focusing on the matrix-

cracks density ρn, and the normalized effective stiffness Dn =
E∗

x

Ex,0
, so that the following joint state transition

equation of two components g = (g1, g2) ∈ R
2 is defined, as follows:

x1,n = ρn = g1(ρn−1,un,θ)
︸ ︷︷ ︸

Eq. 6

+v1,n (9a)

x2,n = Dn = g2(ρn,un,θ)
︸ ︷︷ ︸

Eq. 1

+v2,n (9b)

where xn = (x1,n, x2,n) ∈ R
2 is the system response at time n ∈ N. Subscripts 1 and 2 correspond to the

damage subsystems, namely, matrix-crack density and normalized effective stiffness, respectively. The vector

vn = (v1,n, v2,n) ∈ R
2 corresponds to the model error of the overall system. A key concept here is the consid-

eration of model errors v1,n and v2,n as stochastically independent, even though the models corresponding

to the damage subsystems, g1 and g2, are mathematically related, as shown in Section 2. It follows that the

covariance operator Σvn
is a diagonal matrix, i.e. Σvn

= diag
(

σ2
v1,n

, σ2
v2,n

)

, where σv1,n and σv2,n are the

corresponding standard deviations of model errors v1,n and v2,n, respectively. Therefore, the state transition

equation of the overall system, as defined in Equation 8, can be readily expressed as a product of univariate
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Gaussians, as1:

p(xn|xn−1,θ) = p(Dn|ρn,θ)p(ρn|ρn−1,θ) (10)

where

p(ρn|ρn−1,θ) =
1√

2πσv1,n

exp

(

− (ρn − g1(ρn−1,θ))
2

2σ2
v1,n

)

(11a)

p(Dn|ρn,θ) =
1√

2πσv2,n

exp

(

− (Dn − g2(ρn,θ))
2

2σ2
v2,n

)

(11b)

Let us now suppose that the system response can be measured during operation and that, at a certain

fatigue cycle n, the measured system response can be expressed as a function of the latent state xn, as

follows:

yn = xn +wn (12)

where yn = (y1,n, y2,n) ≡
(

ρ̂n, D̂n

)

∈ R
2 are the measurements of both, matrix-cracks density and normal-

ized effective stiffness respectively, and wn = (w1,n, w2,n) ∈ R
2 is the vector of measurement errors. As stated

before, the PMIE is used to choose wn as a zero mean Gaussian PDF with covariance matrix Σwn
. Thus,

the measurement equation defined in Equation 12 can be expressed in probabilistic terms as

p(yn|xn,θ) =
(
(2π)2|Σwn

|
)− 1

2 exp

(

−1

2
(yn − xn)

T
Σ−1

wn
(yn − xn)

)

(13)

Since the measurements of each subsystem (micro-cracks and effective stiffness) are considered as stochas-

tically independent, then Σwn
= diag

(

σ2
w1,n

, σ2
w2,n

)

, being σw1,n
and σw2,n

the standard deviation of the

corresponding measurement errors w1n and w2n , respectively. Thus, Equation 12 can be readily expressed

as:

p(yn|xn,θ) = p(ρ̂n|ρn)p(D̂n|Dn) (14)

where

p(ρ̂n|ρn) =
1√

2πσw1,n

exp

(

− (ρ̂n − ρn)
2

2σ2
w1,n

)

(15a)

p(D̂n|Dn) =
1√

2πσw2,n

exp

(

− (D̂n −Dn)
2

2σ2
w2,n

)

(15b)

The PDFs for the state transition equation and the measurement equation defined in Equations 10 to 14

provide a complete statistical description of the system being modeled.

Finally, the set of uncertain model parameters θ is selected among the complete set of mechanical

and fitting parameters describing Equations 1 to 6 (see Table A.2) through a global sensitivity analy-

sis [49]. The set of mechanical properties {E1, E2, t} together with the Paris’ Law’s fitting parameter α

1In what follows, the conditioning on the model input un is dropped for simpler notation.
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emerged as sensitive parameters to the model output uncertainty [41], so they are selected for sequential

updating as shown below. Further, the standard deviations of the model errors v1,n and v2,n are added

as candidates for updating since they are uncertain apriori, thereby resulting in the model parameter vec-

tor: θ =
(
α,E1, E2, t, σv1,n

, σv2,n

)
∈ R

6.

3.2. Sequential state estimation

The aim of sequential state estimation is to recursively estimate the posterior joint PDF of the latent

system state xn along with model parameters θ, at every time n a new measurement is available. To this end,

an augmented state zn = {xn,θ} is defined in the joint state-parameter space Z ⊂ R
nx ×R

nθ , representing

the overall system response including model parameters. Thus, given a sequence of measurements up to

time n, y0:n , {y0,y1, . . . ,yn−1,yn}, the goal is to estimate the probability of the up-to-date sequence of

latent states of the system z0:n , {z0, z1, . . . , zn−1, zn} through the conditional PDF p(z0:n|y0:n). This is

accomplished by Bayes’ Theorem, as follows:

p(z0:n|y0:n) =
p(yn|zn)p(z0:n|y0:n−1)

∫

Z
p(yn|zn)p(z0:n|y0:n−1)dz0:n

∝p(yn|zn)p(zn|zn−1) p(z0:n−1|y0:n−1)
︸ ︷︷ ︸

last update

(16)

where

p(zn|zn−1) = p(xn|xn−1,θn)
︸ ︷︷ ︸

Eq. 10

p(θn|θn−1) (17a)

p(yn|zn) = p(yn|xn,θn)
︸ ︷︷ ︸

Eq. 14

(17b)

In Equation 16, it is assumed that p(yn|z0:n,y0:n−1) = p(yn|zn) and that p(zn|z0:n−1,y0:n−1) = p(zn|zn−1),

based on the definition of the measurement equation (Equation 12) and the Markovian property of the state

transition equation, respectively. It is also assumed that the initial state z0 is known in advance, hence

p(z0|y0) ≡ p(z0) (note that y0 is not a measurement), being p(z0) = p(x0|θ)p(θ) the prior PDF of the

system state.

A key problem that typically arises when sequentially updating the state sequence z0:n = {x0:n,θ0:n} as

an augmented state is the non-dynamics nature of θ, which makes it difficult to obtain the PDF p(θn|θn−1)

in Equation 16, and therefore, to explore the space of parameters Θ. A common solution is to add an

independent random perturbation ξn to the set of updated parameters at time n− 1 before evolving to the

next predicted state at time n, i.e., θn = θn−1+ ξn. It induces a Markovian-type artificial dynamics [22, 50]

to model parameters, whereby the PDF p(θn|θn−1) is prescribed. For example, if ξn is assumed to be

modeled as a zero-mean Gaussian, then the required PDF p(θn|θn−1) is obtained as:

p(θn|θn−1) = N (θn−1,Σξn) (18)
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where Σξn ∈ R
nθ×nθ is the covariance matrix of the random walk which, in this work, is specified as Σξn =

diag(σ2
ξn,1

, . . . , σ2
ξn,j

, . . . , σ2
ξn,nθ

), i.e., each individual component of θ performs an independent random walk,

being σ2
ξn,j

the variance of the random walk of θn,j , the jth component the parameter vector θ. Observe

that by this method, the model parameters are virtually time-evolving although they are essentially not

dependent on time. In addition, note that such time-dependence imposes a loss of information in θ over time

(e.g., larger spread in p(θn|y0:n)) since additional uncertainties are artificially added to model parameters,

which ultimately influences the precision of the state estimation. Several methods have been proposed in the

literature to overcome this drawback, with the most popular being those that impose a shrinkage over Σξn

as long as new data are collected [50]. An efficient method of this class has been recently proposed by Daigle

and Goebel [51], which consists in modifying the variances σ2
ξn,j

, j = 1, . . . , nθ by adding a negative scalar

proportional to the relative distance between the actual and the target spread of the marginal posterior

p(θn,j |y0:n), as follows:

σ2
ξn,j

= σ2
ξn−1,j

(

1− P ∗
j

RMAD(θn,j)−RMAD∗
j

RMAD(θn,j)

)

(19)

where RMAD(θn,j) is the relative median absolute deviation of p(θn,j |y0:n), RMAD∗
j is the target RMAD

for p(θn,j |y0:n), and P ∗
j ∈ [0, 1] is a scaling constant that tunes the speed of convergence to RMAD∗

j . In [51],

a comprehensive discussion about the optimal choice for P ∗
j and RMAD∗

j is found. The term RMAD(θn,j)

can be readily calculated based on samples from the marginal posterior p(θn,j |y0:n), as follows:

RMAD(θn,j) =

median

({

|θ(k)n,j −median(θ̃n,j)|
}K

k=1

)

median(θ̃n,j)
(20)

where θ̃n,j = {θ(1)n,j , . . . , θ
(k)
n,j , . . . , θ

(K)
n,j } is a set of K samples from p(θn,j |y0:n). The adopted method for

sequential parameter updating is summarized within Algorithm 1 below.

3.3. Particle filters for joint state and parameter estimation

The sequential state estimation methodology presented before requires the evaluation of multi-dimen-

sional integrals of the type occurring in Equation 16, which are usually intractable except some especial cases

using linear models and Gaussian uncertainties [23]. An alternative for the general case of both non-linear

and non-Gaussian state-space models is by the use of particle methods [46], a set of sequential Monte Carlo

methods which provide samples approximately distributed according to the posterior PDF p(z0:n|y0:n) with

a feasible computational cost. Particle filters (PF) [22, 23] is one of the most common techniques among

particle methods. With PF, a set of N samples or particles with associated set of weights {ω(i)
n }Ni=1, are used

to obtain an approximation for the required posterior PDF as:

p(z0:n|y0:n) ≈
N∑

i=1

ω(i)
n δ(z0:n − z

(i)
0:n) (21)

9



where δ is the Dirac delta. Given that the posterior density is seldom known exactly, it is not possible to

obtain samples from it directly. For this reason, a sequential importance sampling (SIS) approach is adopted

to straightforwardly generate samples from an importance density q(z0:n|y0:n). Thus, to compensate for

the difference between the importance density and the true posterior density, the unnormalized weights are

computed as follows:

ω̂(i)
n =

p(z
(i)
0:n|y0:n)

q(z
(i)
0:n|y0:n)

(22)

where ω
(i)
n =

ω̂(i)
n∑

N
i=1 ω̂

(i)
n

, i = 1, . . . , N . For practical reasons, the importance density is conveniently chosen as:

q(z0:n|y0:n) = q(z0:n|y0:n−1), therefore it can be factorized as q(z0:n|y0:n−1) = q(zn|zn−1)q(z0:n−1|y0:n−1) [23].

Then, by substituting Equation 16 into Equation 22, the unnormalized importance weight for the ith particle

at time n can be rewritten as:

ω̂(i)
n ∝ p(z

(i)
0:n−1|y0:n−1)

q(z
(i)
0:n−1|y0:n−1)

︸ ︷︷ ︸

ω
(i)
n−1

p(z
(i)
n |z(i)n−1)p(yn|z(i)n )

q(z
(i)
n |z(i)n−1)

(23)

Typically, the PDF q(zn|zn−1) in Equation 23 is chosen to coincide to the state transition equation p(zn|zn−1)

since it is easy to evaluate [22, 52]. By means of this, Equation 23 simplifies to:

ω̂(i)
n ∝ ω

(i)
n−1p(yn|z(i)n ) (24)

and the resulting algorithm is called bootstrap filter [22]. This is the algorithm adopted for the research in

the present paper.

When particularizing to the fatigue problem investigated here, the data y0:n are compounded by simul-

taneous measurements of both, micro-cracks density and normalized effective stiffness. Thus, by substituting

the Equation 14 into 24, the formula for updating the particle weights leads to the next expression:

ω̂(i)
n ∝ ω

(i)
n−1p(ρ̂n|ρ(i)n )p(D̂n|D(i)

n ) (25)

A pseudocode implementation for the PF is provided as Algorithm 1. Observe that a systematic resampling

step is implemented in Algorithm 1 to avoid the well-known drawback of weight degeneracy. During the

resampling, particles are either dropped or reproduced that may result in a loss of diversity of the particles

[23]. If necessary, a control step on this degeneracy by using the effective sample size (ESS) [53] may be

incorporated before the resampling step.

It should be noted that when data are available over a set of non-regularly scheduled cycles {n, n +

k, . . . , n + ℓ} ∈ N, with ℓ > k + 1, k > 1, samples from the state transition equation p(zn+1|zn) cannot be

directly drawn. This is due to the one-step description of the matrix-cracks evolution model, as stated in

Equation 9a. To overcome this drawback, which is usual in fatigue testing, the Total Probability Theorem

can be applied to bridge the missing damage path growth between two non-subsequent measurements.

10



Algorithm 1 SIS particle filter with parameter adaptation

inputs:

N, {number of particles per time step}

NT , {threshold of effective sample size (ESS)}

Σξ0 = diag
(

σ2
ξ0,1

, σ2
ξ0,2

, . . . , σ2
ξ0,nθ

)

, {initial covariance for artificial dynamics}

K, {number of samples for RMAD calculation [51] for jth component of θ}

RMAD∗
j , {target RMAD for jth component of θ}

P ∗
j , {to control speed of convergence to RMAD∗

j }

Algorithm:

Initialize
[(
θ
(1)
0 ,x

(1)
0

)
, . . . ,

(
θ
(i)
0 ,x

(i)
0

)
, . . . ,

(
θ
(N)
0 ,x

(N)
0

)]

, where (θ
(i)
0 ,x

(i)
0 ) ∼ p(θ)p(x0|θ)

Assign the initial weights:
{
ω̂

(i)
0 = 1/N

}N

i=1

At n > 1 {time n evolves as new SHM data arrive}

for i = 1 to N do

Sample from Eq. 18: θ
(i)
n ∼ p(·|θ

(i)
n−1)

Sample from Eq. 11a: ρ
(i)
n ∼ p(.|ρ

(i)
n−1,θ

(i)
n )

Sample from Eq. 11b: D
(i)
n ∼ p(·|ρ

(i)
n ,θ

(i)
n )

Set z
(i)
n = {ρ

(i)
n , D

(i)
n ,θ

(i)
n } and z

(i)
0:n = (z

(i)
0:n−1, z

(i)
n )

Update weights according to Eq. 25: ω̂
(i)
n = ω

(i)
n−1p(yn|z

(i)
n )

end for

for i = 1 to N do

Normalize weights ω
(i)
n = ω̂

(i)
n

∑
N
i=1 ω̂

(i)
n

end for

for j = 1 to nθ do

Sample {θ̃
(k)
n,j}

K
k=1 ∼ p(θn,j |y0:n) ≈

∑K

k=1 ω
(k)
n δ(θn,j − θ

(k)
n,j)

Compute RMAD(θn,j) according to Eq. 20

Update variance of random walk: σ2
ξn,j

=σ2
ξn−1,j

(

1− P ∗
j

RMAD(θn,j)−RMAD∗

j

RMAD(θn,j)

)

end for

set Σξn = diag
(

σ2
ξn,1

, · · · , σ2
ξn,nθ

)

if EES < NT then

Resampling of N particles according to weights ω
(i)
n , i = 1, . . . , N .

Set ω
(i)
n = 1/N, i = 1, . . . , N .

end if

11



For example, for general cycles n and n + ℓ, with ℓ ∈ N > 1, the PDF p(zn+ℓ|zn) for the ℓ-step-ahead

states can be obtained as:

p (zn+ℓ|zn) =
∫

Z

p
(
zn+ℓ|zn+1:n+ℓ−1, zn

)
p
(
zn+1:n+ℓ−1|zn

)
dzn+1:n+ℓ−1 (26)

where zn+1:n+ℓ−1 =
{
zn+1, zn+2, . . . , zn+ℓ−1

}
∈ Z is the sequence of missing states between the measuring

times n and n + ℓ. Making use of the Markov property of state transition equation, Equation 27 can be

rewritten as follows:

p (zn+ℓ|zn) =
∫

Z

n+ℓ∏

t=n+1

p(zt|zt−1)dzn+1:n+ℓ−1 (27)

To numerically solve this multi-dimensional integral, an approximation can be readily obtained by conditional

sampling, using recursively the one-step transition equation as defined in 10, i.e.: first sample z
(i)
n+1 using

the aforementioned one-step transition equation conditional on the initial state zn, i.e., z
(i)
n+1 ∼ p(·|zn); then

sample the succeeding state conditional on the previous sample, i.e., z
(i)
n+2 ∼ p(·|z(i)n+1); finally, repeat the

same process until the target time n+ ℓ is reached.

3.4. Future state prediction

Having estimated the probability distribution of the current damage state at time of prediction n, the

next step for prognostics is to predict the distribution of future states of the system ℓ-steps forward in time

in absence of new observation, i.e., p(zn+ℓ|y0:n), with ℓ > 1. This distribution can be obtained by the Total

Probability Theorem as:

p(zn+ℓ|y0:n) =

∫

Z

p(zn+ℓ|zn:n+ℓ−1,y0:n)p(zn:n+ℓ−1|y0:n)dzn:n+ℓ−1

=

∫

Z

[
n+ℓ∏

t=n+1

p(zt|zt−1)

]

p(zn|y0:n)dzn:n+ℓ−1

(28)

where p(zn|y0:n) is the up-to-date information about the system at time n, and p(zt|zt−1), with t > n, is the

state transition equation which represents the future behavior of the system. It is important to remark here

that, for simplicity but without loss of generality, input parameters un (e.g., loads, environmental conditions,

etc.) are assumed to be known in advance and they are dropped from the formulation. Replacing p(zn|y0:n)

in Equation 28 by its particle-filter approximation (Equation 21), a particle estimation of the predictive

PDF p(zn+ℓ|y0:n) can be obtained as:

p(zn+ℓ|y0:n) ≈
∫

Z

[
n+ℓ∏

t=n+1

p(zt|zt−1)

]
N∑

i=1

ω(i)
n δ(z0:n − z

(i)
0:n)dzn:n+l−1

=

N∑

i=1

ω(i)
n

∫

Z

p(zn+1|z(i)n )

n+ℓ∏

t=n+2

p(zt|zt−1)dzn+1:n+ℓ−1
(29)

12



Note that last equation cannot be solved analytically, however it can be sampled by drawing one condi-

tional sample sequence z
(i)
n+1:n+ℓ=

{

z
(i)
n+1, z

(i)
n+2, . . . , z

(i)
n+ℓ

}

from each of the N multidimensional integrals in

Equation 29, using the conditional sampling methodology explained in last section. Each of the simulated

sequences z
(i)
n+1:n+ℓ, i = 1, · · · , N adopts the weight ω

(i)
n of the corresponding "stem" sample z

(i)
n ; therefore

an approximation of the ℓ-step predictive ahead PDF can be obtained as:

p(zn+ℓ|y0:n) ≈
N∑

i=1

ω(i)
n δ(zn+ℓ − z

(i)
n+ℓ) (30)

where z
(i)
n+ℓ ∈ z

(i)
n+1:n+ℓ, i = 1 . . . N .

4. Reliability based prognostics

Reliability is a probabilistic metric that provides information about the system performance in relation to

a predefined limit state or threshold function. When the states of the system under study are time-dependent,

as in the case of fatigue damage accumulation in composite materials, then the reliability calculation may

depend upon the health state of the system at a generic time instant, leading to the concept of time-dependent

reliability [30, 54, 55]. In this context, it is possible to formulate the problem of ℓ-step-ahead prediction of

reliability, denoted here as Rn+ℓ|n, using the most up-to-date information about the system at time n. It is

further shown in this section that the predicted time-dependent reliability also serves to derive a cumulative

distribution function (CDF) of the RUL in a straightforward manner.

4.1. Time-dependent reliability

Let us define the useful domain U ⊂ Z as the non-empty subset of authorized states of the system,

and the complementary subset Ū = Z \ U , as the subset of states where the system behavior becomes

unacceptable, or simply, where system failure occurs. Then, the time-dependent reliability can be defined

as the probability2 of the system to belong to the useful domain U at general time n+ ℓ, based on updated

information about the system states at cycle n. In mathematical terms:

Rn+ℓ|n = P (zn+ℓ ∈ U|y0:n) =

∫

U

p(zn+ℓ|y0:n)dzn+ℓ (31)

where p(zn+ℓ|y0:n) is the ℓ−step ahead predictive PDF of the system, as defined in Equation 28. The

last probability integral, defined over the useful domain U , can be redefined over the complete z-space by

introducing an indicator function I(U)(z), as follows:

Rn+ℓ|n =

∫

Z

I(U)(zn+ℓ)p(zn+ℓ|y0:n)dzn+ℓ (32)

2In what follows, P (·) is used to denote probability, whereas a PDF is expressed as p(·).
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where I(U)(z) : Z → {0, 1} maps a given point in the joint state-parameter space Z to the Boolean domain

{0, 1}, such that:

I(U)(z) =







1, if z ∈ U

0, if z ∈ Ū
(33)

By replacing p(zn+ℓ|y0:n) by its future estimate given by Equation 30, an estimate of the integral in Equa-

tion 32 can be obtained as:

Rn+ℓ|n ≈
∫

Z

I(U)(zn+ℓ)

[
N∑

i=1

ω(i)
n δ(zn+ℓ − z

(i)
n+ℓ)

]

dzn+ℓ

=

N∑

i=1

ω(i)
n I(U)(z

(i)
n+ℓ)

(34)

From the last equation, it is shown that the ℓ-step ahead predicted reliability of the system can be readily

approximated as the sum of the weights of the subset of particles that satisfy I(U)(z
(i)
n+ℓ) = 1, i.e., those

that lie within the useful domain at time n+ ℓ. By evaluating Equation 34 for different values ℓ > 1, a time

dependent reliability function is obtained. Note that, as a particular case of the time-dependent reliability,

an estimation of the updated reliability Rn|n can be obtained at time n (when the last SHM measurement

is available) as:

Rn|n =

N∑

i=1

ω(i)
n I(U)(z

(i)
n ) (35)

where {z(i)n , ω
(i)
n }Ni=1 is a set of N discrete samples to approximate the PDF p(zn|y0:n).

4.2. Calculation of RUL based on time-dependent reliability

Once the problem of future state prediction has been assessed and the time-dependent reliability of the

system has been derived, the next natural step for prognostics is to estimate the remaining useful life of the

engineering component/system; i.e., to estimate the minimum time ℓ when the predicted state is expected

to lie within the failure domain Ū . In mathematical terms:

RULn = inf
{
ℓ ∈ N : zn+ℓ ∈ Ū

}
(36)

In the context of the fatigue problem investigated in this paper, the RULn corresponds to the minimum

amount of prospective fatigue cycles starting from n, such that damage (matrix-cracks or stiffness loss) goes

beyond a predefined damage threshold, that is defined as the boundary of the useful domain U . Observe that,

based on the definition in Equation 36, it is clear that the proposition [RULn 6 ℓ] implies the proposition
[
zn+ℓ ∈ Ū

]
and vice versa, i.e., [RULn 6 ℓ] ⇐⇒

[
zn+ℓ ∈ Ū

]
. However, it is necessary to further explore the

correspondence between both propositions in terms of probability, which would allow us a direct connection

between the RUL and time dependent reliability. In the next subsection, the equivalence between P
(
RULn 6

ℓ|y0:n

)
and P

(
zn+ℓ ∈ Ū|y0:n

)
is derived and examined under the axioms of Probability Logic [31, 32].
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4.2.1. Derivation of probability of RUL from Probability Logic

In Probability Logic, P (b|a) is interpreted as the degree of plausibility of proposition b based on the

information given by proposition a [32]. In other words, given the proposition a, then proposition b holds

with probability P (b|a). In the specific situation when then proposition b gives complete information about

a, i.e. b =⇒ a, then P (a|b) = 1. By the contrary, when b implies not a, then P (a|b) = 0. Four axioms are

defined in Probability Logic:

P (b|a) > 0 (37a)

P (b|a) + P (∼ b|a) = 1 (37b)

P (b|b&a) = 1 (37c)

P (c&b|a) = P (c|b&a)P (b|a) (37d)

where ∼ b reads "not b" and a&b reads "a and b". From these axioms, the property P (b|a) 6 1 is obtained,

which can be readily derived from axioms (37a) and (37b).

Let us now suppose that proposition a represents the data y0:n, b represents [RULn 6 ℓ], and c repre-

sents
[
zn+ℓ ∈ Ū

]
. As evident from the definition in Equation 36, the proposition [RULn 6 ℓ] implies the

proposition
[
zn+ℓ ∈ Ū

]
and vice versa , i.e., b ⇐⇒ c. Next, from axiom 37d:

P (b&c|a) = P (b|c&a)P (c|a) (38a)

= P
(
b|(b ⇐⇒ c)&a

)

︸ ︷︷ ︸

=1, by axiom (37c)

P (c|a) (38b)

where the equivalence c&a ≡ (b ⇐⇒ c)&a is used in Equation 38b. Thus P (b&c|a) = P (c|a) and also

P (b&c|a) = P (b|a), based on the correspondence b ⇐⇒ c. The latter formally proves the following equality

in terms of probabilities: P
(
RULn 6 ℓ|y0:n

)
= P

(
zn+ℓ ∈ Ū|y0:n

)
.

4.3. Prognostics based on time-dependent reliability

The reasoning given above allows us to establish a rational connection between the RUL as a probability,

and the time-dependent reliability, provided that the events
[
zn+ℓ ∈ Ū

]
and [RULn 6 ℓ] occur with the

same probability; hence the following identities hold:

FRULn
(ℓ− n) , P

(
RULn 6 ℓ|y0:n

)
= P

(
zn+ℓ ∈ Ū|y0:n

)

= 1− P
(
zn+ℓ ∈ U|y0:n

)

= 1−Rn+ℓ|n

(39)

which makes use of the definition of time-dependent reliability given in Equation 31. In the last equation,

FRULn
(ℓ− n) denotes the CDF of the random variable ℓ− n ∈ N. Thus, the probability P

(
RULn 6 ℓ|y0:n

)
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can be approximated using Equation 34 as:

P
(
RULn 6 ℓ|y0:n

)
≈ 1−

N∑

i=1

ω(i)
n I(U)(z

(i)
n+ℓ) (40)

Observe that it is possible to compute the entire CDF of RULn by evaluating Equation 40 for different values

of ℓ > 1 until the value Rn+ℓ|n = 0 is reached, which coincides when FRULn
(ℓ− n) = 1. See Figure A.2 for

a scheme of the proposed reliability-based prognostics framework. The calculation of the time-dependent

reliability can be updated each time n new data are collected. The outcomes of these steps are conceptually

illustrated in Figure A.3.

5. Case study

The proposed framework is applied to fatigue cycling data obtained from a set of run-to-failure fatigue

experiments in cross-ply graphite-epoxy laminates. Torayca T700G unidirectional pre-impregnated (com-

monly known as prepreg) material was used for 15.24 [cm] × 25.4 [cm] coupons with dogbone geometry

and [02/904]s stacking sequence. A notch (5.1 [mm] × 19.3 [mm]) was created in these coupons to induce

damage modes other than matrix-cracks, such as delamination, thereby introducing additional sources of

uncertainty and then demonstrating the proposed framework under more realistic conditions. The main

mechanical properties of such coupons are listed in Table A.2.

The tests were conducted under load-controlled tension-tension cyclic loading with a maximum applied

load of 31.13 [KN], a frequency f = 5 [Hz], and a stress ratio R = 0.14 (relation between the minimum and

maximum stress for each cycle). Monitoring data were collected from a network of 12 piezoelectric (PZT)

sensors using Lamb wave signals and three triaxial strain-gages. Both micro-crack density and stiffness

reduction data were considered as NDE measurements during the fatigue test. The mapping between PZT

raw data and micro-cracks density was done following the methodology proposed in [56]. More details about

these tests are reported in [33, 57]. Damage data used in this example correspond to laminate L1S19 in [33]

(see a summary in Table A.1). Figure A.4 provides a schematic view of the experimental set-up.

Results for sequential state estimation along with multi-step ahead prediction for both micro-cracks

density and normalized effective stiffness are presented for three different time instants (cycles) in Figure

A.5. Note that at the beginning of each plot (left side before the multi-step ahead prediction) the collected

data up to cycle n, n = {1, 4, 8} × 104 are represented along with the sequence of filtered states, which

are estimated using Algorithm 1 with N = 5000 particles. For this case study, the systematic importance

resampling (SIR) variant of the SIS algorithm is adopted, whereby the resampling step is run every time

new data are collected. Damage states are initialized at x0 = (ρ0, D0), being ρ0 = 0.1 [ cracks/mm] and

D0 = 1 (dimensionless). The standard deviation of the measurement error parameters are set to σw1,n =

0.05 [ cracks/mm] and σw2,n = 0.01, taking them as known. The scaling variables RMAD∗
j and P ∗

j are fixed
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to 0.3 · RMAD0,j and 0.001 respectively, where RMAD0,j is calculated according to Equation 20 using

samples from the marginal prior PDF p(θj), j = 1, . . . , 6. The chosen prior PDFs for model parameters

θ = {θ1, θ2, . . . θ6} are specified in Table A.2. The diagonal elements σξ0,j of the covariance matrix Σξ0 (recall

Equation 18) are appropriately selected through initial test runs and set to 0.5% of the 5th-95th inter

percentile range of the marginal priors p(θj), j = 1, . . . , 6. To reveal the uncertainty reduction in model

parameters θ, the posterior mean of the jth component is plotted against cycles in Figure A.6 for j =

1, . . . , 6, as well as their 25%− 75%, 5%− 95% probability bands.

Moreover, time-dependent reliability estimations are obtained using the methodology described in Section

4.1. The results are shown in Figure A.7 for selected cycles n = {0.1, 1, 3, 5, 7, 9} × 104. For this example,

the useful domain is defined by the subset U = {(ρ,D) ∈ [0, 0.418] × [1, 0.88]} ⊂ R
2, where ρ is expressed

in [cracks/mm] and D is dimensionless. By comparing between consecutive plots in Figure A.7, one can observe

that the reliability prediction gradually tends to converge as more SHM data become available.

The RUL calculated from the predicted reliability is shown in Figure A.8, where two cones of accuracy at

10% and 20% of the true RUL (denoted as RUL∗) are drawn to help evaluating the prediction accuracy and

precision [58]. Observe that the RUL prediction is appreciably inaccurate for the initial stages of the fatigue

process, which suggests that a number of cycles are required for SHM data to train model parameters. From

this period, not only the prediction precision clearly improves with time (values closer to RUL* line), but

also the prediction spread gradually tends to diminish. Observe also that from cycle n = 5·104, the estimated

mean values for the RUL (labelled by the circles in Figure A.8) get higher values with respect to the RUL∗

line, progressively leaving the accuracy area. However, the median RUL estimates (labelled by the squares)

remain within the accuracy region. An explanation for this observation is provided in view of the asymptotic

behavior of the damage process for both, micro-cracks density and normalized stiffness decrease, as shown

in Figure A.5. Note that from cycle n = 5 · 104, the model produces a large amount of predicted samples

that already lie within the failure domain Ū at time of prediction n. This leads to an increasing density

of predicted RULn concentrated at cycle n, in addition to a distributional tail of RULn corresponding to

those particles that have not reached the failure region at cycle n. These particles hit the failure threshold at

cycles much higher than n, as a consequence of the asymptotic damage progression. Thus, the predicted mean

values of RUL show a positive shift with respect to the RUL∗ values, whereas the median RUL estimates

remain closer to RUL∗. The last observation is clearly manifested at n = 9 · 104, which corresponds to the

cycle when the measured damage reaches the failure region. Observe in Figure A.8 that the estimation of

RULn at n = 9 ·104 displays an upper distributional tail, that makes sense with the updated reliability value

Rn|n = 0.42 at that cycle, meaning that there is up-to a 42% of remaining reliability for cycles n > 9 · 104.
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6. Concluding remarks

A prediction methodology based on reliability was proposed to obtain the remaining useful life of compos-

ites under fatigue conditions. The remaining useful life was derived from a propagation of the time-dependent

reliability. Physics-based models were considered to predict the future evolution of damage, due to the ben-

efits for predicting reliability and RUL. Two damage variables, micro-cracks density and stiffness loss, were

simultaneously considered to represent the health state of the laminate. The validity of this framework was

demonstrated on SHM data collected from a tension-tension fatigue experiment using a CFRP cross-ply

laminate. Reliability, as defined in this work, emerged as a suitable unified system-health indicator for prog-

nostics as it encapsulates information about the system health state while it allows predicting the RUL of

the system. More research effort is needed to develop more efficient prognostics algorithms to improve the

accuracy at the final stage of the process, where damage typically reaches an asymptotic behavior, and to

extend this prognostics framework from coupon level to component or subsystem levels.
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Appendix A. Nomenclature and basic relations

For ply and laminate properties, the nomenclature exposed in Table A.3 is adopted in this work. Notice

that the subscripts {1, 2, 3} refer to ply properties defined in local axes while the subscripts {x, y, z} refer

to sublaminate or laminate properties defined in global axes, that corresponds to the laminate coordinate

system (see Figure A.1b). The first local direction "1" coincides with fibers direction at a given ply or lamina

(on-axis direction), while directions "2-3" are the in-plane and out-of-plane transverse directions. For global

axes, "x" refers to the fatigue loading direction, while "y-z" refers to the in-plane and out-of-plane transverse

directions, respectively. In addition, the superscript (φ) denotes: "property of the
[

φnφ
2

]

-sublaminate".

The function a in Equation 1 is defined as a function of the laminate and ply properties as follows:

a =
E2t90
E1tφ




1− ν(φ)xy

ν(φ)
xy t90

E
(φ)
y

+
ν12tφ
E2

t90

E
(φ)
y

+
tφ
E1






1− ν12ν
(φ)
xy

1− ν212
E2

E1

(A.1)
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where properties with the superscript (φ) are referred to the outer
[

φnφ
2

]

-sublaminate. From the classical

theory of laminates [59], these properties can be readily obtained as:

1

E
(φ)
x

=
m4

E1
+

n4

E2
+

(
1

G12
− 2

ν12
E1

)

m2n2 (A.2a)

1

E
(φ)
y

=
n4

E1
+

m4

E2
+

(
1

G12
− 2

ν12
E1

)

m2n2 (A.2b)

ν
(φ)
xy

E
(φ)
x

=
ν12
E1

−
(
1 + 2ν12

E1
+

1

E2
− 1

G12

)

m2n2 (A.2c)

where m = cos(φ) and n = sin(φ), and φ is the angle between the laminate x−axis and the fiber direction

of
[

φnφ
2

]

-sublaminate, as Figure A.1b illustrates. The rest of the parameters involved in Equations A.1 and

A.2 are defined in Table A.3. For cross-ply laminates, as the laminate type considered in Section 5, φ = 0◦,

thus the laminate and sublaminate global axes {x, y, z} coincide with ply local axes {1, 2, 3}. In this particular

case, the following identities hold:

E(0)
x = E1; E(0)

y = E2; ν(0)xy = ν12; G(0)
xy = G12; G(0)

xz = G12

The undamaged longitudinal Young’s modulus of the overall laminate, Ex,0, can be obtained as Ex,0 =

1
a∗

11
, where a∗11 is the (1, 1)th element of a∗, the normalized compliance matrix of the laminate. The matrix

a∗ can be obtained as the inverse of the normalized laminate stiffness matrix A∗, i.e., a∗ = (A∗)−1. For the

laminate type considered in this work, the stiffness matrix A∗ can be readily calculated using the rule of

mixtures as A∗ =
tφ
h
Q̄(φ) + t90

h
Q̄(90), where Q̄(α), α = {φ, 90} is the corresponding stiffness matrix of the

outer
[

φnφ
2

]

-sublaminates and 90-sublaminate, respectively, defined as:

Q̄(α) =








Q̄11 Q̄12 Q̄16

Q̄21 Q̄22 Q̄62

Q̄61 Q̄62 Q̄66








(A.3)

The elements of this matrix can be obtained as a function of the corresponding sublaminate angle α as:
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Q̄22
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Q̄66
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=

















U1 U2 U3 0 0

U1 −U2 U3 0 0

U4 0 −U3 0 0

U5 0 −U3 0 0

0 0 0 1
2U2 U3

0 0 0 1
2U2 −U3

















·














1

cos(2α)

cos(4α)

sin(2α)

sin(4α)














(A.4)

where Ui, i = 1, . . . , 5 are invariants of the ply, whose values are defined regardless of the ply orientation as
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a function of the components of the on-axis ply stiffness matrix, as follows:

U1 =
3

8
Q11 +

3

8
Q22 +

1

4
Q12 +

1

2
Q66 (A.5a)

U2 =
1

2
Q11 −

1

2
Q22 (A.5b)

U3 =
1

8
Q11 +

1

8
Q22 −

1

4
Q12 −

1

2
Q66 (A.5c)

U4 =
1

8
Q11 +

1

8
Q22 +

3

4
Q12 −

1

2
Q66 (A.5d)

U5 =
1

8
Q11 +

1

8
Q22 −

1

4
Q12 +

1

2
Q66 (A.5e)

where

Q11 =
E1

1− ν212
E2

E1

, Q22 =
E2

1− ν212
E2

E1

, Q12 = ν12Q22, Q66 = G12 (A.6)
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Figure A.1: Panel a): Schematic view of a FRP composite laminate with stacking sequence given by [φo
1/φ

o
2/φ

o
3]S . Panel

b): Illustration of one of the plies with indication of ply and laminate directions. Panel c): Illustration of microscopic damage

for a

[

φnφ
2

/90n90/φnφ
2

]

laminate (as the laminate used in the case study) along with basic geometrical parameters.

Matrix-crack evolution model
ρn = g1(ρn−1,un,θn) + v1,n

Stiffness loss model
Dn = g2(ρn,un,θn) + v2,n

Artificial dynamics
θn = θn−1 + ξn

State transition equation
p(zn|zn−1)

Updated damage state
p(z0:n|y0:n)

Likelihood function
p(yn|zn)

ℓ−step ahead predicted state
p(zn+ℓ|y0:n)

(Eq. 28)

ℓ−step ahead reliability
Rn+ℓ|n = P (zn+ℓ ∈ U|y0:n)

(Eq. 31)

Remaining useful life (RUL)
P (RULn 6 ℓ|y0:n)

(Eq. 39)
SHM Data

y0:n = {y0,y1, . . . ,yn}

Filtering Prognostics

Figure A.2: Conceptual scheme for prognostics based on time-dependent reliability. Every time new data are collected, the
damage state is updated and further propagated forward in time whereby the time-dependent reliability is predicted. As
by-product, a estimation of RUL is obtained.
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Figure A.3: Illustrative example of the proposed framework for prognostics based on time-dependent reliability. Top panel: sam-
ples of z-states along with their idealized sample trajectories against time steps {n− 1, n, . . . , n+ ℓ}, where n is the last time
when data become available. The horizontal line represents the boundary between the useful domain U and its complementary
region Ū . Bottom panel: predicted reliability from time n. Observe the correspondence between the predicted reliability Rn+ℓ|n

and the P (RULn 6 ℓ|y0:n), as shown in Eq. 39.
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Figure A.4: Fatigue experiment for a T700G CFRP [02/904]s laminate. Shown in the left is the in situ set-up of the specimen
on the testing machine. Observe the SHM system based on PZT sensors (SMART Layer® from Acellent Technologies Inc),
which are placed on top and bottom of the specimen. The right panel shows a X-ray image of the specimen after 100 fatigue
cycles. The bright white areas denote delaminated interfaces whereas the horizontal white lines are matrix cracks.
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Figure A.5: Sequential state estimation for matrix micro-cracks density (# cracks/mm) and normalized effective stiffness (di-
mensionless) up to a certain cycle n, where n = 1 × 104 (a & b), 4 × 104 (c & d) and 8 × 104 (e & f). The multi-step ahead
predicted damage states are represented using dashed gray lines for the 5% − 95% probability bands and solid gray lines for
the 25%− 75% probability bands.
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Figure A.6: Trace of the mean values of model parameters θ against cycles. Dashed lines represent the 25% − 75% (darker
color) and 5%− 95% probability bands, respectively.
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Figure A.7: Plot of reliability updating and time-dependent prediction at selected cycles n, where n = {0.1, 1, 3, 5, 7, 9} × 104

for panels (a) to (f), respectively. The gray circles represent the updated reliability values up to cycle n, whereas the solid
curves correspond to the reliability prediction for upcoming fatigue cycles.
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Figure A.8: RUL estimation vs. fatigue cycles obtained from the proposed reliability based prognostics approach. Observe that
the uncertainty in RUL prediction (represented by interquartile bars) decreases as long as new data become available.
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Fatigue cycles, n 101 102 103 104 2·104 3·104 4·104 5·104 6·104 7·104 8·104 9·104 105

ρn [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5
Dn 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885 0.880

Table A.1: Experimental sequence of damage for the cross-ply [02/904]s Torayca T700 CFRP laminate used in the case
study. The data are presented for micro-cracks density (ρn) and normalized effective stiffness (Dn).

Type Parameter Nominal value Units Prior PDF

Mechanical E1 (θ1) 127.55 · 109 Pa LN (ln(127.55 · 109), 0.1)
E2 (θ2) 8.41 · 109 Pa LN (ln(8.41 · 109), 0.1)
t (θ3) 1.5 · 10−4 m LN (ln(1.5 · 10−4), 0.1)

G12 6.20 · 109 Pa Not applicable

ν12 0.31 – Not applicable

G23 2.82 · 109 Pa Not applicable

Fitting α (θ4) 1.80 – LN (ln(1.80), 0.2)

A 1 · 10−4 – Not applicable

Errors σv1
(θ5) – # cracks

m·cycle
U(0.5, 8)

σv2 (θ6) – – U(0.001, 0.02)

Table A.2: Nominal values and prior uncertainty of model parameters used in calculations. The rest of parameters in damage
mechanics models (Eq. 1 to 6) are obtained using the classical laminate theory [60] and the relations given in Appendix A. The
nominal values for fitting parameters have been defined through initial fitting tests.

Laminate

Ex Longitudinal Young’s modulus tφ [φnφ
2
]-sublaminate thickness

E∗
x Effective long. Young’s modulus t Ply thickness

h Laminate half-thickness

Sublaminate Ply

E
(φ)
x Longitudinal Young’s modulus E1 Longitudinal Young’s modulus

E
(φ)
y Transverse Young’s modulus E2 Transverse Young’s modulus

ν
(φ)
xy In-plane Poisson ratio ν12 In-plane Poisson ratio

G
(φ)
xy In-plane shear modulus ν23 Out-of-plane Poisson ratio

G
(φ)
xz Out-of-plane shear modulus G12 In-plane shear modulus

t90 [90n90 ]-sublaminate half-thickness G23 Out-of-plane shear modulus

Table A.3: Nomenclature table. Nominal values of main ply and geometry parameters are provided in Table A.2.
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