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Abstract

As a response to the rampant increase in research activity within reliability in the past
few decades, and to the lack of a conclusive framework for composite applications, this
article attempts to identify the most relevant reliability topics to composite materials and
provide a selective review. Available reliability assessment methods are briefly explained,
referenced and compared within an unified formulation. Recent developments to confer
efficiency in computing reliability in large composite structures are also highlighted. Finally,
some general conclusions are derived along with an overview of future directions of research
within reliability of composite materials and their influence on design and optimization.
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1. Introduction

The need to incorporate uncertainties in engineering design has long been recognized.
In contrast to the traditional approach of using safety coefficients, the probabilistic design
allows the estimation of reliability by considering the stochastic variability of the data for
which designs are qualified to have a given reliability value [1]. The performance is generally
evaluated by means of a variable such as the displacement of a point, the maximum stress,
etc., or by a set of them. Variability in the performance of composite materials arises mainly
from the variability in constituent properties, fibre distribution, structural geometry, loading
conditions and also manufacturing process. As an orthotropic material, this variability can
lead to a catastrophic failure mainly when inaccuracy arises in loading direction or fiber
orientation, while the traditional approach of safety factors could result in a costly and
unnecessary conservatism [2], which is a serious drawback for making composites competitive
and sustainable.

In the recent decades, a large number of articles have been reported to cover probabilistic
failure and reliability in composites. The first contributions were in the form of probabilistic
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strength over aircraft applications [3, 4]. Shortly later, the β-method by Hasofer Lind [5] was
applied to laminated plates [6]. Wetherhold and Ucci [7] evaluated reliability methods used
in composites through an example and Soares [8] made an overview and gave a perspective
about deriving reliability from ply to laminate level.

However, due to the inherent variability in the material behavior, reliability in composites
requires that several decisions are adopted. The reasons for that are multiple: 1) there are a
wide range of possibles failure functions to adopt, 2) numerous influencing random variables
need being incorporated, 3) several reliability methods arise and 4) there are different ways
to consider reliability for a laminate, as shown in Figure 1.

According to Soares [8], several results have been reported, but unfortunately, a lack
of consensual framework is observed in literature for the use of methods, failure criteria,
statistical description of mechanical variables and even for conclusions. These, together
with new trends to confer efficiency in reliability calculation require the need for a thorough
and up-to-date review of the literature in this area.

Hence, as a first step to provide a basis for a discussion about this claim, the present paper
reviews some fundamental concepts of reliability from an orthotropic material perspective.
This work highlights the results where connections between reliability and failure criteria in
composites are most striking. It also gives a concise background of reliability methods with
special emphasis to those that already have a fruitful impact on composite applications, and
identify results which evaluate the influence of such variability in methodology. Section 3
gives a set of examples where ideas of reliability in composite laminates have demonstrated
advantages for laminate design and optimization, and identifies areas of particular potential
for further development. In Section 4, some basic notions of techniques to confer computa-
tional efficiency are recalled. It is also shown how they provide a framework for reliability
assessment of large structural composites systems. Section 5 briefly concludes.

In Table 1, additional information related to the decision topics is provided, that helps
to derive a perspective of reliability in composites.

This work is not only focused on reliability procedures but also in reliability based design
and safety factor calibration, which are topics where reliability calculation is crucial.

Throughout the paper, methods and techniques to assess reliability from literature are
expressed within an unified formulation which helps this review to be read with independence
of the references.

2. Reliability formulation. Ply level

The essence of the structural reliability problem is the probability integral:

Pf =

∫

X|g(X)≤0

fX(X)d(X) (1)

where X = {x1, . . . , xn}
T is a vector of random variables that represent uncertain quantities

influencing the state of the structure, fX(X) is the probability density function (PDF) and
g(X) ≤ 0 denotes a subset of the outcome space where failure occurs [9].
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For a mathematical analysis, is necessary to describe the failure domain g(X) ≤ 0 in an
analytical form, which is widely named as limit state function (LSF). The next section 2.1
is dedicated to expose different formulations of the LSF used for reliability in composites.
Methods of resolving the integral in Equation 1 will be commented in section 2.2.

Both mentioned topics about Equation 1, together with the discussion about what to
consider as random variables, cover almost all of the literature discussion on composites
reliability.

2.1. Concept of failure

Failure criteria used in probabilistic analysis are the same as used in a deterministic
approach, so the accuracy of reliability analysis is critically dependent on an appropriate
criterion for the study conditions. Composite materials display a wide variety of failure
mechanisms as a result of their complex structure and manufacturing processes. So, in
literature, a wide spread of possibilities for LSF have been developed, all apparently valid
depending on each specific problem [10–12]. Recently, a comprehensive review of failure
theories is given by Orifici et al. [13], in which a concise way to classify them is also proposed
according to whether they are based on strength or fracture mechanics theories, whether they
predict failure in a general sense or are specific to a particular failure mode and whether they
focus on in-plane or inter-laminar failure. Following this classification, the in-plane general
strength failure criteria ranges almost all the literature in reliability, although important
contributions have also been derived in composites reliability based on other LSF like damage
based criteria [14], crack initiation over pipe surfaces [15, 16] and buckling failure [2, 17].

In relation to the scale level, although recent advances in multiscale failure have been
reported [18, 19], the body of reliability literature takes a mesoscale or macroscopic ap-
proach to the failure as the phenomenological model to analytically describe the reliability
of composites.

An interesting approach which seems to be a first step to multiscale reliability evaluation
of composites have been recently reported [20]. In these study, a micro and macro-scale
evaluations of the Tsai-Hill LSF are critically compared in a reliability framework showing
good agreement and conclude that reliability analysis starting from micro level would help
benchmarking corresponding macro-level analyses.

In reliability literature, due to the complexity of the failure concept, a step by step
approximation to the subject is observed, from uniaxial tension reliability [4, 21] to a more
general multiaxial case in recent years.

In the latter multiaxial case, two main approaches have been proposed: the interactive
and non-interactive, depending on the stress working or not collectively towards the failure
of the element [22].

The non-interactive case considers reliability at each stress direction independently [22]
or exclusively the most stressed direction [23, 24], in conjunction to Max Stress, Max Strain
or Max Work criteria as LSF. This approach has not been extensively used in reliability due
to its well-known insecure position for certain stress combinations [25].

Among the interactive failure criteria, Quadratic Failure Criteria, are the most used in
reliability mainly because a mature knowledge has been achieved in considering quadratic
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functions as LSF for reliability [26]. This criteria takes into account the interactions between
different stress components. The LSF for the Quadratic Failure Criteria in the component
orientation for one ply is expressed by:

g(X) = 1− (Fijσiσj + Fiσi) 6 0 (2)

where Fij = Fij(X), Fi = Fi(X) are the strength parameters, σi = σi(X) the stress in
the tensor component i, with i, j = 1, 2, 6 the stress or strain tensor components [25]; and
X = {x1, . . . , xn}

T the random variables written in matricial notation.
Particularly, the quadratic Tsai’s criterion has been fairly used in literature motivated

by being one of the existing mature theories [27–29]. The main contributions in reliability
have used the Tsai’s criterion, although not exclusively, as shown in Table 1.

Under such variability of failure criteria to define the LSF, certain authors [7, 23, 30–32]
declined to probe with several possibles and compare to experimental or reference reliability
data when available. In Nakayasu and Maekawa [33] a quantitative trade-off for six different
failure criteria from the viewpoint of reliability-oriented design of composite materials was
carried out. This work yielded an important conclusion about the need to verify the criterion
suitability under specific load combinations, which also agrees with Lin [34].

2.2. Reliability methods used in composites

Methods used in literature for computation of the probability integral in Equation 1, are
reviewed in subsequence chapters. To avoid duplication in the current review but conferring
a sufficient conceptual framework, the methods have been presented in a concise way.

2.2.1. Fast probability integration methods (FPI)

FPI methods rely on approximating the failure surface by a predetermined geometric
form for which evaluation of the integral is practical [9].

A most probable point (MPP) is searched during the evaluation, over which the failure
surface is approximated by such geometric form. The distance between the origin and the
MPP corresponds to the radius β of a n-sphere beside the failure domain and tangent with it,
in the MPP. In literature, this β value is called as Reliability Index and means the distance
from MPP to the origin in units of standard deviation, as shown in Figure 2.

In FPI methods, first order reliability methods (FORM) and second order reliability
methods (SORM) are included.

First order reliability methods. The well known technique FORM uses a linear approxima-
tion of the LSF in the vicinity of the design point to evaluate the β index [5].

This method requires standard normal non-correlated variables, so the vector of random
variables X must be transformed into standard non-correlated variables vector U taking,

U = φ−1(FX(X)) (3)

where FX(X) and φ−1 are the cumulative distribution function and the inverse of the stan-
dard cumulative distribution function for the vector of normal variables X, respectively.
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The reliability index β is then calculated by:

β = min(U ·UT )
1

2 (4)

which represents an Euclidean distance between the origin and the failure function g(U), in
the non-correlated normal standard space U , as shown in Figure 2.

If any correlation exists in the random variables, a Cholesky decomposition of the covari-
ance matrix may be used to transform from the real space to the non-correlated standard
space [35]. In case of non normal variables, Rackwitz-Fiessler Method [26] can be employed.
In case of correlated and non-normal variables, the Rosenblatt transformation is recommend
[36, 37].

The value of the density function integrated over the hyper volume is found to be equal
to the standard normal integral (distribution function) at β, and so, the reliability R can be
expressed as,

R = φ(β) (5)

while the probability of failure is the complement,

Pf = 1−R = 1− φ(β) = φ(−β) (6)

Second order reliability methods. To improve the approximation of the failure surface beyond
the level employed in FORM, additional information about the failure surface is required [9].
The SORM use the β value in conjunction with the second derivatives of g(X) at MPP. The
method is based on a general quadratic expansion by expanding the failure surface g(X),
into a second order Taylor series about the MPP. Since the curvatures may have positive,
negative and zero values; parabolic, elliptic, or hyperbolic forms may result.

These methodology requires complicated integrations that restrict the applicability in
the study of reliability [38]. Two simpler forms are extensively used in literature for the
quadratic approximation that are relatively simple for use: the rotational paraboloid and
non-central hyphersphere forms based on a predetermined axis [26].

Since only one curvature is used with the predetermined forms, a method for determining
that one curvature must be selected. For conservatism, the largest positive curvature κ it is
used, and hence the smallest radius of curvature since r = 1/κ.

The rotational paraboloid approximation gives,

Pf =

∫ ∞

0

φ

[

β −
t

2r

]

fχ2

n−1

(t)dt (7)

where fχ2

n−1

is the chi-square density function with n degrees of freedom.
Analogously, the non-central hypersphere approximation gives,

Pf = 1− χ2
n,δ(r

2) (8)

where χ2
n,δ(r

2) is the non-central Chi-Squared distribution with non-centrality parameter

δ = [r − β]2.
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2.2.2. Monte Carlo methods (MCM)

Monte Carlo method is a very simple and accurate approach mainly used as reference or
exact method [9, 39, 40].

Given the joint probability density function fX(X) of X, then the failure probability in
Equation 1 can be alternatively written as,

Pf =

∫

X|g(X)≤0

fX(X)d(X) =

∫

X

I [g(X)] fX(X)d(X) (9)

where I [g(X)] is an indicative function defined by:

I[g(X)] =

{
1 if g(X) ≤ 0
0 if g(X) > 0

(10)

Using the indicative function, it is possible to evaluate the probability integral in Equa-
tion 1 over the whole domain and not only over the failure domain. This probability integral
in Equation 9 can be viewed as a mathematical expectation of I [g(X)] with X distributed as
fX(X), and this perspective leads to the direct Monte Carlo method, where Pf is estimated
as a sample average of I [g(X)] over independent and identically distributed samples of X
drawn from the PDF fX(X), as follows:

Pf = E
[
I[g(Xj)]

]
≃

1

ns

ns∑

j=1

I
[
g(Xj)

]
(11)

where ns is the number of simulations, Xj the vector of random variables of the jth sample.
The error of this method is only dependent on ns and so it is extremely robust with respect
to applications. The term

∑j
ns

I [g(Xj)] represents the sum of the number of simulations
(nf ) in the failure domain, and so Equation 11 may be also be written as,

Pf ≃
nf

ns

(12)

This method has a serious drawback in cases of small failure probabilities, by the fact
that the total number of required simulations increases drastically. Hence, attention has
been focused on developing more efficient simulation methods.

For the structural reliability problem, the most promising technique appears to be the
importance sampling method (MC-IS) [41]. This method reduces the variance of the estimate
by sampling more frequently from inside the failure domain.

Following the same concept of failure probability as a mathematical expectation, Equa-
tion 9 may be also written as follows:

Pf =

∫

X|g(X)≤0

fX(X)d(X) =

∫

X

I[g(X)]fX(X)

h(X)
︸ ︷︷ ︸

H(X)

h(X)d(X) = E
[
H(Xj)

]

(13)
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where H(X) is called the importance sampling quotient and Xj distributed as h(X). h can
be selected to shift and spread the simulations close to the failure domain. h is assumed to
be appropriately chosen such that H has finite variance under h.

2.2.3. Analytical methods

In order to confer more simplicity in reliability calculations, some analytical approaches
have appeared for composites applications. Only few of this approaches have been suc-
cessfully developed, and in their range of application, they have been demonstrated good
agreement as compared to MCM, taken as a reference.

Edgeworth expansion method (EDW) and Pearson’s empirical distribution (PRS). In Philip-
pidis and Lekou [42] two analytical approaches, namely a functional expansion technique
and the introduction of Pearson’s semi-empirical distribution function, were developed for
off-axis UD FRP composites for the general plane stress. In that work, only strength pa-
rameters were considered as random variables, each following a Weibull distribution.

The quadratic version of the failure tensor polynomial in the principal material coordinate
system under plane stress conditions, was considered as follows:

g(X) = 1− (Fijσiσj + Fiσi) (14)

with X = XT the strength random variables, Fij = Fij(X
T ), Fi = Fi(X

T ) the strength
parameters [25] for one ply and

σi stress tensor components, considered as deterministic values.
The purpose of this two analytical approaches, was to determine the CDF (Fg) of the

failure condition g(X), by which the failure probability P (g 6 0) can be obtained.
The EDW, that was previously introduced in off-axis composites for the case of uniaxial

tension [43, 44], was used to predict the cumulative probability of complex systems in terms
of individual component moments [45]. The failure function in Equation 14, was expanded
in a multivariable Taylor series in term of central moments of the random variable, g. This
is given by:

F (g) = Φ(g)−
1

3!

µ3

µ
3/2
2

Φ3(g) +
1

4!

µ4

µ2
2

Φ4(g) +
10

6!

µ3

µ
3/2
2

Φ6(g) + . . . (15)

where µk are the central k-moments of the LSF g and Φn(g) is the nth derivate of the normal
CDF Φ(g).

This method was further developed for the case of a laminate in a plane stress state
considering the strength properties as stochastic variables [46], and in a more recently work
[47] by considering the elastic and thermal properties as random too. In the latter work,
it was demonstrated over wind turbine blades, that the stochastic nature of the material
elastic properties drastically affects the failure locus, whereas, on the contrary, the effect
of the material thermal properties is minimal within the temperature range met during
operation of wind turbine rotor blades.

7



In PRS method, the unknown CDF of the failure condition is alternatively fitted by
empirical statistical distributions once the central moments of g are calculated. As an ex-
ample in Philippidis and Lekou [42], the group of distribution families proposed by Pearson,
called as Pearson Families generated as a solution to the differential Equation 16 [48], were
considered by proper choice of the parameters λ and bi (i = 0, 1, 2).

df(g)

dg
=

(g − λ)

b0 + b1g + b2g2
f(g) (16)

The Pearson distribution families include the Normal, Beta (Pearson Type I), and
Gamma Distribution (Pearson Type III). From Equation 16, after some detailed algebraic
manipulations, the constant parameters can be expressed in terms of the central moments
of the distribution function.

By using the coordinate transformation k = g − λ, Equation 16 reads:

df(g)

dk
=

k

B0 +B1k +B2k2
f(g) (17)

where Bi are certain algebraic linear combinations of bi and λ for simplicity.
If the roots of the polynomial in the denominator of Equation 17 are real and of the

opposite sign, the distribution f(g) reduces to Beta distribution B(p, q), whit parameters
p, q found by equating the Pearson distribution’s moments with that of the failure function.

Finally, for evaluating the cumulative distribution function by which can be derived the
failure probability, was used the next expression:

1

B(p, q)

∫ z

0

zp−1(1− z)q−1dz (18)

with (p, q > 0, 0 ≤ z ≤ 1) and z as a algebraic function of roots of the polynomial in the
denominator of Equation 17.

In this work, several comparisons between analytical EDW, PRS, MCM and a semi-
determinisitic failure analyses, were made considering different fibre angle and assumptions
for the Tsai-Wu failure domain. The results obtained with the analytical approaches were
shown to be in excellent agreement with experimental or Monte Carlo data.

Generalization of LSF. Another relevant result in analytical methods for reliability in com-
posites comes from Gurvich and Pipes [49]. A new approach considering the LSF in the form
of a random linear function of products of applied random stresses is presented, in stead
of the traditional consideration of the LSF as a random non-linear function of the stresses
(see Equation 2). This approach allows to obtain exact evaluation of the main statistical
parameters (moments) of the LSF considered as a random function. The starting point is
the consideration of a deterministic 3-D framework of the LSF in a more general formulation
as follows,
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g(X) = 1−

(
∏

ij

σij +
∏

ijkl

σijσkl + . . .

)

i, j, k, . . . = x, y, z, . . . ;

(19)

where X =
(
∏

ij,
∏

ijkl, σij, σijkl

)

; with
∏

ij,
∏

ijkl,. . . the strength tensors and σij, σijkl,. . . ,

the tensor of the applied stress state.
The following matrix columns were introduced by the rules,

[st] = [s1, s2, . . . , sn] = [σij, σijσkl . . . ]

[ρt] = [ρ1, ρ2, . . . , ρn] =

[
∏

ij

,
∏

ijkl

. . .

]

(20)

where sm are components characterizing all necessary combinations of the stresses in in-
creasing order, ρm are the strength characteristics and n is the number of elements in the
matrices.

Thus, Equation 19 may be presented as,

g(X) = 1−

(
n∑

m=1

ρmsm

)

(21)

which is useful in a probabilistic framework, since this allows one to consider g as a linear
function of random parameters of the problem as follows:

g = 1− [p̃t] [̃s] = 1−

(
n∑

m=1

p̃ms̃m

)

(22)

In this formulation, the randommatrices [s̃], [p̃] may be determined by the mean matrices-
column [s̄], [p̄] and the correlation matrices [Ks], [Kρ], respectively; all of them considered
as initial data.

Therefore, basic statistical characteristics of g, such the first two moments: µ1 and µ2,
can be obtained as,

µ1 = 1−

(
n∑

m=1

p̄ms̄m

)

(23)

µ2 =
n∑

m′=1

n∑

m′′=1

{Ksm′,m′′ p̄m′ p̄m′′ +Kpm′,m′′ s̄m′ s̄m′′ +Ksm′,m′′Kpm′,m′′} (24)

where Ksm′,m′′ , Kpm′,m′′ are the correlations between random variables sm′ , sm′′ and pm′ , pm′′

respectively; with (m′,m′′ = 1, . . . , n).
The possibility of considering all possible correlations between random variables is an

important advantage of this method [49]. Finally, reliability R was proposed to be calculated
as a probability of the condition g(X) 6 0,
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R = P{g 6 0} =

∫ 0

−∞

fg(g)dg (25)

where fg is the probability density function of g. The only assumption of this approach is
connected with a type of distribution g: Normal, Weibull, Gamma Function, etc. In all of
the remaining methods cited above, reliability calculation requires an assumption regarding
the type of the distributions for strength and/or stress, whereas Gurvich’s method requires
those in the type of distribution g. An interesting discussion between this analytical method
in relation to the others is done at the end of Gurvich’s work.

2.2.4. Numerical methods

In a numerical scheme, particularly in the context of finite element modeling, the stochas-
tic finite element modeling (SFEM) are receiving special attention for reliability, due to the
technological advances in the available computational power [50]. SFEM involves finite ele-
ments whose properties are random. These new advances have been carried out in an effort
to generate statistics from a response vector for each node [51, 52].

There are three main variants of SFEM in the literature: a) the perturbation approach
[53] which is based on a Taylor series expansion of the response vector, b) the spectral
stochastic finite element method (SSFEM) [54] where each response quantity is represented
using a series of random Hermite polynomials and c) Monte Carlo simulations (MCS) [55–57]
based on independent sampling of the response vector.

In composites applications, Lin [34] used the stochastic finite element method (SFEM)
to predict the reliability of angle-ply laminates with different types of buckling failure modes
subject to in-plane edge random loads. This author also provides a comparison of different
reliability methods and different failure criteria using (SFEM) to derive for the statistics
of the First-Ply-Failure (FPF) load by mean-centered second-order perturbation technique.
The results were compared with experimental FPF load data of centrally loaded composite
plates with different lamination arrangements to study the accuracy of the methods.

Onkar et al. [32] used SFEM by the first order perturbation techniques and studied the
form to generate statistics for the failure load index using Tsai-Wu and Hoffman as failure
criterion in orthotropic plates with random material properties and random loads. In this
case, the results were compared with analytical solutions.

Ngah and Young [1] demonstrated an application of SSFEM in a composite panel subject
to random loads and constitutive properties. Covariance and probability density functions
were derived for different approximation schemes. A comparative study of accuracy and
computationally effort of SSFEM versus MCS, was also presented.

Recently, Noh [58] propose a formulation of SFEM based on perturbation techniques to
determine the response variability in laminate composite plates considering the randomness
of material parameters and different correlation states between them. In a more recent work
[59] the SFEM formulation is derived by accounting the spatial randomness of Poisson’s
ratio [60] for laminated composite plates. Both works, and particularly this latter proposal,
confer efficient ways to obtain the response variability by which to derive the probabilistic
failure of composites.
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2.2.5. Comparison between reliability methods

Due to the wide range of reliability approaches and the lack of results coincidence when
they are applied to composites, several authors have declined to contrast different well
accepted reliability methods to a specific composite application or to check one proposed
method to a experimental data. All examples encountered in literature, use at least MCM
as a reference.

In Ucci [38] the FPI methods and MCM was presented, and a comparison between them
was done considering both Tsai-Wu and Tsai-Hill as failure criteria in different loading levels
and ply angles. A sensitivity study was done to evaluate the influence of each stochastic
variable in the reliability calculation.

The comparisons were performed over three main fields: accuracy, conservatism and
computational speed.

For accuracy, FPI was observed to derive satisfactory accuracy in cases of low stresses
and moderate fibre angle (it is pointed out the interval 30◦ − 40◦), when preferably using
Tsai-Wu as failure criteria. In extremely low or high orientation angles, near 0◦ and 90◦,
planar FPI were seem to be quite accurate.

When studied the conservatism, the report concluded the need to consider the curvature
in the MPP. Particularly, for planar FPI, independently of the accuracy, the conservatism
would be depend upon the curvature is safe or unsafe.

In computational speed, this work does not give substantial conclusions as compared to
others [61] cited in section 4. However, an interesting result about computational cost as
compared to MCM was implicitly derived through reduction of variables to be sampled in
MC-IS by a sensitivity analyses, by the fact that depending on each specific case, the bulk
of the reliability value depends upon several localized stochastic variables.

That conclusion was later explicitly pointed out by Di Sciuva and Lomario [2], who
compared FORM methods with MCM and explicitly pointed out for Directional Cosines,
using important factors, as an efficient method to reduce the stochastic variables to be
sampled in MCM without significant less of accuracy. In this work, a laminated composite
flat plate loaded by compressive distributed forces acting in its mid-plane was studied, with
the LSF defined analytically for buckling load.

The results showed acceptable level of accuracy when FORM methods were used in this
specific case, in which the buckling LSF fits well to linear. Directional Cosines were pointed
out to be efficient for this calculation.

In Lin [34] three different methods, MCM, FORM and first-order second moment method,
were used to calculate the reliability and compared to experimental FPF of centrally loaded
laminated composite plates with different lay-ups.

In the first-order second moment method, the SFEM was used to derive for the statistics
of the FPF load from those of the baseline random variables. The LSF and baseline for load
values, were also took as variables for comparison. As conclusion, this work also pointed out
to FORM together with Tsai-Wu for obtaining reasonably good result. However according
to [7], this conclusion may be erroneous with different tensional ranges and fiber orientations
than used for the study.
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In [47] the EDW previously introduced by Philippidis [42], was compared to MCM and
FORM with Tsai-Hahn as failure function for FPF noting that the EDW estimation overrate
the structural load carrying capacity of the laminated plate.

3. Reliability and design of composites laminates

Since a laminate can be viewed as a mechanical set of plies, whole laminate reliability
may consider systems reliability.

An accurate evaluation of laminate reliability is essential almost all in those areas where
reliability determines the final composite design, like reliability based design and safety
factor calibration, which are designing tools fully used in research and industry.

3.1. Laminate reliability

In composites, Soares [8] presented an overview of methods used for laminates and
pointed out two main approaches: the bounding and system reliability formulation [22].
The former establishes an interval in which relies the actual reliability, while in system
reliability is considered the progressive failure process. The vast majority of authors use
bounding formulation for laminate failure consideration in reliability subject. Most of them,
for simplification in a safe position, propose lower bound reliability with FPF as LSF, which
implies the ply considered as failure unit. For this reason and to provide a basis for a dis-
cussion about this claim, its timely to consider the subject again in the form of fundamental
concepts.

3.1.1. Bounding formulation

The starting point for such bounding formulation is the definition of the unit of failure
as the unit statistically homogeneous for the failure. Two such units have been proposed:
the ply units and modal units [22]. The first one assumes that individual plies are the failure
units while the modal failure units allow the recognition of three potential modes of failure
within each ply: longitudinal, transverse and shear; resulting in 3n failure units for an n-
ply laminate. Obviously that last failure unit implies non interaction between longitudinal,
transverse and shear effects which assumes non-interactive failure, exposed in Section 2.1.

The upper bound reliability limit, considers that ultimate failure of the laminate will
not occur until every individual unit had failed. Thus, the probability of failure for the
laminate is given by the product of probabilities of failure for the individual units. In terms
of reliabilities, this gives the following expressions:

RUply = 1−
n∏

i=1

(1−Ri) Non-Interactive (26a)

RUmodal = 1−
n∏

i=1

∏

j=1,2,6

Rij Interactive (26b)

where Ri is the reliability of ith ply, and Rij is the reliability of the jth mode of layer i.
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As lower bound reliability, a series system formulation is proposed, so that the failure of
the whole laminate is subject to the failure of the weakest unit. In reliability terms,

RLply =
n∏

i=1

Ri Non-Interactive (27a)

RLmodal =
n∏

i=1

∏

j=1,2,6

Rij Interactive (27b)

whit the same meaning for Ri and Rij as described above.
The most representative works that belong to bounding approach are cited by Soares [8]

review. Those up to Soares [8] are nextly introduced in which interesting conclusions about
composites design are also highlighted.

Kam and Chang [31] used experimental distributions of FPF load for validation of differ-
ent types of baselines probability density functions on the bounding failure probability over
centrally loaded graphite-epoxy laminated composite plates with different lamination ar-
rangements. The failure data were compared with those obtained analytically with a F.E.A
for stress calculations, in both interactive and non interactive failure criteria. Results showed
that, in general, differences between the experimental and theory are small (less than 12%)
irrespective to the types of probability distributions used for modeling the lamina strength
parameters and FPF load.

More recently, Frangopol and Recek [62] presented a benchmark study of laminate fail-
ure probability by MCM considering random loads with Tsai-Wu as failure criterion. Two
main cases were studied: uniaxial loaded single-layer laminate plate of graphite/epoxy and
two layers laminate plate of glass epoxy, each one subjected to uniaxial and biaxial ten-
sion. In such two cases, the material strength parameters were considered as deterministic,
and stresses as lognormal distributed random variables since no information on the type of
distribution for principal stresses was available for this study.

As a first conclusion of these work, the importance of the mean value of the principal
stress, specially in tension-tension case, was shown and the low influence of coefficient of
correlation between principal stresses on the probability of failure, was also highlighted.

Another important conclusion was pointed out about the effects on reliability of addi-
tional layers in a composite laminate. In presence of new layers, the plate does not necessarily
increases the reliability but it’s depends on the fibre orientation and its thickness ratios. The
special case of two orthogonal layers was studied, showing that the weakest more stressed
lamina approximately determines the whole reliability, which implicitly supports the weakest
link hypothesis in this specific case.

Others results encountered up to Soares [8] review also use the bounding approach for
system reliability calculation in composites, particularly FPF [14, 30, 32, 34, 47, 61]; which
are commented in more suitable chapters of this review.
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3.1.2. System reliability formulation

In system reliability formulation, the approach consists in considering the step by step
failure process of the laminate. The bounding formulation just described, does not attempt
to represent the whole collapse process of the laminate. Indeed, such approach establishes
an interval in which relies the desired reliability value. Although an attempt to precisely
describe probabilistic failure of a laminate would be really impacting and necessary, the
methodology of system reliability has been shortly explored in literature.

In Yang and Ma [4] was derived the full quantity loading method for reliability analysis
of a composite structural system with consideration of stiffness degradation process of set
of whole plies.

Gurvich and Pipes [63] also utilized a mesoscale approach for progressive failure of com-
posite laminates with both in plane and bending loads which call attention the search for
computational efficiency by agreeing individual plies into sublaminates as whole units for
the step-by-step failure. This author also made a comparative study contrasted with ex-
perimental data considering step-by-step failure process over weakest link assumption, and
concluded the weakest link assumption lead to lower failure results with increasing the ma-
terial strength scatter.

Wu and Robinson [64] proposed a micromechanical approach in which the laminate is
treated as a mechanical system and accounted local load sharing and sizing effects.

In system reliability, the scale of the approach influences the reliability, so exploring
multiscale probabilistic failure seems to be an interesting way to derive a robust framework
for progressive failure of composites. Recent works about uncertainty quantification at
different scales [18–20] and propagation of uncertainties from micro-to-macroscale [65] in
composites, provide a basis for this claim.

3.2. Reliability based design

Due to the well-known high specific stiffness, strength and corrosion resistance, compos-
ite laminates are often selected for high-responsibility structural applications like aircraft,
automobile, machinery and marine. Nowadays new applications in all-composite bridges
[66], off-shore and civil engineering are emerging [67–69]. In these applications requiring
big amount of composites materials, design optimization plays an important role through
providing tools to rationally select the best over a wide range of choices in enhancing the
structure’s performance [70–73]. Over such named conventional optimization problem, the
probabilistic optimum design is an increasing issue, in which how to obtain the best lam-
inate structure under a reliability constraint or how to get the maximum reliability under
the constraint of structure cost is the key question. This problem is called the Reliability
Based Design Optimization (RBDO) [74], in which an accurate calculation of reliability is
crucial in final composite design, as follows in next equation:

min
X,π

F (µ
X
,π) s.t:

β(X,π) 6 βt

π
l 6 π 6 π

u

(28)
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where βt is the target reliability index, π ∈ R
n is a vector of deterministic design variables

and µ
X

is the realization of the vector of random design variables X ∈ R
m. F (µ

X
,π)

is the function describing the structural performance, which is usually considered a struc-
tural weight or cost function; although some recent works have also considered others like
frequency response [75], structural efficiency [76] or even statistical robustness [77].

The first efforts to apply RBDO in laminate design, derived results that clearly remark
the difference between deterministic and probabilistic designs [21, 78].

An open question remains about which random variables X to be considered into the
optimization problem, specifically those in relation to laminate design like fiber orientation,
ply ratios, laminate arrangement, etc. In Eamon and Rais-Rohani [79], a probabilistic
sensitivity analysis was derived to determine the influence of uncertainty in each candidate
variable on β. Other related works have declined to include these variables as uncertain
parameters into the optimization problem [14, 80]. In Miki et al. [81], a simultaneous
optimization of fiber angles and ply ratios was corroborated, which concords with Frangopol
and Recek [62]. The cross-ply configuration was pointed out to be optimal or near optimal
for the case where does not exist uncertainty in shear stress.

The above cited works consider the formulation of the reliability-based optimum under
a hard constraint, in the sense that constraints are clearly specified and if the solution is
outside the constraint range, even if the deviation is very little, an unacceptable solution
is derived. A recent approach that complements this work is the soft constraint RBDO,
by which fuzzy reliability optimum models are established. This method provides with an
especially useful tool in designing optimum laminated composites, owing to the fact that due
to its complex manufacture process, a laminate can be influenced by many factors including
probabilistic variables and also fuzzy ones [82].

3.3. Reliability based safety factors

Because of possible lack of statistical data from the strength of materials used and the
applied loads, design concepts based on traditionally safety factors have also been studied.
In this approach, the effects E of actions on a structure and the resistance S to these effects,
verify a criterion in the form:

E <
S

γ
(29)

Several authors made a direct comparison between probabilistic and safety factor based
deterministic design [47, 78, 81] where important differences in failure prediction, sometimes
in a insecure position, are highlighted.

One successful approach to minimize that differences leads to obtain safety factor from
probabilistic previous calibration, which is frequently named reliability based safety factor.

Zhu [83] proposed a first approach to reliability based safety factor for aircraft composite
structures and a method was presented to compare such safety factor to those used in
metallic aircraft design.

Boyer et al. [30] presented a method of safety factor calibration from the probabilistic
method to achieve a specific reliability level. In this work, an interesting discussion about
sensitivity of safety factors with stochastic parameters, was also carried out.
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Richard and Perreux [15] utilized the same concept as describe above for safety factor
calibration, but in a damaged elasto-viscoplastic model for composites in a thermodynamic
framework for long term applications over a pipe for fluid transportation.

An extension of this work for strongly non linear behavior caused by damage, was done
by Carbillet et al. [84] who also took into account for possible correlations between the
different variables and spatial variability of material properties for a [0◦, 90◦]S composite
plate, showing up an important effect on safety factor calibration.

4. Computational efficiency

The structural integrity analysis of composite structures based on probabilistic concepts
is a time consuming process unless inaccuracy FPI methods were employed, and the problem
can be exacerbated by the convergence difficulties associated to the non-linearity or complex
non explicit LSF. Other methods employing simulation procedures, such as MCM or MC-IS,
may have a prohibitive computational cost in large structural systems even if the structural
evaluation is accelerated by a vectorized manner, by techniques such as Neumann Series
Expansion [52, 85] or by reducing the stochastic variables to be sampled, as previously
mentioned [2, 7].

In literature, there have been advised two efficient ways to reduce the computational
cost: a) by using new efficient reliability algorithms and b) by reducing the effort of evalu-
ation the LSF. In the former, new reliability algorithms have proved to save great amount
of computation time. Special attention require SUBSET Simulation [86] and 2SMART al-
gorithms [87], which confer large efficiency as compared to crude MCM, overall for small
failure probabilities and high dimension problems [88]. Nowadays they appear integrated
on a OpenSees computational platform called FERUM, as acronym of Finite Element Re-
liability using Matlab® [89], that is a high versatile reliability tool. Unfortunately, these
algorithms have not been sufficiently exploited in composites.

In relation to the second approaches, the Response Surface Method (RSM), and more
recently, Artificial Neuronal Networks (ANN), have also emerged as feasible alternatives.

Evolutionary strategies like Genetic Algorithms (GA) are also computation techniques
fully employed nowadays in reliability although their well-known high computational cost,
which contrasts with the aim of this chapter. However, the existence of multiple design points
MPP in the LSF, especially when linking reliability and optimal design, makes necessary the
employ GA. The next chapters are dedicated to application of this techniques in composites
reliability.

4.1. Response surface methods (RSM)

In Response Surface Methods, the LSF is substituted or sampled to improve the com-
putational effort. The principle consists in the substitution of the real LSF by approximate
simple functions or sampled data, at the neighborhood of the design points where their
contribution to the total failure probability is more important [90]. As a consequence, the
computational cost can be reduced with respect to the cost required when the full LSF is
used or when it is necessary to evaluate the LSF by Finite Element Method (FEM) runs.
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When the LSF is substituted by simple functions, generally by explicit polynomial ex-
pressions, the method is called Polynomial Based Response Surface Method or simply RSM.
Those that the LSF is approximated with training sampling data in contrast to the last one,
are called Artificial Neuronal Network (ANN)-based response surface methods [24].

4.1.1. Polynomial based response surface

In the original conceptual form of the Response Surface technique, polynomials are used
to approximate real LSF. So an important requirement for the LSF is to be smooth around
the area of interest. In order to obtain the Response Surface, some regression analysis (for
instance the Least Square Method) must be accomplished. As states in Gomes and Awruch
[85], the main point resides in to adjust the polynomials to the L.S.F using the sample
points, by using some of the several fitting techniques such as a) the central composite
design [91, 92] b) the fractional factorial design [93], c) the random design, d) the partially
balanced incomplete box design [94] and e) Bucher and Bourgund’s [95] proposal.

With this method, the L.S.F is assimilated as follows:

g(X) = a+
n∑

i=1

bixi +
n∑

i=1

cix
2
i (30)

with a, bi and ci the polynomial constants to be calculated.
As a consequence of Equation 30, only 2n+1 samples must be taken along the coordinates

axes of each variable at a distance xi = Ui(±h), where Ui is the probabilistic transformation
of the variable xi from the real space to the non-correlated Gaussian space, with h being an
arbitrary factor.

In composites, Chen et al. [17] derived the longitudinal ultimate compressive strength of
a composite stiffened ship’s hull, by a polynomial type with quadratic terms RSM.

The reliability analysis was carried out by FORM, and interesting conclusions about ship
hull compression dimensioning was derived with the help of a sensitivity analyses.

In the same way, but in an effort to confer computational efficiency in a RBDO problem,
Young et al. [76] have recently proposed the polynomial RSM by regression analysis in a
complex LSF with Eulerian fluid interaction of a Hexcel (IM7-8552) CFRP marine propeller.
A FORM was used to evaluate the influence of uncertainties in material and load parameters
and thus to optimize the design parameters, obtaining in this case high accuracy contrasted
to MCM.

4.1.2. ANN based response surface

As described in previous sections, when reliability analysis is applied to a complicated
structural system, the responses of the structure need to be calculated by sophisticated
numerical methods. In those cases, sampling the LSF by a trained ANN in substitution
of MCM or direct FEA sampling points, is achieved conferring large efficiency [96]. ANN-
based response surface emerges in reliability applications to solve the main limitation of
polynomial-based response surface methods about the need to increase the number of de-
terministic analysis when the number of random variables is high, thus making them no
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as efficient as desirable [24]. Several authors have compared between both methods, show-
ing that the ANN-based response surface method is more efficient than polynomial-based
response surface method [85].

ANN are computational models based in parallel distributed processing with interesting
properties such as the ability to learn, to generalize, to classify and to organize data. There
are two main models developed for different specific computational tasks:

those with a supervised training and networks without a supervised training. Networks
may be also divided in feed forward, feedback architectures and a combination of both archi-
tectures. In reliability, Perceptron Multilayer Neural Networks and Neural Networks with
Radial Basis Functions are mostly used. Both types of Networks have a supervised training,
feed forward architecture and are universal tools for function approximation. To avoid du-
plication in literature, a concise introduction of ANN in reliability, done by Hosni Elhewy
et al. [24], is recommended. More details about different aspects of Neural Networks are
given in the work of Haykin [97].

In composites, ANNs have been used in a wide range of applications like fatigue life
prediction, dynamic mechanical properties, processing optimization, numerical modeling,
damage detection, delamination, among others [98–101]. But only few works have been
encountered in reliability applications for composites, precisely where the computational
efficiency of using ANNs can be fully amortized.

Recently, Lopes et al. [61] use artificial neural network (ANN) to generate sample data for
the LSF (Tsai-Wu) in stead of FEA, in which high computational efficiency is demonstrated,
particularly for low failure probability values regardless the method employed for reliability
evaluation. In this work were used two ANN for comparison: the Multilayer Perceptron
Network and the Radial Basis Network. The results demonstrated that only 0.02% of MCM
using FE as reference CPU time is required for reliability calculation employing an ANN
with high accuracy.

4.2. Genetics algorithms

The (GA) are heuristic algorithms based on the rules of Darwin’s principle of natural
selection to improve a population of solutions by reproduction and selection operations [102],
that are specially useful for mathematical optimization processes. In reliability calculations,
due to the need to search a minimum distance in the standard normal space of random
variables, an optimization problem is defined for which GA are a feasible tool [103].

The failure probability is obtained through a natural selection process following a search
path until failure is reached. The main advantage of GA as compared with FPI methods,
is that it does not involve the difficulties of computing the derivatives of LSF with respect
to the random variables with the added benefit of identifying global optimum values of the
LSF [104].

The design variables, usually restricted to discrete values, are coded as genes using binary
or integer numbers through a variable codification and grouped together in chromosomes
strings that represent an individual [105]. Almeida and Awruch [106] have recently provided
a variable codification method for composite applications with special emphasis in composite
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structures optimization and in [70, 71] for those cases when the stacking sequence is also
involved into the problem definition.

In literature, new modifications to the original form are continuously appearing to im-
prove the algorithm efficiency [107–109]. Among them the hybrid GA, which use comple-
mentary techniques to improve the genetic search [110, 111], are specially useful for complex
reliability problems [112–116].

GA are particularly advantageous when linking reliability and design optimization of
composites due to the existence of discontinuities in the derivates of LSF and also for the
possible presence of multiple MPP [117]. Gen and Yun [105] provide a survey of GA-based
approach for various reliability optimization problems including examples of the hybrid GA
approach.

In composites, Conceiçao [104] proposed a formulation for the simultaneous solution of
the reliability index evaluation and the optimization of composites structures with geomet-
rically non-linearties. This formulation was derived based on a proposed hierarchical genetic
algorithm (HGA), that is a particular case of parallel genetic algorithm [118] using a network
of interconnected sub-populations with independent evolution.

In Ge et al. [80], the Particle Swarm Optimization (PSO) algorithm is utilized to search
for the optimal solutions of a RBDO problem of composite laminates. Together with GA,
PSO is a type of population-based evolutionary algorithms with the main difference that
PSO retains memory of known good solutions as the search for better generations continues.
Hence, PSO has a higher speed of convergence than traditional GA [119, 120], although GA
determines values more accurately than does the PSO algorithm [121, 122].

More recently, Gomes et al. [123] addresses the problem of RBDO using GA for the
composite optimization process and two types of ANN to sample the LSF: Multilayer Per-
ceptron and Radial Basis ANN. This methodology demonstrates that is possible to obtain
large computational time savings without loss of accuracy, even when dealing with non-linear
behavior in large composite structures.

5. Concluding remarks

In the past few decades, numerous studies have been conducted on the reliability of com-
posite materials and the corresponding applications. The inherent statistical scatter in the
material properties together with their complex mechanical performance, makes reliability
in composites a matter of decisions.

Methods, assumptions and applications of reliability of composites have been reviewed
to confer a perspectival framework that helps to adopt these decisions. Both traditional
approaches and new trends in reliability computation have been exposed.

The following general concluding remarks are extracted:

• In contrast to the deterministic approaches, probabilistic failure and reliability in com-
posites have demonstrated a prolific framework over a design viewpoint to make com-
posites competitive, sustainable and secure.
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• Due to the large number of variables involved in the mechanical description of com-
posites as compared to traditional materials, importance measures related to input
parameters become a necessary exercise to derive an adequate reliability result. Par-
ticularly important is the influence of stiffness randomness description over reliability
based design, as recent results demonstrate. Those cases in which stochastic descrip-
tion of certain mechanical variables are not available or incomplete, statistical uncer-
tainty analysis by incorporation available prior or interval probability [80, 124] are
prolific ways to carry out the problem.

• Several works remark the convenience of studying the suitability of reliability method
over the failure criterion chosen for a specific situation and compare to experimental
or reference reliability data when available. Certain stress levels and fiber orientations
require a specific reliability method to ensure accuracy. In case of utilization of safety
factors in stead of a reliability method, a reliability based calibration may warrant
good results.

• More research effort is need about the progressive failure of composite laminates and
its relationship with reliability, in order to help optimizing composite design in a prob-
abilistic framework. In this scenario, the consideration of other failure modes than
fracture, like stiffness and/or strength reduction by mechanical damage and delamina-
tion, is also necessary. This framework would help to derive a reliability formulation
over the lifetime of composites.

• Large composite structures require efficient techniques for reliability computation. Re-
cent studies have proved Artificial Neuronal Networks (ANN’s) as an advantageous
technique. Genetic Algorithms (GA) are also relevant tools for those cases where reli-
ability is inside on a complex design optimization problem. New reliability algorithms
available on OpenSees computation platforms like FERUM, should also be explored in
composite reliability. These new algorithms together with ANN’s for LSF evaluation,
is a suggestion that may drastically reduce the computational cost for large composite
structures systems and provide sufficient accuracy for small probabilities cases.
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