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Abstract. Estimating a deterministic single value for model parameters when1

reconstructing the system response has a limited meaning if one considers that the2

model used to predict its behavior is just an idealization of reality, and furthermore,3

the existence of measurements errors. To provide a suitable answer, probabilistic4

instead of deterministic values should be provided, which carry information about5

the degree of uncertainty or plausiblity of those model parameters providing one6

or more observations of the system response. This is widely-known as the Bayesian7

Inverse Problem, which has been covered in the literature from different perspectives,8

depending on the interpretation or the meaning assigned to the probability. In this9

paper, we revise two main approaches: the one that uses probability as logic, and an10

alternative one that interprets it as a information content. The contribution of this11

paper is to highlight their similarities and differences, and eventually provide their12

links as an unifying formulation. An extension to the problem of model class selection13

is derived, which is particularly simple under the proposed framework.14
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1. Probability interpretation in physical phenomena19

It is unanimously agreed that statistics depends somehow on probability.

But, as to what probability is and how it is connected with statistics,

there has seldom been such complete disagreement and breakdown of

communication since the Tower of Babel. Doubtless, much of the

disagreement is merely terminological and would disappear under

sufficiently sharp analysis. However there is a fundamental difference

between frequentist and bayesian interpretations that cannot be bridged.

Savage, 1972 [1]

20

The main statistical frameworks on which inverse problems and inference rely on21

have rigorously been legitimated after a long history [2]. The following could be an22

attempt to classify the sequence of physical interpretations of probability:23

Classical: if a random experiment can result in a finite number n of mutually exclusive24

and equally likely outcomes and if nA of these outcomes result in the occurrence of25

the event A, the probability of A was defined by Laplace as,26

P (A) =
nA

n
(1)

Frequentist: the probability of an event A is its relative frequency of occurrence after27

repeating a process a large number n of trials under similar conditions,28

P (A) = lim
n→∞

nA

n
(2)

This definition is commonly used as a physical meaning (R. A. Fisher, J. Neyman29

and E. Pearson [3, 4, 5, 6]). If the process is repeated a reduced series of times,30

different relative frequencies will be obtained in different series of trials. If these31

relative frequencies are to define the probability, the probability of event A will32

be non-unique. If we acknowledge the fact that we only can estimate a probability33

we still get into problems as the error of estimation can only be expressed as a34

probability, the very concept we are trying to define. This renders the frequency35

definition circular. Hence the relative frequency of a event A informs, but does36

not define, the parameter representing the probability of the event in a probability37

model.38

Evidential or propensity: the theory of evidential probability studies the impact39

of evidence on probability. It is motivated by two basic ideas [7]: (i) probability40

assessments should be based on known relative frequencies, and the assignment41

of probability to specific individual events should be based on its the available42

information history, and (ii) Humphreys paradox [8] shows how propensities do43

not obey Kolmogorov’s probability calculus, and reads as follows. Probability44

calculus implies Bayes’ theorem, which allows us to invert a conditional probability45

P (A|B) = P (B|A)P (A)/P (B), whereas propensities are intented to be interpreted46

as measures of causal trends, and since the causal relation is not necessarily47



Logical inference for inverse problems 3

symmetric, these propensities should not invert. Humphrey’s paradox is illustrated48

by supposing a test for an illness that occasionally gives false positives and false49

negatives. A given sick patient may have a propensity to give a positive test result,50

but it apparently makes no sense to say that a given positive test result has a51

propensity to have come from a sick patient. Thus, propensities, whatever they52

are, must not obey the usual probability calculus: "if the probability of B, given53

A exists, then the probability of A, given B exists, however one understands these54

conditional probabilities". Fetzer and Nute [9] formulated a probabilistic causal55

calculus different from Kolmogorov’s calculus.56

Logical: the probability P [H|E] is interpreted as the degree of plausibility of a57

proposition H (typically a hypothesis) given the information in the proposition E58

(typically empirical evidence). Logical probabilities are thus objective, logical59

relations between propositions [10, 11] (states of knowledge), in contrast to the60

physical propensity of a phenomenon. This views allows to build the Bayesian61

inference: to compute the posterior probability of a hypothesis, some specified62

prior probability known about it is updated by new knowledge or data. In contrast63

to assigning a probability to a hypothesis, in frequentist probability, hypothesis are64

just formally tested.65

Cox [12] postulates enable logical probability interpretation to be applied to any66

proposition, when supported by new gained information, as a natural extension of67

Aristotelian logic (by which statements are either true or false) into the realm of68

reasoning in the presence of uncertainty:69

(i) "A double negative is an affirmative" becomes a functional equation f(f(x)) =70

x.71

(ii) The plausibility of the conjunction [A&B] of two propositions A, B, depends72

only on the plausibility of B and that of A given that B is true, P (A&B) =73

P (A)P (B|A).74

(iii) Suppose [A&B] is equivalent to [C&D]. If we acquire new information A75

and then acquire further new information B, and update all probabilities76

each time, the updated probabilities will be the same as if we had first77

acquired new information C and then acquired further new information D,78

yf
(

f(z)
y

)

= zf
(

f(y)
z

)

.79

Cox [12] derived the laws of probability from these postulates, which are, assuming80

that the scale of information measurement ranges from zero to one:81

(i) Certainty is represented by P (A|B) = 1.82

(ii) Negation: P (A|B) + P (A|B) = 1.83

(iii) Conjunction: P (A,B|C) = P (A|C)P (B|A,C) = P (B|C)P (A|B,C).84

These laws yield finite additivity of probability, but not countable additivity.85

Kolmogorov’s axioms of probability, which assume that a probability measure is86

countably additive (necessary for the proof of certain theorems) are,87

(i) Non-negativity: P (A) ≥ 0.88
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(ii) Finite additivity: P (A ∪ B) = P (A) + P (B) ∀ A,B|A ∩B = ∅.89

(iii) Normalization: P (Ω) = 1.90

Kolmogorov comments that infinite probability spaces are idealized models of real91

random processes, and that he limits himself arbitrarily to only those models that92

satisfy countable additivity. This axiom is the cornerstone of the assimilation of93

probability theory to measure theory [2]. The conditional probability of A given B94

is then given by the ratio of unconditional probabilities,95

P (A|B) =
P (A ∩ B)

P (B)
, P (B) > 0 (3)

Subjective: probabilities are understood as degrees of rational belief [11], rather than96

logical relations that constrain degrees of rational belief. Ramsey [13] questioned97

the existence of such objective logical relations and redefined evidential probability98

as "the logic of partial belief".99

Outside physical uses, subjective or personalist probability, and epistemic100

or inductive probability have recently been developed as an incompatible101

interpretations to the frequentist one [14].102

Predictive inference: stems from Bayesian probability of physical phenomena with103

errors by assuming De Finetti’s [15] idea of exchangeability: that future104

observations should behave like past observations, and the concept of cross-105

validation [16].106

2. Modeling assumptions107

The goal of the inverse problem is to use the observed response of a system to improve108

a single or a set of models that idealize that system, so that they make more accurate109

predictions of the system response to a prescribed, or uncertain, excitation.110

Following the Bayesian formulation of the inverse problem [17], the solution is not111

a single-valued set of model parameters θ. On the contrary, Bayes’ Theorem takes112

the initial quantification of the plausibility of each model parameterized by θ, which is113

expressed by the prior probability distribution, and updates this plausibility by using114

the information in the data set D, to obtain the posterior probability distribution of115

model parameters.116

The origin of the uncertainties are built into the interpretation of probability117

as a measure of relative plausibility of the various possibilities conditional to118

available information. This interpretation is not well known in the engineering119

community where there is a wide-spread belief that probability only applies to aleatory120

uncertainty (inherent randomness in nature) and not to epistemic uncertainty (missing121

information). Jaynes [18] noted that the assumption of inherent randomness is an122

example of what he called the Mind-Projection Fallacy: our uncertainty is ascribed123

to an inherent property of nature, or, more generally, our models of reality are confused124

with reality.125



Logical inference for inverse problems 5

The interpretation of the final inferred model probability can be used either126

to identify a set of plausible values, or to find the most probable one (expected),127

or, following Tarantola [17], just to falsify inconsistent models, since according to128

Popper [19], that is the only thing we can assert.129

Furthermore, different model parameterizations or even model hypothesis130

representing different physics can be formulated and hypothesized to idealize the system,131

yielding a set of different (Bayesian) model classes [20], M = {M1, . . . ,MNM
}, resulting132

different values of model hypothesis or classes.133

2.1. Notation134

From the above description, we highlight three important pieces of information in the135

Bayesian inverse problem, which are described here:136

D : data set containing the system output (or input-output couple, depending on the137

experimental setup). It can be either the real output Dreal, or the ideal output to138

be predicted Dideal, or the measured output Dobs. Each of them may belong to139

different spaces, but need to be comparable in the sense that they can be related.140

Mj : jth model class or candidate among alternative model classes hypothesized to141

idealize the system. A Bayesian model class can be defined by two fundamental142

probability models: an input-output (I/O) model {p(Dideal|u,θ,Mj) : θ ∈ Θ ⊂143

R
Np} and a prior probability distribution p(θ|Mj), that gives a initial relative144

plausibility of model parameters defining the I/O model in the class. Here u denotes145

the inputs to the system.146

θ : set of uncertain model parameters within a specific model class Mj, that calibrate147

the idealized relationships between input and output of the system.148

All the defined variables (output data Dreal, Dideal, Dobs, model parameters θ149

or model classes Mj) are defined to lie in manifolds Dreal, Dideal, Dobs, M and Θ,150

respectively.151

2.2. Real and ideal system definitions152

When observing a real system using prior knowledge about of the physics that governs153

it, idealized by a model, careful analysis needs to be made about how to combine the154

elements of these two pieces of information: observations+model.155

The first step is to identify which elements of the real system under observation156

plays a relevant role. Figure 1 schematizes these elements and their relationships. When157

a physics-based idealization of the system is required, it should follow a parallel scheme158

to the real one (lower half of the same figure), where all elements are connected by defined159

relationships. To sum up, the Inverse Problem can be defined as the counterpart of the160

Forward Problem (aimed at computing the unknown output Dideal of a known idealized161

system g(θ)), i.e. computing an unknown part of the system (θ) given some observable162

part of the output Dobs.163
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Reality

Idealization

System

Parametrized

System g

Model, model class

θ, M

Measurement error

emeas

Prediction error

epred

Sensor
Output

Dreal

Observation

Dobs

Ideal

Sensor

Output

Dideal=g(θ)

Observation

Dideal

-

Computational 

error

enum

Output

Dnum=g(θ)

-

Figure 1. Scheme of real and ideal systems. Note that system input may not

necessarily appear explicitly outside the system. In the mathematical idealization,

second half, an ideal sensor is conceived with the peculiarity that it is assumed to

perfectly interrogate the system output introducing no error or bias.

Note from the figure that the noise in the sensors groups any type of difference164

between observed and real data, including sensor error (characterized by a probability165

model) and quantization in the case of digital sensors, yielding the relationship,166

Dobs = Dreal + emeas (4)

On the other hand, the assumptions required in the process of idealization of reality are167

responsible for the differences between real and ideal output,168

Dreal = Dideal + epred (5)

Then169

Dobs = Dideal + epred + emeas (6)

For some instruments, the measurement errors can be neglected in comparison to170

modeling errors, thus the last equation can be rewritten as,171

Dobs = Dideal + epred (7)
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3. IP formulation from the probability logic viewpoint172

Following the probability logic formulation of the inverse problem established by173

Beck [21, 20], the solution is not a single-valued set of optimal model parameters θ
∗

174

but a conditional PDF of the values of the model parameters θ given a set of data D175

and a model class M: p(θ|D,M). The probability density p is assigned the meaning of176

relative plausibility of the model values θ to be true given D and M.177

3.1. Assumptions178

Bayesian probabilities in probability logic are always conditioned, i.e. the probability179

P [b|c] is interpreted as the degree of plausibility of proposition b given the information180

in proposition c, whose truth we need not know.181

The definition is based on logical operators according to Cox [12]. The arbitrary182

mapping φ : [0, 1] → [0, 1] for defining the conjunction is taken to be the simplest183

possible definition: the identity. The probability logic axioms based on Boolean logic184

and Cox’s postulate are adopted.185

3.2. Formulation in the case of perfect observations186

Let’s start assuming perfect observations in the sense that the discrepancy due to187

sensor and idealization is negligible, Dreal = Dideal = Dobs = D. Given observations188

D consisting of measured outputs or pairs of outputs response to inputs to the system,189

their updated relative plausibility can be quantified by p(θ|D,M) for the uncertain190

model parameters θ within the model class M. Using Bayes’ Theorem:191

p(θ|D,M) = c−1p(D|θ,M)p(θ|M) (8)

where c = p(D|M) =
∫

Θ
p(D|θ,M)p(θ|M)dθ is a normalizing constant called the192

evidence of data set D for the model class M; p(D|θ,M) is the likelihood function that193

quantifies the probability of getting the observations D by the I/O model specified by θ194

in the the model class M; and p(θ|M) is the prior PDF assigned to model parameter195

values θ within M (usually chosen to provide regularization of ill-conditioned inverse196

problems). ‡197

3.3. Formulation for ideal, real and observed output198

The case of presence of sensor noise or prediction error can be derived from the199

relationships in Equations 4 and 5. In the probability logic framework, the relations200

among ideal, real and observed outputs are derived from conditional probability and a201

subsequent marginalization, as follows,202

‡ Note that, in equation (10) and the sequel, Mj has been replaced by M for compactness.
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p(Dreal,Dideal) = p(Dreal|Dideal)p(Dideal) where the conditional probability203

p(Dreal|Dideal) incorporates the prediction error. In the case of perfect idealization,204

this conditional probability is just the identity.205

p(Dreal,Dobs) = p(Dreal|Dobs)p(Dobs) where the conditional probability206

p(Dreal|Dobs) incorporates the measurement noise (sensor error, bias and207

quantization). Examples of this conditional probability are given in Figure 2.208

n Dreal

p

Dobs

Dreal

Dobs

Dreal

Figure 2. Examples of probability density relating real and ideal output though the

error prediction. Left and center: case of perfect measurement with only quantization

(center: slice for a single value of Dobs. Right: case of sensor with quantization and

uncertainty. Gray tones stand for probability densities, being white null probability,

and black maximum probability.

The observed data can be transformed to ideal data, as209

p(Dreal) =

∫

Dobs

p(Dreal|Dideal)p(Dideal)dDobs ⇒

p(Dideal) =

∫

Dreal

∫

Dobs

p(Dideal|Dreal)p(Dreal|Dobs)p(Dobs)dDobsdDreal (9)

that can subsequently be used to update the ideal model, as210

p(θ|Dideal,M) = c−1p(Dideal|θ,M)p(θ|M) (10)

4. IP formulation from the conjunction of states of information viewpoint211

The relationship between the model and the observations provided by a model need not212

to be an implication due to a cause-effect, which would require to define the conditional213

probability p(θ|D,M). Instead, just the joint probability density f(θ,D,M) needs214

to be defined in the following approach, in which the causality between model and215

observations may be inverted or even not exist.216

This formulation does not use conditional probabilities as a elementary notion of217

information and in turn it uses joint probabilities obtained as a conjunction of states of218

information [17]. The last two points can be considered as strengths of the formulation.219
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4.1. Assumptions220

The output data (real Dreal, ideal Dideal and observed Dobs) reside in their own221

independent manifolds. These manifolds do not need to be intersecting as long as222

Equations 4 and 5 need not to be written. As defined above, all the variables (output223

data Dreal, Dideal, Dobs, model parameters θ or model classes Mj) are defined in their224

manifolds Dreal, Dideal, Dobs,Θ and M, respectively.225

An event or realization of them is defined by a region or subset A. The information226

about them (which is an idealized construct) is defined by a measure (P (A)) that satisfies227

the first two Kolmogorov axioms (P (A) ≥ 0, P (A∪B) = P (A)+P (B) ∀ A,B|A∩B = ∅).228

By Radon-Nikodym theorem, a density f(x) can be defined,229

P (A) =

∫

A

f(x)dx (11)

and the Kolmogorov normality P (Ω) = 1 is not assumed.230

The logical inference operations on the information defined above has been defined231

elsewhere, but can be summarized as follows. Starting from the and and or operator232

definition for Boolean logic,233

a b Pa ∧ Pb Pa ∨ Pb

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

234

Without assuming normality, the following relationship are compatible, using De235

Morgan’s law,236

Pa(A) 6= 0 or Pb(A) 6= 0 ⇒ (Pa ∨ Pb)A 6= 0

Pa(A) = 0 or Pb(A) = 0 ⇒ (Pa ∧ Pb)A = 0
(12)

Commutativity is also allowed,237

Pa ∨ Pb = Pb ∨ Pa Pa ∧ Pb = Pb ∧ Pa (13)

The simplest solution that fulfills these axioms without normalization is§,238

{

f1 ∨ f2 = f1 + f2

f1 ∧ f2 = f1f2
(14)

§ This solution is consistent as long as the parameters (observations, model parameters, etc.) are

Jeffrey’s parameters [17]. If not, the probability densities f(y) just need to be divided by the

noninformative probability density µ(y), i.e. replacing f(y) by f(y)
µ(y) everytime.
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4.2. Case of perfect observations239

For presenting the idea behind the formulation in a simpler way, the case when240

observations are perfect, i.e. discrepancy due to sensor or idealization is negligible,241

Dreal = Dideal = Dobs = D is presented without loss of generality.242

Assume that the system under test is defined by observations, model parameter243

and idealized model classes. If we have two sources of information (probabilistic244

propositions) to infer information about the model parameters f(θ), which are that245

originated by experimental observations of the system f o, and that originated from a246

mathematical model of the system fm, the probabilistic logic conjunction operator allows247

to compute the information state that the system parameters fulfill both propositions248

simultaneously, f o ∧ fm, as,249

f(D,θ,M) = f o(D,θ,M) ∧ fm(D,θ,M) = f o(D,θ,M)fm(D,θ,M) (15)

Assuming that the experimental information on observations is carried out with250

sensors that are independent on techniques to infer experimental information on model251

parameters, and the same is true for model classes, the joint density can be split as the252

product f o(D,θ,M) = f o(D)f o(θ)f o(M). This is not true for the model information253

fm, since it relates observations and model.254

By reusing the mentioned Radon-Nikodym theorem on the density defined in

Equation 15, the marginal density for every possible observation D ∈ O yields the

sought information on the model parameters, in a given model class M = Mj, as ‖

f(θ,Mj) =

∫

O

f(D,θ,Mj)dD =

∫

O

f o(D)f o(θ)f o(Mj)f
m(D,θ,Mj)dD (16)

4.3. Formulation for general ideal, real and observed output255

In addition to the a priori information provided by f o and the information given by the256

model through fm, the uncertainty introduced by the idealization of the model and from257

the sensors can be defined by two new probability densities f i and f s respectively. Their258

treatment is detailed below.259

‖ The interpretation of the updated information for identifying the most plausible model parameter

just requires to find its maximum, known as the “maximum a posteriori”, (MAP)

MAP = argmax
θ∈Θ

f(θ,Mj)

whereas finding plausible model values, or just falsifying inconsistent models, requires comparing

information densities, and therefore a normalization. This can be done just by defining a normalized

probability density p that satisfies the third Kolmogorov axiom (theorem of total probability),

p(θ) =
f(θ)

∫

Θ
f(y)dy
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f o(Dreal,Dideal,Dobs,θ,Mj) = f o(Dobs)f o(Dideal)f o(θ)f o(Mj)µ(D
real) The260

prior informations about each magnitude are independent, so they are split as a261

product. The readings from the sensors are expressed as the prior information on262

the observations as f o(Dobs). If some prior information about the system output is263

available (for example physically impossible values), it can be coded by f o(Dideal)264

and allows, as an example, to reject outliers among the measurements. Since no265

prior information can be given about the real output, its independent probability is266

non-informative µ(Dreal). Prior knowledge about the model and the class are given267

by f o(θ) and f o(Mj).268

f s(Dreal,Dideal,Dobs,θ,Mj) = f s(Dobs,Dideal)µ(θ)µ(Mj)µ(D
real) . Since the269

sensor only relates observations to real output by adding noise as described in270

Equation 4, which is quantified by the joint density f s(Dobs,Dideal), the remaining271

magnitudes are independent and non-informative, µ(θ), µ(Mj) and µ(Dreal).272

f i(Dreal,Dideal,Dobs,θ,Mj) = f i(Dreal,Dideal)µ(θ)µ(Mj)µ(D
obs) . Since the273

idealization only relates ideal to real output by adding the prediction error as274

described in Equation 5, which is quantified by the joint density f s(Dreal,Dideal),275

the remaining magnitudes are independent and non-informative, µ(θ), µ(Mj) and276

µ(Dobs).277

fm(Dreal,Dideal,Dobs,θ,Mj) = f i(Dreal,Dideal)µ(θ)µ(Mj)µ(D
obs) . The model278

only exists in the “ideal world” and therefore only relates ideal output with model279

parameters given a model class by the density fm(Dideal,θ,Mj). The remaining280

magnitudes µ(Dobs) and µ(Dreal) are independent and non-informative.281

These four pieces of information are simultaneously true yielding a joint probability282

through the conjunction operator,283

f(Dreal,Dideal,Dobs,θ,Mj) = f o(Dreal,Dideal,Dobs,θ,Mj)f
s(Dreal,Dideal,

Dobs,θ,Mj)f
i(Dreal,Dideal,Dobs,θ,Mj)f

m(Dreal,Dideal,Dobs,θ,Mj)

(17)

In the case of Jeffreys parameters, which have the characteristic of being positive and of284

being as popular as their inverses [17], all non-informative densities µ are constant and285

may therefore be dropped from the formulation. By further marginalizing, the sought286

information is given by,287

f(θ,Mj) =

∫

Dreal

∫

Dideal

∫

Dobs

f o(Dobs)f o(Dideal)f o(θ)f o(Mj)f
s(Dobs,Dideal)

f i(Dreal,Dideal)fm(Dideal,θ,Mj)dD
obsdDidealdDreal

(18)
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4.4. Reconstruction of the model parameters288

Without loss of generality, and for a simpler notation, we may restrict ourselves to the289

case when observations are perfect, i.e. discrepancy due to sensor or idealization is290

negligible, Dreal = Dideal = Dobs = D.291

The reconstructed probability for the model parameters θ providing the model292

class Mj is obtained from the joint probability f(D,θ,M) by extracting the marginal293

probability for all possible observations D ∈ O and provided the model class Mj ∈ M294

is assumed to be true (f 0(M = Mj) = 1) as,295

f(θ)
∣
∣
M=Mj

=

∫

M=Mj

∫

O

f(D,θ,M)dDdM = k1

∫

O

f 0(D)f 0(θ)fm(D,θ,Mj)dD (19)

where k1 is a normalization constant that replaces the dropped model class probability.296

The assumption of no prior knowledge about the model parameters is usually made,297

whereby it is represented by the non-informative distribution, i.e. an arbitrary constant298

in the assumed case of Jeffrey’s parameters f 0(θ) = 1,299

f(θ)
∣
∣
M=Mj

= k1

∫

O

f 0(D)fm(D,θ,Mj)dD (20)

If we assume the hypothesis of negligible observational uncertainties with respect300

to modelization uncertainties (f 0(D) = f 0(Dobs)) and that the data manifold D is a301

linear space (whereby the noninformative homogeneous probability density µ(Dreal) is a302

constant), hence the integral in Equation 20 vanishes yielding the reconstructed model303

parameters probability density, which is clarified by the example in the next section,304

f(θ)
∣
∣
M=Mj

= k2f
m(Dobs,θ,Mj) (21)

The latter formulation is equivalent to the one obtained from the probability logic305

viewpoint in Equation 10 (after dropping the prior model parameter information for306

being assumed noninformative), except for a constant since fm needs not range [0, 1],307

which proves the correctness and unifies both approaches.308

5. Solution for time-domain observations with gaussian uncertainties309

Either the final expressions of the probability densities p from the probability logic,310

or f from the conjunction of states of information can be treated as follows, as311

both final expressions are equivalent. Assume that the observations are assumed312

to follow a Gaussian distribution D ∼ N (E[Dobs], Cobs) whose mean is that of313

the experimental observations Dobs and covariance matrix Cobs standing for the314

measurement error noise. Likewise, the numerical errors are also assumed to follow a315

Gaussian distribution D ∼ N (Dnum, Cnum) centered at the numerically computed ones316

E[Dnum] = D(M) with covariance matrix Cnum.317
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Assume that the observations D are a vector of functions of time D = oi(t) at318

every measuring time t ∈ [0, T ] and repetition i ∈ [1...Ni], and that the assumptions319

made above are valid for every instant t and sensor i. Considering that the compound320

probability of the information from all sensors and time instants is the productory of321

that of each one individually, what means information independence, and that this322

productory is equivalent to a summation within the exponentiation (and an integration323

along the continuous time, seen as a summation over every infinitesimal dt), the Gaussian324

distribution allows for an explicit expression of the probability densities,325

f 0(oi(t)) = k3e















−
1

2

Ni∑

i,j=1

∫ t=T

t=0

(
oi(t)− oobsi (t)

)

(
cobsij

)−1 (
oj(t)− oobsj (t)

)
dt















(22)

fm(oi(t),θ,M) = k4e















−
1

2

Ni∑

i,j=1

∫ t=T

t=0

(oi(t)− oi(t,θ))

(
cnumij

)−1
(oj(t)− oj(t,θ)) dt















(23)

⇒ f(θ)
∣
∣
M=Mj

= k5e

J(θ)
︷ ︸︸ ︷






−
1

2

Ni∑

i,j=1

∫ t=T

t=0

(
oi(t,θ)− oobsi (t)

)

(
cobsij + cnumij

)−1 (
oj(t,θ)− oobsj (t)

)
dt







(24)

The term J(θ) corresponds to a misfit function between model and observations,326

then327

f(θ)
∣
∣
M=Mj

= k5e
−J(θ) (25)

The best-fitting model is found by minimizing J(θ), or equivalently maximizing328

f(θ), since329

θ̂ = argmax
θ∈Θ

{

f(θ)
∣
∣
M=Mj

= k5e
−J(θ)

}

= argmin
θ∈Θ

{J(θ)} (26)

Finally, if classical probability densities are desired, the constant k6 is derived from330

the theorem of total probability as,331

I =

∫

Θ

e−J(θ)dθ =

∫

Θ

f(θ)
∣
∣
M=Mj

k5
dθ =

1

k6
(27)

6. Extension to model-class selection332

This formulation can be generalized to the case when several model classes M are333

candidates to idealize the real excitation-observation. Including this variable into the334
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inverse problem formulation will allow to derive the model-class selection as a particular335

case of inverse problem.336

As introduced in the preceding subsection, the probabilistic nature of the337

reconstruction is partly motivated by the fact that the model itself may not necessarily338

reproduce the experimental setup, but is just an approximation. If several models are339

candidates based on different hypothesis about the system, the former probabilistic340

formulation of the inverse problem will be shown to be able to provide information to341

rank them. The bottom idea is the following: if the model-class (based on the candidate342

hypothesis) is considered as an uncertain discrete variable, its probability can eventually343

be extracted as a marginal probability from Equation 15. The probability of each model-344

class will therefore have the sense of degree of certainty of being true in the sense that345

the probabilistic conjunction of certainty (or information) provided by the experimental346

measurements and model are coherent.347

Let model class M denote an idealized mathematical model hypothesized to348

simulate the experimental system, whereas model θ denotes the set of constants of349

physical parameters that the model-class depends on. Different model classes can350

be formulated and hypothesized to idealize the experimental system, and each of351

them can be used to solve the probabilistic inverse problem in the previous section,352

yielding different values of model parameters but also physically different sets of353

parameters. To select among the infinitely many possible model classes that can354

be defined, user judgement is a criteria, but a probabilistic one can also be defined355

based on their compatibility between prior information f 0(D,θ,M) on observations356

D, model parameters θ and model class M, and probabilistic model information given357

by fm(D,θ,M). The conjunction of probabilities established in Equation 15 will be358

adopted instead of Bayes’ theorem, for its generality [22].359

The goal is to find the probability f(M), understood as a measure of plausibility360

of a model class M [23]. It can be derived as the marginal probability of the posterior361

probability f(D,θ,M) defined in Equation 15,362

f(M) =

∫

D

∫

Θ

f(D,θ,M)dθdD (28)

= k1f
0(M)

∫

D

∫

Θ

f 0(D)f 0(θ)fm(D,θ,M)dθdD

If no prior information is provided by the user about the class f 0(M) =363

µ(M) ⇒ k1f
0(M) = k6. Furthermore, this theorem involves exactly the same integral364

as that for the constant k5, i.e., allowing to reuse the integral in Equation 27,365

f(M) = k6

∫

Θ

f(θ)
∣
∣
M=Mi

k5
dθ = k6

∫

Θ

e−J(θ)dθ = k6I (29)

where the normalization constant k6 can be solved from the theorem of total probability366

over all model classes M in order to obtain probabilities in the classical sense,367
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∑

M

f(M) = 1 (30)

Variations of the probability density at good or bad models may exceed the floating368

point representation range of a standard operating system. To override this limitation,369

an alternative computation is proposed in the logarithmic scale. This is carried out370

redefining all involved PDF in the −ln scale and redefining their relationships as371

f̃ = −ln(f) or f = e−p̃. Variables expressed in the logarithmic scale are tagged with a372

tilde (̃ ).373

Once the plausibility f(M) is computed for every class, its value allows to rank the374

models accordingly to how compatible they are with the observations. This also allows375

us to find a correct trade-off between model simplicity and fitting to observations [22, 20].376

7. Conclusions377

The inverse problem of parameter reconstruction from experimental data when a model378

is available has been derived in a probabilistic way from the theory of conjunction379

of states of information from observations combined with models. This approach is380

proposed as an alternative to the logical inference using Bayes theorem, as it relies381

on different statistical axioms and may be useful. Among them, the input-output382

relationship needs not to be causal, the axioms that allow the concept conditional383

probability are not needed, and the incorporation of additional sources of information384

beyond observation and model become straightforward. As an example of the latter,385

the extension to model-class selection is derived in a simple way. The validity of the386

approach is supported by the fact that the final computations are the same for a typical387

linear gaussian inverse problem.388
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