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On k-11-representable graphs

Gi-Sang Cheon ∗ Jinha Kim † Minki Kim ‡ Sergey Kitaev §

Artem Pyatkin ¶

September 24, 2018

Abstract

Distinct letters x and y alternate in a word w if after deleting in w all letters but the
copies of x and y we either obtain a word of the form xyxy · · · (of even or odd length)
or a word of the form yxyx · · · (of even or odd length). A simple graph G = (V,E)
is word-representable if there exists a word w over the alphabet V such that letters x
and y alternate in w if and only if xy is an edge in E. Thus, edges of G are defined by
avoiding the consecutive pattern 11 in a word representing G, that is, by avoiding xx

and yy.
In 2017, Jeff Remmel introduced the notion of a k-11-representable graph for a non-

negative integer k, which generalizes the notion of a word-representable graph. Under
this representation, edges of G are defined by containing at most k occurrences of the
consecutive pattern 11 in a word representing G. Thus, word-representable graphs
are precisely 0-11-representable graphs. Our key result in this paper is showing that
every graph is 2-11-representable by a concatenation of permutations, which is rather
surprising taking into account that concatenation of permutations has limited power
in the case of 0-11-representation. Also, we show that the class of word-representable
graphs, studied intensively in the literature, is contained strictly in the class of 1-11-
representable graphs. Another result that we prove is the fact that the class of interval
graphs is precisely the class of 1-11-representable graphs that can be represented by
uniform words containing two copies of each letter. This result can be compared with
the known fact that the class of circle graphs is precisely the class of 0-11-representable
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graphs that can be represented by uniform words containing two copies of each letter.
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1 Introduction

The theory of word-representable graphs is a young but very promising research area. It was
introduced by the fourth author in 2004 based on the joint research with Steven Seif [12]
on the celebrated Perkins semigroup, which has played a central role in semigroup theory
since 1960, particularly as a source of examples and counterexamples. However, the first
systematic study of word-representable graphs was not undertaken until the appearance in
2008 of [11], which started the development of the theory.

Up to date, about 20 papers have been written on the subject, and the core of the book
[10] is devoted to the theory of word-representable graphs. It should also be mentioned that
the software packages [5, 17] are often of great help in dealing with word-representation of
graphs. Moreover, a recent paper [8] offers a comprehensive introduction to the theory. Some
motivation points to study these graphs are given in Section 1.

A simple graph G = (V,E) is word-representable if and only if there exists a word w

over the alphabet V such that letters x and y, x 6= y, alternate in w if and only if xy ∈ E.
In other words, xy ∈ E if and only if the subword of w induced by x and y avoids the
consecutive pattern 11 (which is an occurrence of xx or yy). Such a word w is called G’s
word-representant. In this paper we assume V to be [n] = {1, 2, . . . , n} for some n ≥ 1. For
example, the cycle graph on 4 vertices labeled by 1, 2, 3 and 4 in clockwise direction can
be represented by the word 14213243. Note that a complete graph Kn can be represented
by any permutation of [n], while an edgeless graph (i.e. empty graph) on n vertices can
be represented by 1122 · · ·nn. Not all graphs are word-representable, and the minimum
non-word-representable graph is the wheel graph W5 in Figure 1, which is the only non-
word-representable graph on six vertices [10, 11].

In 2017, Jeff Remmel [15] introduced the notion of a k-11-representable graph for a non-
negative integer k, which generalizes the notion of a word-representable graph. Under this
representation, edges of G are defined by containing at most k occurrences of the consecutive
pattern 11 in a word representing G. Thus, word-representable graphs are precisely 0-11-
representable graphs. The new definition allows to

• represent any graph; Theorem 5.2 shows that any graph is 2-11-representable by a
concatenation of permutations, which is rather surprising taking into account that
concatenation of permutations has limited power in the case of 0-11-representation
(see Theorem 1.4). 2-11-representation could be compared with the possibility to u-
represent any graph, where u ∈ {1, 2}∗ of length at least 3 [9]. We refer the Reader to
[9] for the relevant definitions just mentioning that the case of u = 11 corresponds to
word-representable graphs.
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• 1-11-represent at least some of non-word-representable graphs including W5 and all
such graphs on seven vertices (see Section 4).

• give a new characterization of interval graphs; see Theorem 3.1, which should be com-
pared with Theorem 1.3 characterizing circle graphs.

The paper is organized as follows. In the rest of the section, we give more details about
word-representable graphs. In Section 2, we introduce rigorously the notion of a k-11-
representable graph and provide a number of general results on these graphs. In particular,
we show that a (k − 1)-11-representable graph is necessarily k-11-representable (see Theo-
rem 2.2). In Section 3, we study the class of 1-11-representable graphs. These studies are
extended in Section 4, where we 1-11-represent all non-word-representable graphs on at most
7 vertices. In Section 5 we prove that any graph is 2-11-representable. Finally, in Section 6,
we state a number of open problems on k-11-representable graphs.

Motivation points to study word-representable graphs include the fact exposed in [10]
that these graphs generalize several important classes of graphs such as circle graphs [3],
3-colourable graphs and comparability graphs [14]. Relevance of word-representable graphs
to scheduling problems was explained in [7] and it was based on [6]. Furthermore, the
study of word-representable graphs is interesting from an algorithmic point of view as ex-
plained in [10]. For example, the Maximum Clique problem is polynomially solvable on
word-representable graphs [10] while this problem is generally NP-complete [2]. Finally,
word-representable graphs are an important class among other graph classes considered in
the literature that are defined using words. Examples of other such classes of graphs are
polygon-circle graphs [13] and word-digraphs [1].

The following two theorems are useful tools to study word-representable graphs. For
the second theorem, we need the notion of a cyclic shift of a word. Let a word w be the
concatenation uv of two non-empty words u and v. Then, the word vu is a cyclic shift of w.

Theorem 1.1 ([11]). A graph is word-representable if and only if it can be represented
uniformly, i.e. using the same number of copies of each letter.

Theorem 1.2 ([11]). Any cyclic shift of a word having the same number of copies of each
letter represents the same graph.

A circle graph is the intersection graph of a set of chords of a circle, i.e. it is an undirected
graph whose vertices can be associated with chords of a circle such that two vertices are
adjacent if and only if the corresponding chords cross each other. In this paper, we get used
of the following theorem.

Theorem 1.3 ([7]). The class of circle graphs is precisely the class of word-representable
graphs that can be represented by uniform words containing two copies of each letter.

An orientation of a graph is transitive, if the presence of the edges u → v and v → z

implies the presence of the edge u → z. An oriented graph G is a comparability graph
if G admits a transitive orientation. A graph is permutationally representable if it can
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be represented by concatenation of permutations of (all) vertices. Thus, permutationally
representable graphs are a subclass of word-representable graphs. The following theorem
classifies these graphs.

Theorem 1.4 ([12]). A graph is permutationally representable if and only if it is a compa-
rability graph.

2 Definitions and general results

A factor in a word w1w2 . . . wn is a word wiwi+1 . . . wj for 1 ≤ i ≤ j ≤ n. For a letter or a
word x, we let xk denote x . . . x

︸ ︷︷ ︸

k times

. For any word w, we let π(w) denote the initial permutation

of w obtained by reading w from left to right and recording the leftmost occurrences of
the letters in w. For example, if w = 2535214421 then π(w) = 25314. Similarly, the final
permutation σ(w) of w is obtained by reading w from right to left and recording the rightmost
occurrences of w. For the w above, σ(w) = 35421. Also, for a word w, we let r(w) denote
the reverse of w, that is, w written in the reverse order. For example, if w = 22431 then
r(w) = 13422. Finally, for a pair of letters x and y in a word w, we let w|{x,y} denote the word
induced by the letters x and y. For example, for the word w = 2535214421, w|{2,5} = 25522.
The last definition can be extended in a straightforward way to defining w|S for a set of
letters S. For example, for the same w, w|{1,2,3} = 232121.

Throughout this paper, we denote by G\v the graph obtained from a graph G by deleting
a vertex v ∈ V (G) and all edges adjacent to it.

Let k ≥ 0. A graph G = (V,E) is k-11-representable if there exists a word w over the
alphabet V such that the word w|{x,y} contains in total at most k occurrences of the factors
in {xx, yy} if and only if xy is an edge in E. Such a word w is called G’s k-11-representant.
A uniform (resp., t-uniform) representation of a graph G is a word, satisfying the required
properties, in which each letter occurs the same (resp., t) number of times. As is stated
above, in this paper we assume V to be [n] = {1, 2, . . . , n} for some n ≥ 1. Note that 0-11-
representable graphs are precisely word-representable graphs, and that 0-11-representants
are precisely word-representants. We also note that the “11” in “k-11-representable” refers
to counting occurrences of the consecutive pattern 11 in the word induced by a pair of
letters {x, y}, which is exactly the total number of occurrences of the factors in {xx, yy}.
Throughout the paper, we normally omit the word “consecutive” in “consecutive pattern”
for brevity. Finally, we let G(k) denote the class of k-11-representable graphs.

Lemma 2.1. Let k ≥ 0 and a word w k-11-represent a graph G. Then the word r(π(w))w
(k + 1)-11-represents G. Also, the word wr(σ(w)) (k + 1)-11-represents G. Moreover, if
k = 0 then the word ww 1-11-represents G.

Proof. Suppose x and y are two vertices in G. If xy is an edge in G then w|{x,y} contains at
most k occurrences of the pattern 11, so (r(π(w))w)|{x,y} (resp., (wr(σ(w)))|{x,y}) contains at
most k + 1 occurrences of the pattern 11, and xy will be an edge in the new representation.
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On the other hand, if xy is not an edge in G, then w|{x,y} contains at least k+1 occurrences of
the pattern 11, so (r(π(w))w)|{x,y} (resp., (wr(σ(w)))|{x,y}) contains at least k+2 occurrences
of the pattern 11, and xy will not be an edge in the new representation.

Finally, if x and y alternate in w, then ww contains at most one occurrence of xx or yy,
while non-alternation of x and y in w leads to at least two occurrence of the pattern 11 in
ww, which involves x or/and y. These observations prove the last claim.

Theorem 2.2. We have G(k) ⊆ G(k+1) for any k ≥ 0.

Proof. This is an immediate corollary of Lemma 2.1.

Lemma 2.3. Let k ≥ 0, G be a k-11-representable graph, and i and j be vertices in G,
possibly i = j. Then there are infinitely many words w k-representing G such that w = iw′j

for some words w′.

Proof. Let u k-representG. Then note that any word v of the form π(u) · · · π(u)uσ(u) · · · σ(u)
k-represents G. Deleting all letters to the left of the leftmost i in v, and all letters to the right
of the rightmost j in v, we clearly do not change the number of occurrence of the pattern 11
for any pair of letters {x, y}. The obtained word w satisfies the required properties.

There is a number of properties that is shared between word-representable graphs and
k-11-representable graphs for any k ≥ 1. These properties can be summarized as follows:

• The class G(k) is hereditary. Indeed, if a word w k-11-represents a graph G, and v is a
vertex in G, then clearly the word obtained from w by removing v k-11-represents the
graph G\{v}.

• In the study of k-11-representable graphs, we can assume that graphs in question are
connected (see Theorem 2.4).

• In the study of k-11-representable graphs, we can assume that graphs in question have
no vertices of degree 1 (see Theorem 2.5).

• In the study of k-11-representable graphs, we can assume that graphs in question have
no two vertices having the same neighbourhoods up to removing these vertices, if they
are connected (see Theorem 2.6).

• Glueing two k-11-representable graphs in a vertex gives a k-11-representable graph (see
Theorem 2.7).

• Connecting two k-11-representable graphs by an edge gives a k-11-representable graph
(see Theorem 2.8).

Theorem 2.4. Let k ≥ 0. A graph G is k-11-representable if and only if each connected
component of G is k-11-representable.
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Proof. IfG is k-11-representable then each ofG’s connected components is k-11-representable
by the hereditary property of k-11-representable graphs.

Conversely, suppose that Ci’s are the connected components of G for 1 ≤ i ≤ ℓ, and
wi k-11-represents Ci. Adjoining several copies of π(wi) to the left of wi, if necessary, we
can assume that each letter in any wi occurs at least k + 2 times. But then, the word
w = w1w2 · · ·wℓ k-11-represents G, since

• edges/non-edges in each Ci are represented by the wi, and

• for x ∈ Ci and y ∈ Cj, i 6= j, the word w|{x,y} contains at least 2k + 2 occurrences of
the pattern 11 making x and y be disconnected in G,

we are done.

Theorem 2.5. Let k ≥ 0, G be a graph with a vertex x, and Gxy be the graph obtained from
G by adding to it a vertex y connected only to x. Then, G is k-11-representable if and only
if Gxy is k-11-representable.

Proof. The backward direction follows directly from the hereditary nature of k-11-represent-
ability. For the forward direction, suppose that w k-11-represents G. Adjoining several
copies of π(w) to the left of w, if necessary, we can assume that x occurs at least 2k+2 times
in w. Replacing every other occurrence of x in w, starting from the leftmost one, with yxy,
we obtain a word w′ that k-11-represents Gxy. Indeed, clearly, the letters x and y alternate
in w′ so xy is an edge in Gxy no matter what k is. On the other hand, if z 6= x is a vertex
in G, then w′|{z,y} has at least k + 1 occurrences of the pattern 11 (formed by y’s) ensuring
that zy is not an edge in Gxy. Any other alternation of letters in w is the same as that in
w′.

Theorem 2.6. Let k ≥ 0 and G be a graph having two, possibly connected vertices, x and
y, with the same neighbourhoods up to removing x and y. Then, G is k-11-representable if
and only if G \ x is k-11-representable.

Proof. The forward direction follows directly from the hereditary nature of k-11-represent-
ability. For the backward direction, let w k-11-represent G \ x. If x and y are connected in
G, then replacing each y by xy in w clearly gives a k-11-representant of G because x and
y will have the same properties and they will be strictly alternating. On the other hand, if
x and y are not connected in G, then adjoining several copies of π(w) to the left of w, if
necessary, we can assume that y occurs at least k+2 times in w. We then replace every even
occurrence of y in w (from left to right) by yx, and every odd occurrence by xy. This will
ensure that in the subword induced by x and y, the number of occurrences of the pattern
11 is at least k+ 1 making x and y be not connected in G. On the other hand, still x and y

have the same alternating properties with respect to other letters. Thus, the obtained word
k-11-represents G, as desired.

Theorem 2.7. Let k ≥ 0, G1 and G2 be k-11-representable graphs, and the graph G is
obtained from G1 and G2 by identifying a vertex x in G1 with a vertex y in G2. Then, G is
k-11-representable.
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Proof. Let w1 and w2 be k-11-representants of the graphs G1 and G2, respectively. Recall
that if a word w k-11-represents a graph H, then the word w′ = π(w)w obtained from w by
adding the initial permutation π(w) of w in front of w also k-11-represents H. Applying this
observation, we may assume that the number of occurrences of x in the word w1 equals to
that of the letter y in the word w2. In addition, by Lemma 2.3, we may further assume that
w1 starts with the letter x, and w2 starts with the letter y. That is, w1 = xg1xg2 . . . xgm,
where gi’s are words over V (G1) \ {x}, and w2 = yh1yh2 . . . yhm, where hi’s are words over
V (G2) \ {y}. Let π1 (resp., π2) be the initial permutation of the word g1g2 . . . gm (resp.,
h1h2 . . . hm). In other words, π(w1) = xπ1 and π(w2) = yπ2.

Let z be the vertex in G which corresponds to the vertices x and y, i.e. z = x = y in
G. We claim that the word w(G) := (zπ1π2zπ2π1)

k+1zg1h1zg2h2 . . . zgmhm k-11-represents
the graph G. The induced subword of w(G) on V (G1) is precisely π(w1)

2k+2w1 which k-11-
represents the graph G1. Similarly, the induced subword of w(G) on V (G2) k-11-represents
the graph G2. Now, consider v1 6= x in V (G1) and v2 6= y in V (G2). By the definition of
G, the vertices v1 and v2 are not adjacent in G. Thus, it remains to show that the induced
subword w(G)|{v1,v2} has at least k+1 occurrences of the pattern 11, which is easy to see from
(v1v2v2v1)

k+1 being a factor of w(G)|{v1,v2}. Therefore, the word w(G) indeed k-11-represents
the graph G.

Theorem 2.8. Let k ≥ 0, G1 and G2 be k-11-representable graphs, and the graph G is
obtained from G1 and G2 by connecting a vertex x in G1 with a vertex y in G2 by an edge.
Then G is k-11-representable.

Proof. Let w1 and w2 be k-11-representants of G1 and G2, respectively. By the same argu-
ment as in Theorem 2.7, we can assume that the number of occurrences of the letter x in the
word w1 equals that of the letter y in the word w2. By Lemma 2.3, we can assume that w1

begins with x, and w2 ends with y. In addition, we can assume that the initial permutation
of w2 ends with y. Suppose the initial permutation of w2 does not end with y, and let AyB
be the initial permutation. It is clear that the word w′

2 = BAyBw2 also k-11-represents G2,
so that we can consider w′

2 instead of w2, and the initial permutation of w′
2 ends with y.

Now we can write w1 = xg1xg2 . . . xgm, where gi’s are words over V (G1) \ {x}, and
w2 = h1yh2y . . . hmy, where hi’s are words over V (G2) \ {y}. Let π1 (resp., π2) be the initial
permutation of the word g1g2 . . . gm (resp., h1h2 . . . hm). Observe that π(w1) = xπ1 and
π(w2) = π2y. We claim that the word w(G) := (xπ1π2yπ2xyπ1)

k+1xg1h1yxg2h2y . . . xgmhmy

is a k-11-representant of G. As in Theorem 2.7, it is clear that the word w(G) k-11-represents
the graphs G1 and G2, when restricted to V (G1) and V (G2), respectively. Also, w(G) makes
the vertices x and y be adjacent, because w(G)|{x,y} = (xy)2k+m+2. Hence, it remains to
show that for every v1 ∈ V (G1) and v2 ∈ V (G2) such that v1 6= x or v2 6= y, which must
be non-adjacent in G, the induced subword w(G)|{v1,v2} has at least k+1 occurrences of the
pattern 11. This is obviously the case, because w(G)|{v1,v2} contains (v1v2v2v1)

k+1 having at
least 2k + 1 occurrences of the pattern 11. Therefore, the word w(G) k-11-represents the
graph G.

Theorem 2.9. Let G be a graph with a vertex v. If G \ v is k-uniform word-representable
for k ≥ 1, then G is (k − 1)-11-representable.
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Proof. Let w be a k-uniform word that represents the graph G \ v. Let N(v) ⊂ V (G) be the
set of all neighbors of v in G, and let N c(v) be the complement of N(v) in V (G) \ {v}, i.e.
N c(v) = V (G) \ (N(v) ∪ {v}). We will describe how to construct a (k − 1)-11-representant
w(G) of G from the word w. Recall that r(π(w)) is the reverse of the initial permutation
π(w) of the word w.

We start with the word π(w)|N(v)vπ(w)|Nc(v) w, where π(w)|N(v) and π(w)|Nc(v) are the
induced subwords of π(w) on N(v) and N c(v), respectively. In each step, we adjoin the words
r(π(w))v and π(w)v, in turn, from the left side of the word constructed in the previous step.
We stop when the current word, denoted by w(G), has exactly k v’s. For example, the word
w(G), when k = 6, is given by

w(G) = r(π(w))v π(w)v r(π(w))v π(w)v r(π(w))v π(w)|N(v)vπ(w)|Nc(v) w.

Next, we will show that the word w(G) (k − 1)-11-represents G. First, take a vertex x 6= v

in G. If x ∈ N(v), then w(G)|{x,v} = xv . . . xv w|{x} has k − 1 occurrences of the pattern 11
since w|{x} = xk. If x ∈ N c(v), then w(G)|{x,v} = xv . . . xv vx w|{x} has k+ 1 occurrences of
the pattern 11. Thus w(G) preserves all the (non-)adjacencies of v. Now, take two distinct
vertices, y, z in V (G) \ {v}. Without loss of generality, we can assume that π(v)|{y,z} = yz.
If y and z are adjacent in G \ v, then w|{y,z} = yzyz . . . yz. Hence, the induced subword

w(G)|{y,z} = . . . zy yz zy (π(w)|N(v)vπ(w)|Nc(v))|{y,z} yzyz . . . yz

has k − 1 occurrences of the pattern 11 since the part . . . zy yz zy is of length 2(k − 1),
and (π(w)|N(v)vπ(w)|Nc(v))|{y,z} is either yz or zy. If y and z are not adjacent in G \ v,
then w|{y,z} has at least one occurrence of the pattern 11 and it starts with y. Hence,
w(G)|{y,z} = . . . zy yz zy (π(w)|N(v)vπ(w)|Nc(v))|{y,z} w|{y,z} has at least k occurrences of
the pattern 11 since the only difference from the previous case is w|{y,z}, which now has at
least one occurrence of the pattern 11. This proves that w(G) is a (k − 1)-11-representant
of G.

Theorem 2.10. For any non-negative integers m and k satisfying 2m − k − 1 > 0, the
following holds. Let G be a graph with a vertex v. If G \ v is m-uniform k-11-representable,
then G is (3m− k − 1)-uniform (2m− 2)-11-representable.

Proof. Let w be an m-uniform k-11-representant of G \ v, N(v) ⊂ V (G) be the set of all
neighbors of v in G, and let N c(v) = V (G)\ (N(v)∪{v}). We will describe how to construct
a (3m− k − 1)-uniform (2m− 2)-11-representant w(G) of G from the word w. Similarly to
the proof of Theorem 2.9, we start with the word π(w)|N(v)vπ(w)|Nc(v) w, and in each step,
we adjoin r(π(v))v and π(w)v, in turn, from the left side until w(G) has exactly 2m− k− 1
occurrences of v. Then, we adjoin vm from the left side. For example, when k = 3 and
m = 4, the word w(G) is given by

w(G) = vvvv r(π(w))v π(w)v r(π(v))v π(w)|N(v)vπ(w)|Nc(v) w.

It is easy to see that w(G) is (3m − k − 1)-uniform. Indeed, if x ∈ V (G) \ {v}, then w(G)
contains (2m − k − 1) + m = 3m − k − 1 x’s since w is m-uniform; also, w(G) contains
m+(2m− k− 1) = 3m− k− 1 v’s. Next, we will show that w(G) (2m− 2)-11-represents G.
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Let x ∈ V (G) \ {v}. If x ∈ N(v), then w(G)|{x,v} = vm xv . . . xv xm. Thus w(G)|{x,v}
has 2m − 2 occurrences of the pattern 11. If x ∈ N c(v), then the only difference from the
previous case in w(G)|{x,v} is that π(w)|N(v)vπ(w)|Nc(v) is vx, not xv. Thus, w(G)|{x,v} has
2m occurrences of the pattern 11. Now take two distinct vertices x, y ∈ V (G)\{v}. Without
loss of generality, we can assume that π(w)|{x,y} = xy. If x, y are adjacent in G \ v, then
w|{x,y} has at most k occurrences of the pattern 11. Hence,

w(G)|{x,y} = . . . yx xy yx (π(w)|N(v)vπ(w)|Nc(v))|{x,y} w|{x,y}.

Since the length of . . . yx xy yx is 4m− 2k − 4 and (π(w)|N(v)vπ(w)|Nc(v))|{x,y} is xy or yx,
w(G)|{x,y} has at most (2m− k − 3) + 1 + k = 2m− 2 occurrences of the pattern 11. If x, y
are not adjacent in G \ v, then w|{x,y} has at least k + 1 occurrences of the pattern 11. In
this case, the only difference from the previous case in w(G) is w|{x,y} and so w(G)|{x,y} has
at least (2m− k − 3) + 1 + k + 1 = 2m− 1 occurrences of the pattern 11. This proves that
w(G) is a (2m− 2)-11-representant of G.

Corollary 2.11. For any non-negative integers n and k satisfying 2n + k − 7 > 0, if each
graph on n vertices is (k + n − 3)-uniformly k-11-representable, then every graph on n + 1
vertices is (2k + 3n− 10)-uniformly (2k + 2n− 8)-11-representable.

Proof. This is a direct consequence of Theorem 2.10. Suppose every graph on n vertices is
(k+n−3)-uniformly k-11-representable, and G is a graph on n+1 vertices. Clearly, k+n−3
is a positive integer since we have 2n + k − 7 > 0. Then for any vertex v in G, the graph
G \ v obtained from G by removing a vertex v is (k + n − 3)-uniformly k-11-representable.
Since 2(k + n − 3) − k − 1 = 2n + k − 7 > 0, we can apply Theorem 2.10, concluding that
the graph G is (2k + 3n− 10)-uniform (2k + 2n− 8)-11-representable.

In particular, Corollary 2.11 holds for any integers n ≥ 5 and k ≥ 0.

3 1-11-representable graphs

An interval graph has one vertex for each interval in a family of intervals, and an edge
between every pair of vertices corresponding to intervals that intersect. Not all interval
graphs are word-representable [10]. However, all interval graphs are 1-11-representable using
two copies of each letter, as shown in the following theorem. This shows that the notion
of an interval graph admits a natural generalization in terms of 1-11-representable graphs
(instead of 2-uniform 1-11-representants, one can deal with m-uniform 1-11-representants
for m ≥ 3).

Theorem 3.1. A graph is an interval graph if and only if it is 2-uniformly 1-11-representable.

Proof. LetG be a 1-11-representable graph on n vertices and w = w1w2 . . . w2n be a word that
2-uniformly 1-11-represents G. For any v ∈ V (G) = [n], consider the interval Iv = [v1, v2] on
the real line such that wv1 = wv2 = v. Note that uv is an edge in G if and only if Iu and Iv
overlap. But then, G is the interval graph given by the family of intervals {Iv : v ∈ [n]}.
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To see that any interval graph G is necessarily 1-11-representable, we note a well-known
easy to see fact that in the definition of an interval graph, one can assume that overlapping
intervals overlap in more than one point. But then, the endpoints of an interval Iv will give
the positions of the letter v in a word w constructed by recording relative positions of all
the intervals. As above, one can see that such a w 1-11-represents G.

Given a graph G with an edge xy, we let G△
xy be the graph obtained from G by adding

a vertex z connected only to the vertices x and y. Thus, G△
xy is obtained from G by adding

a triangle. If G is word-representable, that is, G ∈ G(0), then G△
xy is not necessarily word-

representable. This can be seeing on the non-word-representable graph D1 in Figure 2.
Indeed, removing, for example, the top vertex in that graph, we obtain a word-representable
graph, since the only non-word-representable graph on six vertices is the wheel W5 [10, 11].
The following theorem establishes that adding a triangle is a safe operation in the case of
1-11-representable graphs.

Theorem 3.2. Let G ∈ G(1) and xy be an edge in G. Then G△
xy ∈ G(1).

Proof. Let w be an 1-11-representant of G. Note that, since x and y are adjacent in G, the
letters x and y are either alternating in the word w, or w|{x,y} has exactly one occurrence of
the pattern 11. In each case, we will construct a word w̃ over V (G△

xy), which 1-11-represents
the graph G△

xy.

Case 1. Suppose that x and y are alternating in w. By Lemma 2.3, we can assume that
w starts with x and ends with y, i.e. w = x g1 y g2 . . . x gm y, where gi is a word
on V (G) \ {x, y}. Also, we can assume that m ≥ 3; if not, adjoin the initial
permutation π(w) to the left of w. Now, we claim that the word

w̃ := zxz g1 y g2 x g3 zyz g4 x g5 yz g6 . . . x gm yz

1-11-represents the graph G△
xy, where z ∈ V (G△

xy) \ V (G).

It is clear that w̃ respects the whole structure of G since the restriction of w̃ to
V (G) is w. Since w̃|{x,z} = zxzxzzxz . . . xz and w̃|{y,x} = zzyzyzyz . . . yz, z is
adjacent to x and y. On the other hand, for each v ∈ V (G) \ {x, y}, it is obvious
that the induced subword w̃|{v,z} has at least two occurrences of the pattern 11,
hence z is not adjacent to v. Therefore, w̃ 1-11-represents the graph G△

xy.

Case 2. Suppose w|{x,y} has exactly one occurrence of the pattern 11. Without loss of
generality, we can assume that w|{x,y} contains the occurrence of the factor yy. By
Lemma 2.3, we can also assume that w starts with x and ends with x, i.e.

w = x g1 y g2 . . . x gm−1 y gm y h1 x h2 . . . y hl x

for some positive integers m, l, and words gi, hj on V (G) \ {x, y}. We claim that
the word

w̃ := zxz g1 y g2 xz g3 y g4 . . . xz gm−3 y gm−2 x gm−1 zyz gm y h1 xz h2 . . . y hl xz
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1-11-represents the graph G△
xy.

It is clear that w̃ respects the whole structure of G since the restriction of w̃ to
V (G) is w. Since w̃|{x,z} = zxzx . . . zxzzxz . . . xz and w̃|{y,z} = zzyzyz . . . yz, z is
adjacent to x and y. On the other hand, for each v ∈ V (G)\{x, y}, the induced
subword w̃|{v,z} has at least two occurrences of the pattern 11, hence z is not
adjacent to v. Therefore, w̃ 1-11-represents the graph G△

xy.

For the next theorem, Theorem 3.3, recall the definition of a permutationally repre-
sentable graph in Section 1. Note that the proof of Theorem 3.3 is similar to that of
Theorem 2.9, while Theorem 3.3 deals with a stricter assumption. However, the stricter
assumption is compensated by a stronger conclusion, justifying us having Theorem 2.9.

Theorem 3.3. Let G be a graph with a vertex v. If G \ v is permutationally representable
(equivalently, by Theorem 1.4, if G\v is a comparability graph) then G is 1-11-representable.

Proof. Let w be a 0-11-representant of G\v. Since G\v is permutationally representable, we
can assume that w is of the form w = π1π2 . . . πk for some positive integer k and permutations
πi of V (G \ v). Let N(v) be the set of neighbours of v in G and let N c(v) := V (G) \ (N(v)∪
{v}). We claim that the word

w(G) := r(π(w)) v π(w)|N(v) v π(w)|Nc(v) π1vπ2v . . . vπk.

1-11-represents the graph G.
For each x ∈ V (G)\{v}, if x ∈ N(v) then the induced subword w(G)|{x,v} = xvxv . . . xvx

is alternating, which should be the case. If x ∈ N c(v), then the induced subword w(G)|{x,v} =
xvvxxvxv . . . xvx has two occurrences of the pattern 11, which, again, should be the case.
Thus, w(G) respects all adjacencies of the vertex v. Now, take y, z ∈ V (G) \ {v}. If
y and z are adjacent in G \ v, then w|{y,z} has alternating y and z. Without loss of
generality, assume that w|{y,z} = yzyz . . . yz. Then, the induced subword w(G)|{y,z} =
zy (π(w)|N(v) π(w)|Nc(v))|{y,z} yzyz . . . yz has at most one occurrence of the pattern 11 as
(π(w)|N(v) π(w)|Nc(v))|{y,z} is either yz or zy. If y and z are not adjacent in G \ v, then
w|{y,z} is not alternating, i.e. it contains either yy or zz. Without loss of generality, assume
that w|{y,z} contains yy. If π(w)|{y,z} = yz, then with the assumption on an occurrence of
yy, at least one occurrence of the factor zz is not avoidable in w, so at least two occurrences
of the pattern 11 in w(G)|{y,z} are guaranteed. Otherwise, w|{y,z} = zy . . . zy yz . . . . Then,
w(G)|{y,z} = yz (π(w)|N(v) π(w)|Nc(v))|{y,z} zy . . . zy yz . . . has two occurrences of the pat-
tern 11, as (π(w)|N(v) π(w)|Nc(v))|{y,z} is either yz or zy. In any case, w(G) preserves the
(non-)adjacency of y and z. Therefore the word w(G) 1-11-represents the graph G.

Theorem 3.4. Let G be a word-representable graph and e be an edge in G. Let G \ e be the
graph obtained from G by removing e. Then, G \ e is 1-11-representable.
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Proof. Let e = xy and w be G’s uniform word-representant that exists by Theorem 1.1.
Without loss of generality, we can assume that w|{x,y} = xyxy . . . xy. We claim that the
graph G′ on V (G), which is 1-11-represented by the word w′ := yxwwyx, is precisely the
graph G \ e.

It is clear that x and y are not adjacent in G′ since w′|{x,y} = yxxy . . . xyyx. Since
the word ww is a 1-11-representant of G, it remains to show that for every vertex z ∈
V (G) \ {x, y}, and a vertex i ∈ {x, y}, G′ contains the edge iz whenever iz is an edge in
G. Suppose iz is an edge in G. Then, ww|{i,z} is either iz . . . iz, or zi . . . zi. It follows that
w′|{i,z} is either iiz . . . izi, or izi . . . zii. Thus, iz is an edge in G′. If iz is not an edge in G,
then ww|{i,z} will contain at least two occurrences of the pattern 11, so iz is not an edge in
G′. This shows that G′ = G \ e.

The following two theorems generalize Theorem 3.4. The reason that we keep The-
orem 3.4 as a separate result is that it is very useful in 1-11-representing 25 non-word-
representable graphs (see Section 4).

Theorem 3.5. Let G be a word-representable graph and K be a vertex subset in G. Let GK

be the graph obtained from G by removing the edges {xy ∈ E(G) : x, y ∈ K}. Then, GK is
1-11-representable.

Proof. Let w be a uniform word-representant of G that exists by Theorem 1.1. Let p be the
reverse of the initial permutation of w|K , and let q be the reverse of the final permutation
of w|K . Note that if K is a clique in G, then p = q. It is straightforward to check that the
word w′ := pwwq 1-11-represents the graph GK .

Theorem 3.6. Let G be a word-representable graph, v be a vertex in G, and N be a set
of some (not necessarily all) neighbors of v in G. Let GN be the graph obtained from G by
removing the edges {uv : u ∈ N}. Then, GN is 1-11-representable.

Proof. Let N = {v1, . . . , vk} and w be a uniform word-representant of G. Since w is uniform,
by Theorem 1.2, we can assume that v is the first letter in w. Without loss of generality,
assume that v1 . . . vk is the initial permutation of w|N . Then, it is easy to check that the
word w′ := vk . . . v1vwwvk . . . v1v 1-11-represents the graph GN .

4 1-11-representing non-word-representable graphs

All graphs on at most five vertices are word-representable, and there is only one non-word-
representable graph, the wheel W5, on six vertices (see Figure 1). Also, there are 25 non-
word-representable graphs on 7 vertices, which are shown in Figure 2.

The following theorem shows that the notion of k-11-representability allows us to enlarge
the class of word-representable graphs (G(0)), still by using alternating properties of letters
in words.

Theorem 4.1. We have G(0) ( G(1).

12
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Figure 1: The wheel graph W5

Proof. By Theorem 2.2, we have G(0) ⊆ G(1). To show that the inclusion is strict, we give
a word 1-11-representing the non-word-representable wheel graph W5 in Figure 1. We start
with 0-11-representing the cycle graph induced by all vertices but the vertex 6 by the 2-
uniform word w = 1521324354. This word, and a generic approach to find it, is found on
page 36 in [10]. Note that the initial permutation π(w) is 15234, and thus, by Lemma 2.1,
the word r(π(w))w = 432511521324354 1-11-represents the cycle graph. Inserting a 6 in w

to obtain u = 4325161521324354 gives a word 1-11-representing W5 (which is easy to see).
Note that the word 6u6 gives a 3-uniform 1-11-representant of W5.

We do not know whether G(1) coincides with the class of all graphs, but at least we can
show that all 25 graphs in Figure 2 are 1-11-representable, which we do next. We will use
the fact that all graphs on at most six vertices are 1-11-representable, which follows from
the proof of Theorem 4.1, where we 1-11-represent the only non-word-representable graph
on six vertices.

The graphs A1 and A5 are 1-11-representable by Theorem 2.5, since they have a vertex
of degree 1. Theorem 2.6 can be applied to the graphs A4, C4 and C5 since each of these
graphs have a pair of vertices whose neighbourhoods are the same up to removing these
vertices. Further, Theorem 3.2 gives 1-11-representability of the graphs A6, A7, B5, D1, D4

and D5 since each of these graphs has a triangle with a vertex of degree 2. Explicit easy-to-
check 1-11-representants of the graphs A2 and A3 are, respectively, 437257161521324354 and
437251761521324354. For each graph G of the remaining 12 graphs in Figure 2, we provide
vertices x and y connecting which by an edge results in a word-representable graph Gxy, so
that Theorem 3.4 can be applied (removing the edge xy from Gxy) to see that G is 1-11-
representable. The fact that Gxy is word-representable follows from it not being isomorphic
to any of the graphs in Figure 2, where all non-word-representable graphs on seven vertices
are presented. Alternatively, one can use the software packages [5, 17] to see that Gxy is
word-representable (the software can produce an easy to check word representing Gxy).

5 All graphs are 2-11-representable

A simple graphG = (V,E) is permutationally k-11-representable if there is a k-11-representant
w of G which is a concatenation of permutations of V . Such a word w is called a permu-
tational k-11-representant of G. In this section, we will prove that every graph is permuta-
tionally 2-11-representable, by an inductive construction of a 2-11-representant. This result
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Figure 2: The 25 non-isomorphic non-word-representable graphs on 7 vertices

also implies that every graph is permutationally k-11-representable for any integer k ≥ 2 by
Lemma 2.1. We still do not know whether every graph is 1-11-representable or not.

We begin with a simple observation.

Observation 5.1. If a word w = w1Pw2 k-11-represents a graph G where P is a permutation
of V (G), then the word w′ = w1PPw2 also k-11-represents the graph G.

In the proof of the following theorem, we use the following notation. For a pair of vertices
u and v in G, we write u ∼ v if u and v are adjacent in G, and u ≁ v otherwise. Also, for
convenience, we separate permutations in a permutational 2-11-representant by space.

Theorem 5.2. Let G = (V,E) be a graph on n ≥ 2 vertices. Then there is a permutational
2-11-representant w over the alphabet V such that

(a) w is a concatenation of at most f(n) = n2 − n+ 2 permutations of V , and

(b) for each i ∈ V , there exists a permutation P in w that starts with i, i.e. P = iQ where
Q is a permutation of V \ {i}.
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Proof. We use induction on n. For the base case when n = 2, we take the 2-11-representant
12 21 12 12 of a complete graph on the vertex set {1, 2}, and we take the 2-11-representant
12 21 12 21 of two isolated vertices 1 and 2.

Suppose n ≥ 3 and let G be a graph with the vertex set V = [n]. By the induction
hypothesis, the induced subgraph G \ n can be 2-11-represented by a word

P1P2 · · ·Pf(n−1),

where each Pi is a permutation of [n−1]. Note that, by the condition (b), for each i ∈ [n−1]
we can choose one ki ∈ [f(n−1)] so that the permutation Pki = iQi whereQi is a permutation
of [n− 1] \ {i}.

Now we construct a 2-11-representant w of G satisfying the conditions (a) and (b). For
each i ∈ [f(n− 1)], let

P ′
i :=







jnQj if i = kj for some j ∈ [n− 1] and n ∼ j

jnQj njQj jnQj if i = kj for some j ∈ [n− 1] and n ≁ j

nPi otherwise,

and define
w = P ′

1 · · ·P
′
f(n−1).

Note that all of nPi, jnQj and njQj are permutations of [n]. Thus, the word w is a concate-
nation of at most f(n − 1) + 2(n − 1) = n2 − n + 2 permutations of [n] and the condition
(b) obviously holds. It remains to show that w 2-11-represents the graph G.

By applying Observation 5.1 repeatedly, we observe that the subword of w induced by
[n−1] 2-11-represents the graph G\n. Hence, it is sufficient to check whether the adjacency
of the vertex n is preserved. For each i ∈ [n− 1], the subword of w induced by the letters i
and n is given by

(ni)a (in) (ni)b if i ∼ n,

having at most 2 occurrences of the consecutive pattern 11, and is given by

(ni)a in ni in (ni)b if i ≁ n

with at least 3 occurrences of the consecutive pattern 11. This completes the proof.

Recall that, by Theorem 2.4, a graph G is 2-11-representable if and only if each connected
component of G is 2-11-representable. It is obvious that every connected graph G on at least
two vertices contains no isolated vertex, and that there always exists a vertex v in G such
that G \ v is again connected. Applying this observation, we can improve the function f(n)
in Theorem 5.2 for connected graphs as follows.

Theorem 5.3. Let G = (V,E) be a connected graph on n ≥ 2 vertices. Then there is a
2-11-representant w over the alphabet V such that

(a) w is a concatenation of f(n) = n2 − 3n+ 4 permutations of V , and

(b) for each i ∈ V , there is a permutation P in the word w which starts with i.
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6 Open problems on k-11-representable graphs

The most intriguing open question in the theory of k-11-representable graphs is the following.

Problem 1. Is it true that any graph is 1-11-representable? If not, then which classes of
graphs are 1-11-representable? In particular, are all planar graphs or all 4-chromatic graphs
1-11-representable?

Note that W5 shows that not all planar or 4-chromatic graphs are word-representable,
justifying our specific interest to these classes of graphs.

By Theorem 1.1, any word-representable graph can be represented by a uniform word.
It is known that the class of permutationally word-representable graphs coincides with the
class of comparability graphs [11]. Also, by Theorem 5.2 and Lemma 2.1, for every k ≥ 2
any graph is permutationally k-11-representable. Thus, the following questions are natural.

Problem 2. Is it true that any 1-11-representable graph can be represented by a concate-
nation of permutations? Or, at least, by a uniform word?

It is known [7] that if a graph G with n vertices is word-representable, then it can be
represented by a uniform word of length at most 2n(n−κ) where κ is the size of a maximum
clique in G. An upper bound for the length of k-11-representants for k ≥ 2 can be derived
from Theorems 5.2 and 5.3 and Lemma 2.1. In particular, 2-11-representants are of length
O(n3). However, we have no upper bounds for the length of words 1-11-representing graphs.

Problem 3. Provide an upper bound for the length of words 1-11-representing graphs.

Remind that Theorem 3.1 shows that the class of interval graphs is precisely the class of
1-11-representable graphs that can be represented 2-uniformly.

Problem 4. Does the class of m-uniformly 1-11-representable graphs, for m ≥ 3, have any
interesting/useful properties? In particular, is there a description of such graphs in terms of
forbidden subgraphs? A good starting point to answer the last question should be the case
of m = 3.

As the first step in the direction of Problem 4, we discuss a geometric realization of
r-uniformly k-11-representable graphs, which might give new results on characterization
problems for word-representable graphs. This is motivated from the fact that a graph is
2-uniformly 0-11-representable if and only if it is a circle graph.

Take a convex curve γ = γ(t), t ∈ [0, 1], in the plane (not necessarily closed) and consider
a set of n× r distinct real numbers S = {x1, x2, . . . , xnr} such that

0 ≤ x1 < x2 < · · · < xnr ≤ 1.

Color each element in S by [n], i.e. we choose an injection φ : S → [n], such that |Si| = r

where Si := {x ∈ S : φ(x) = i}. Say Si := {xi1xi2 , . . . , xir} where xij < xik whenever j < k.
Now we draw n piecewise linear convex curves

Ci : γ(xi1)− γ(xi2)− · · · − γ(xir), i ∈ [n]
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γ(ti,1)
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γ(ti,r−1)

γ(ti,r)

γ

· · ·

Figure 3: The piecewise linear convex curve Ci

connecting the points γ(xi1), . . . , γ(xir). See Figure 3 for an illustration.
Note that for every two distinct Ci and Cj, we have |Ci ∩ Cj| ≤ 2r − 3. For each

m ∈ [2r − 3], we define m-intersection graph Im(Cφ) of Cφ = {C1, . . . , Cn} as the graph on
[n] such that two distinct vertices i, j ∈ [n] are adjacent if and only if |Ci ∩ Cj| ≥ m. In
particular, when m = 1, the graph I1(Cφ) is just the intersection graph of C.

On the other hand, regarding [n] as an alphabet, we construct a word over [n]:

w = φ(x1)φ(x2) . . . φ(xnr).

Then the subword of w induced by two distinct letters i and j has at most 2r − 3 − m

occurences of the consecutive pattern 11 if and only if i ∼ j (i.e. ij is an edge) in the graph
Im(C). As an immediate consequence of this relation, we observe the following.

Proposition 6.1. For every positive integer m and r ≥ 2 such that 1 ≤ m ≤ 2r−3, a graph
G is r-uniform (2r−3−m)-11-representable if and only if there exists a coloring φ : S → [n]
so that G = Im(Cφ).

Proof. By the above argument, it is sufficent to prove that every r-uniform (2r− 3−m)-11-
representable graph G assigns a coloring φ : S → [n] so that G = Im(Cφ). This is obvious
since an r-uniform (2r − 3−m)-11-representant of G naturally gives a coloring φ : S → [n]
with |Si| = r, and the corresponding family Cφ of n piecewise linear convex curves satisfies
that Im(Cφ) = G.

Note that for every k > 2r−3, the only r-uniform k-11-representable graphs are complete
graphs. When m = 0, the r-unifrom (2r − 3)-11-representable graphs can be specified as a
well-known graph class.

Proposition 6.2. A graph is r-uniform (2r − 3)-11-representable if and only if it is an
interval graph.

Proof. Given an r-unifrom (2r − 3)-11-representable graph G on [n], take any r-unifrom
(2r − 3)-11-representant w. Clearly two vertices i and j are not adjacent in G if and only
if the subword of w induced by i and j consists of r consecutive i’s and r consecutive
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j’s, i.e. either i . . . i j . . . j or j . . . j i . . . i. Embed the word w on a line, and consider an
interval Ji defined by the leftmost i and the rightmost i. Then G is the intersection graph
of {J1, . . . , Jn}.

For the other direction, let G be the intersection graph of intervals {J1, . . . , Jn}. Since
n is finite, we may assume that each Ji is bounded and no two intervals share an end-point.
We label the end-points of Ji by i, and construct a 2-uniform word by reading the labels
from left to right. Then we insert r − 2 i’s in arbitrary positions between two original i’s in
the word. This gives us a r-unifrom (2r − 3)-11-representant of G.
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