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Abstract: Partial discharges (PDs) are symptomatic of some localised defects in the insulation system of electrical equipment.
PD activity emits electrical pulses in the form of radio frequency (RF) signals which can be captured using appropriate sensors.
The analysis of the measured RF signals facilitates localisation of PD. This study investigates the plausibility of using purely RF
received signal features of PD pulses to locate PD at low cost. A localisation approach based on the analysis of these features
has been developed, with the assumption that PDs generate unique RF spatial patterns due to the complexities and
nonlinearities of RF propagation. In this approach, two distinct frequency bands which hold different PD information are
exploited. PD location features are extracted from the main PD signal and the two sub-band signals. Correlation-based feature
selection (CFS) is employed for feature selection and dimensionality reduction. Experimental results show that PD location can
be inferred from the features of the PD pulses. The application of CFS to PD data reduces the memory/computational demand
and improves localisation accuracy.

1௑Introduction
Partial discharge (PD) is a result of electrical insulation breakdown
irrespective of the causal mechanism. PD activity is generally
accepted as a predominant cause for further insulation degradation
which may eventually lead to catastrophic failure of the electrical
equipment with severe social and economic consequences [1, 2]. It
is therefore imperative that PD is detected and located at its early
stages to permit repair/replacement prior to total failure.

PD localisation methods are based on measurement and
analysis of the PD pulses. The radio frequency (RF)-based methods
exploit the characteristics of electromagnetic waves [3] emanating
from the discharge site to infer its location [4–7]. Much of the work
done in this area focused on the use of time difference of arrival
(TDoA) [8], direction of arrival (DoA) [9] and received signal
strength (RSS) [10] gathered at multiple receivers to triangulate the
PD location. RF PD source location has been implemented using
TDoA measurement [6, 11–13]. A number of spatially separated
antennas are used to pick up the RF signals. It is assumed the
signals diminish with distance from the origin of the PD. The
received signals are cross-correlated to yield the TDoA of the PD
signal at each antenna and these TDoA are used to estimate the
location of the PD source. TDoA requires accurate
synchronisation, making it computationally complex and energy
hungry, hence not possible to deploy for continuous monitoring
and localisation of PD. DoA measurement has also been
successfully used to locate PD sources [14, 15]. In this method,
directional antenna arrays are used to estimate the DoA of the RF
signals that propagate from the discharge generating defect. The
location of the PD source is then determined by solving the two
intersecting lines defined by the DoAs. As earlier mentioned, DoA
requires an array of directional antennas and relies on line of sight
path. DoA brings extra computational cost. Both TDoA and DoA
are seen as uneconomic because they require additional hardware.
RSS triangulation approach requires detailed models of RF
propagation and does not account for existing variation. It is
practically impossible to implement in situations where the
transmit power is unknown which is the case under study.

An alternative approach is to use empirical measurements of
received RF signals to infer PD location. By recording a database
of PD ‘signatures’ along with their known locations, a PD location

can be determined by acquiring its signature and comparing it with
the known signatures in the database. The pattern matching scheme
is considered as a low cost, low complexity technique compared to
those based on distance/angle estimation [16]. Instead of exploiting
signal timing or direction, it relies on signal structure
characteristics. It turns the multipath phenomenon to surprisingly
good use: by combining the multipath pattern with other signal
characteristics, it creates a signature unique to a given location.

We propose to deploy a network of low cost off-the-shelf
commercial radio sensors in a matrix form. The low cost of the
proposed solution allows a monitoring system to be permanently
deployed and thus continuously monitor the substation in real time.
In the proposed approach, sensor nodes emit an emulated PD signal
in a round robin fashion. All other nodes monitor these emulated
signals allowing the creation of a database with a map of spatial
propagation characteristics across the substation. The database is
interpolated and can be used to estimate the true location of PD. In
this manner, our model of the radio environment is highly tuned to
the individual characteristics of the substation site. Frequent
retuning can be scheduled at regular intervals, such that any
changes to substation topography can be incorporated into an
updated model.

This work is aimed at investigating the plausibility of using
purely RF received signals features of PD pulses to determine PD
location. In our previous work [7], we obtained good results using
ratios of RSS as PD features, however, by exploiting the frequency
selective nature of multipath propagation, additional PD features
can be extracted from RF signals to improve PD location error, and
these additional features are included in this work. Furthermore,
due to the high dimensionality of the features extracted in this
work, correlation-based feature selection (CFS) algorithm [17, 18]
is employed to select the best possible set of features that will be
used in the localisation process to enhance accuracy while reducing
computational cost. The obtained results are quite encouraging.
With high probability, our system is able to estimate PD location of
a single source to within a few metres of its actual location. This
suggests that an autonomous and efficient substation-wide RF-
based monitoring system can be built at low cost.

The remainder of this paper is structured as follows. Section 2
presents the experimental procedure and addresses the feature
extraction procedure. In Section 3, a description of the extracted
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features as a function of location and localisation algorithm is
presented. The experimental results are discussed in Section 4.
Finally, the concluding remarks are stated in Section 5.

2௑Experimental procedure
2.1 Data acquisition

The experiment was conducted in a 19.20ௗ×ௗ8.40 m2 laboratory at
the University of Strathclyde. The laboratory contained a great deal
of clutter including metallic objects. Although we do not claim that
the radio environment is representative of a typical substation (if
there is such a thing), nonetheless the presence of clutter etc. gives
rise to a complex, multipath-rich, propagation environment. A 1௓mௗ
×ௗ1௓m grid was constructed in the floor of the laboratory (8ௗ×ௗ18
points), and measurements collected at each of the 144 grid
intersection points which represent known training dataset.
Another dataset was collected from 32 different points within the
same laboratory referred to herein as test dataset and is used to test
the performance of the localisation algorithm after training. The
layout of the measurement space is as shown in Fig. 1. Pulse
emulated PD sources were set up using a picosecond pulse
generator and 20 PD pulses generated at each location in the grid.
The RF measurements were made using three monopole antennas
connected to a high-speed multichannel oscilloscope. The
oscilloscope has a bandwidth of up to 9௓GHz, however, for the
purpose of this work, the received RF signals were sampled at 2௓
GSa/s. A sample waveform of the PD pulse is as shown in Fig. 2. 

2.2 Feature generation and selection

In previous work [7], we have examined the potential of relative
RSS (since PD will be of unknown magnitude) to infer location. In
this work, we additionally exploit the knowledge that multipath
effects will influence the delay spread (time duration) of a signal,
and this, in turn, can provide information on the location of the
source. Furthermore, multipath is highly frequency selective and so

the ratio of specific frequency components will also yield useful
information. The use of relative frequency measures will account
for the different frequency components inherent in different types
of PD. Each of these signal properties represents a feature. The
features considered in this paper for PD location are as shown in
Table 1. By way of explanation, the RMS feature represents the
ratio of RMS values across receiving antenna pairs rather than
absolute RMS values. These features are computed from PD pulse
waveform. Intuitively, the derivation and use of these features for
PD location are based on the fact that any discharge event produces
RF signal that will propagate as travelling wave through the
environment. As a result, the radiated signal amplitude and shape
are modified by the propagation environment between the PD
source and the receiving antennas due to path loss attenuation,
signal shadowing and multipath effect. These effects may vary
quite markedly within an electricity substation leading to the
uniqueness of the signal to the location of measurement. The nature
of the received PD pulse suggests that manipulating the amplitude
and peaks of the signals can provide a rich database for inferring
PD location. The received PD signal is not only a function of the
source but also the measuring device. With the response of the
measuring device known, more characteristics of the signals at
defined intervals may be explored and used for localisation. 

The PD data are collected using three identical monopole
antennas. The frequency response of the antenna produces two
peaks at 151 and 200.7௓MHz, respectively, as shown in Fig. 3. 

These peaks indicate the regions where most of the information
about the discharge are captured. Based on the information from
the frequency response, two bandpass filters are designed to filter
the PD signals in these regions for more information. The centre
frequencies of the filters corresponding to the peaks observed from
the frequency response. The upper and the lower cut-off
frequencies are 145.5 and 155.5௓MHz for band 1 and 195.35 and
205.35௓MHz for band 2; these correspond with the 3௓dB point of
each peak. This provides us with two more distinct PD sub-signals
as shown in Fig. 4 for analysis. 

Each of the observed radio characteristics for each antenna
produces 15 features making it a total of 45 features for the three
antennas. There is a trade-off between the number of features used
as inputs to a machine learning algorithm and performance. A
delicate balance must be achieved between too few features
(insufficient information leading to under fitting) and too many
features (the curse of dimensionality). Moreover, the various

Fig. 1௒ Grid for a measurement campaign
 

Fig. 2௒ Recorded PD signal
 

Table 1௑PD time-domain features
S. No. Feature parameter
1 impulse factor (IF)
2 variance (VAR)
3 root mean squared (RMS)
4 area under the waveform (A)
5 peak-to-peak value (PPV)
 

Fig. 3௒ Frequency response of the antenna
 

Fig. 4௒ Bandpass filtered PD signals
 

2 High Volt.
This is an open access article published by the IET and CEPRI under the Creative Commons Attribution-NonCommercial-NoDerivs License

(http://creativecommons.org/licenses/by-nc-nd/3.0/)



features are often correlated: two features may be highly correlated
with the output, but also with each other, hence providing little
additional information. Accordingly, we seek to transform our
original features set to a potentially smaller set of decorrelated
features using CFS algorithm. CFS is based on correlation which is
a similarity measure between two random variables. Two variables
are said to be linearly dependent when their correlation coefficient
is ±1, and uncorrelated when the correlation coefficient is 0.
Generally, in CFS, the mutual correlations of all feature pairs are
evaluated and the feature with the highest average absolute mutual
correlation is removed at each iteration step of the algorithm [18].
However, in this paper, we develop a new feature selection
criterion for the CFS algorithm. Instead of removing features with
the highest average correlation, at each iteration step of the
selection algorithm, we first pick features with higher correlation
and then among them discard the feature with the highest average
mutual correlation. For example, if two features have a correlation
of 1 between them, we discard the feature with the highest average
correlation and keep the other. When a feature is removed from the
feature set, it is also discarded from the remaining average
correlation. This continues until average absolute mutual
correlation of all remaining feature is less than 0.4. The resulting
feature matrix from the CFS algorithm is the optimal lower
dimensional subset from the original feature set. This method is

applied to the PD feature data for feature selection. The result
brings the total number of features from the three antennas used for
localisation from 45 to 9. The nine best features selected by the
algorithm are the area under the curve of sub-band 1, sub-band 2
and the broadband signal on each of three antennas (i.e. each
antenna produces three features in the two sub-bands and the main
signal for a particular signal).

3௑PD location based on extracted features
This work is based on the premise that the CFS selected features
provide meaningful information for inferring PD location. To
demonstrate that this is a reasonable premise, Figs. 5a–e show the
maps of how the PD features (impulse factor, variance, root mean
square, peak-to-peak value, and area under waveform) measured at
each of the three receiving sensors vary with location. 

Unsurprisingly, the values measured closer to a PD source are
stronger than the ones received from a distance. The effect of
multipath and signal distortions add to the unique signatures
created at different locations. The spatial map shows a clear
correlation between the features and distinctive PD locations. This
unique spatial pattern is an indication that the selected features are
informative and can be used to infer PD location by matching the
patterns. Fig. 6 shows the architecture of the pattern matching
technique for PD location. It should be noted that in this study the

Fig. 5௒ Spatial pattern for
(a) Variance, (b) Impulse factor, (c) Peak-to-peak value, (d) RMS, (e) Area of received PD pulse
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PD events were generated with a pulse generator to ensure that the
emulated PD traces are identical for each location and repetitive. In
practical reality where different sources of PD generate different
shapes and amplitudes, the absolute values of the features differ
significantly across PD types. Robust PD location features can be
reconstructed as ratios of the features on each antenna location.

3.1 K-nearest neighbour (KNN) regression

KNN algorithm is one of the best-known machine learning
algorithms [19]. For PD location, KNN is considered as a
regression problem which consists in mapping PD signal input
features onto dual output representing PD location coordinates. The
idea of KNN is based on the assumption of locality in feature
space.

KNN training phase constitutes the creation of a database (radio
map) with reference PD location patterns (features, location). In the
estimation phase, the distance between the unknown PD and each
stored neighbour is calculated in feature subspace using Euclidean
distance metric and k nearest neighbours (those with the shortest
distance) are taken into account. The unknown PD location
coordinate is modelled as the average of the coordinates of the k
nearest neighbours, thus

(x^, y^) = 1
k ∑

i = 1

k

(xi, yi) (1)

4௑Experimental results and discussions
In order to verify the use of time-domain statistical features to infer
PD location and the effectiveness of CFS in reducing
dimensionality/enhancing accuracy, all the RF signal samples
collected for each of the 144ௗ×ௗ3ௗ=ௗ432 combinations of PD location
and sensors as described in Section 2 are used to train the pattern-
matching algorithm. During the training phase, PD data from
reference locations (known locations) are used and the algorithm is
fed two inputs; the PD features and their corresponding location.
Each (feature, location) pair constitute training data point. In the
case of CFS-based technique, instead of the generated features, the
selected features are used in the input. The training algorithm used
to evaluate the performance of using time-domain features and the
effect of CFS technique in inferring PD location is KNN algorithm
described in Section 3.1. Any other pattern matching algorithm
could be used, however, KNN was chosen for its direct
applicability. The predicted location is returned as the average of
the locations of the K nearest neighbours. The choice of k has a
significant impact on the localisation performance of KNN and
must be tuned appropriately. In this paper, the heuristic optimal
number of nearest neighbours is obtained as kௗ=ௗ6 using cross-
validation [20].

4.1 Enhancing location accuracy

The experimental results processed at 32 test locations before and
after the application of CFS to the PD features are presented. The
performance is evaluated in terms of distance error defined as the
Euclidean distance between the estimated location and the true PD
location. Fig. 7 shows the cumulative error distribution of the KNN
model before and after the application of CFS. In comparison, the
figure clearly shows that KNN after CFS (KNN-CFS) outperforms
KNN without CFS. In terms of the mean distance estimation error,
the PD location accuracy after applying CFS is 1.65௓m compared to
2.60௓m without CFS. More specifically, the application of CFS
improves the location accuracy by 36.54, 37.71 and 47.17% in
terms of mean error, 50th and 75th percentile of the estimated
location error, respectively. The summary of results is given in
Table 2. The results indicate that using CFS to reduce the
dimension of the data by selecting uncorrelated PD features before
learning the model for PD location is better than using the
generated features directly. 

4.2 Computational complexity

The PD location system considered in this paper is centralised,
which means each computation is done at the so-called central
station. KNN algorithm used for location estimation stores all
training samples in the radio map and search for nearest neighbours
by comparing the distances between the test data and all training
data. Suppose there are n training samples with dimension d, O(d)
is the complexity to compute the distance to one training sample,
O(nd) to compute distances to all training samples. In addition,
there is a complexity of O(nk) to find k closest neighbours. In total,
KNN generates a complexity of O(nk + nd). This can be costly for
our application with limited resources. However, with the
integration of simple, low complexity CFS algorithm, it can be
seen from the results that the size of the data is greatly reduced
while improving accuracy. This can be explained by the ability of
CFS to intelligently select uncorrelated features into fewer
dimensions for model learning. The initial dimension of the PD
features space is reduced by 80% when CFS is applied. It can be
concluded that applying CFS reduces the computational
requirement of PD location determination in general.

5௑Conclusions
A method for locating PD sources based on the application of CFS
to received radio signal features has been described. By examining
the frequency response of the antennas, two distinct frequency
bands which hold different PD information (based on the
knowledge that multipath propagation is frequency selective) were
exploited for more PD features and integrated for fingerprinting.
This provides a rich database for PD localisation via pattern
matching algorithm. The proposed technique finds an effective way
to select the most informative and decorrelated features of the

Fig. 6௒ Architecture for PD pattern matching technique
 

Fig. 7௒ CDF of localisation error based on PD original features and CFS
selected features

 
Table 2௑Model location accuracy before and after applying
CFS
Method Error in location estimate, m

Mean 50th 75th
KNN-original features 2.60 2.36 3.71
after applying CFS 1.65 1.47 1.96
CFS improvement, % 36.54 37.71 47.17
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generated PD data based on correlation theory such that the
dimensionality of the feature space is reduced with improved
accuracy/performance. KNN algorithm has been used to
demonstrate the effectiveness of the proposed technique. Two
separate models were developed and evaluated based on the
original PD features and the selected features. The proposed
technique based on CFS shows a considerable reduction in
computation cost while offering a better accuracy performance.
Experimental results indicate that the proposed method provides a
significant improvement with the mean error reduced by 36.54%
compared to using original features. It also offers an 80% reduction
in computational load. This method can be extended to multiple PD
type scenarios without any limitation by taking the ratios of the
features on each antenna location. A possible future extension is to
investigate some nonlinear approaches that can better extract more
information from PD pulses for PD localisation.
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