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Abstract

Actin-based protrusions are reinforced through positive feedback, but it is
unclear what restricts their size, or limits positive signals when they retract or
split. We identify an evolutionarily conserved regulator of actin-based
protrusion: CYRI (CYFIP-related Rac interactor) also known as Fam49. CYRI
binds activated Racl via a Domain of Unknown Function DUF1394, shared with
CYFIP, defining DUF1394 as a Racl-binding module. CYRI-depleted cells have
broad lamellipodia enriched in Scar/WAVE, but reduced protrusion-retraction
dynamics. Pseudopods induced by optogenetic Rac1 activation in CYRI-depleted
cells are larger and longer-lived. Conversely, CYRI overexpression suppresses
recruitment of active Scar/WAVE to the cell edge, resulting in short-lived,
unproductive protrusions. CYRI thus focusses protrusion signals and regulates
pseudopod complexity by inhibiting Scar/WAVE-induced
actin polymerization. It thus behaves like a “local inhibitor” predicted in widely
accepted mathematical models, but not previously identified in cells. CYRI
therefore regulates chemotaxis, cell migration and epithelial polarisation by
controlling polarity and plasticity of protrusions.
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Introduction

Cell migration is an ancient and fundamental mechanism whereby cells exert
control over interactions with their environment. The actin cytoskeleton is the
main driver of cell migration, with dozens of proteins controlling actin
organisationl. Actin protrusions, or pseudopods, govern migration, however the
feedback loops controlling assembly, splitting and disassembly of these
structures is an area of active debate?.

The Scar/WAVE complex is the main driver of Arp2/3-mediated branched actin
networks underlying pseudopod generation. The complex consists of five
subunits CYFIP, NCKAP1, Scar/WAVE, ABI, HSPC300 (nomenclature in
Supplementary Table 1). The main Arp2/3 activating subunit, Scar/WAVE, is
autoinhibited until signals trigger a conformational change, exposing an Arp2/3
activation sequence 3 4. The Scar/WAVE complex is recruited to acidic
phospholipids in the plasma membrane via a patch of basic charges3 and via
interaction with the small GTPase Rac15.

Many motile cell types steer by splitting pseudopods into two or more
daughters; selecting pseudopods from the split for retraction/maintenance
provides a directional bias steering cells up chemotactic gradients8. Actin and
associated signal transduction networks form excitable systems that propagate
in waves and self-limit to drive protrusion and retraction®? 10, Actin and
associated cytoskeletal components likely control their own excitability in
concert with signaling lipids, but dynamic interplay between “on” and “off”
signals is essential for migration to be plastic and responsive.

Negative regulators of Arp2/3 complex include Gadkin, which sequesters Arp2/3
at the trans Golgi network and endosomes!l. Another inhibitor, Arpin mimics
the activating sequence of Scar/WAVE but inhibits the Arp2/3 complex 12. Here,
we describe a negative regulator of the Scar/WAVE complex, CYRI (encoded by
the FAM49 gene), an evolutionarily conserved protein that mimics the Racl
interaction domain of CYFIP and promotes dynamic pseudopod splitting.

Results

CYRI is an evolutionarily conserved N-myristoylated protein with
homology to CYFIP

We sought new Scar/WAVE complex interactors by precipitating GFP-fused
NAP1 (for nomenclature see Supplementary Table 1) from napA knockout
rescued Dictyostelium cells. Reversible formaldehyde crosslinking in cellulo3
stabilised transient interactions and GFP-Trap immunocapture recovered
Scar/WAVE, ABI, HSPC300 and PIR121. Another interactor was identified as
Fam49 (FAMily of unknown function 49; Fig 1a and Supplementary Table 2).
Although FAM49 did not co-precipitate with the Scar/WAVE complex in the
absence of crosslinking, we focused on it for two reasons. Firstly, FAM49 is
highly conserved across evolution and is roughly co-conserved with the
Scar/WAVE complex!4,15> (Supplementary Fig.1a). Secondly, Pfam and InterPro
identified FAM49 as uniquely sharing a DUF1394 domain with the Scar/WAVE
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complex subunit CYFIP (Fig. 1b and Supplementary Fig.1b). FAM49 proteins
comprise mostly DUF1394, while CYFIP proteins contain a cytoplasmic fragile X
interaction domain?¢ (Fig. 1b). We renamed FAM49 to CYRI for CYFIP-related
Racl Interactor, in mammals, represented by CYRI-A (FAM49-A) and CYRI-B
(FAM49-B) and henceforth we use this nomenclature.

The DUF1394 region of CYFIP, highlighted in red (PDB 3P8C and Fig. 1c) partly
overlaps with the published Scar/WAVE complex Rac1 interaction site, in
particular R190 in CYFIP13 (Fig. 1c, Black arrow and blue balls). Modeling the
structure of the DUF1394 of CYRI-B using Phyre2, reveals structural similarities
with CYFIP (PDB 3P8C and Fig. 1d). The analogous R161 of CYRI (Fig 1d blue
sidechains, and e red box) is part of a highly conserved 33-amino acid stretch
(>75% similarity) across diverse phyla (Supplementary Fig. 1b-c). R160 is also
conserved in CYRI but replaced by lysine in CYFIP (Fig. 1d-e and
Supplementary Fig. 1b-c).

The N-terminal glycine-2 of CYRI proteins encodes a putative myristoylation
site17-19 (Fig. 1f), which is not conserved in CYFIP. We confirmed the
myristoylation of CYRI-B by assessing the incorporation of myristate analogue
(C14:0-azide) onto G2 using CLICK chemistry in cellulo. Mutation of this glycine
to alanine abolishes the CLICK signal (Fig. 1 g-h).

In summary, we have defined CYRI, an evolutionarily conserved protein with a
putative Racl-binding DUF1394 module. Furthermore, N-terminal
myristoylation suggests CYRI may dynamically associate with the plasma
membrane2?, where active Racl stimulates the Scar/WAVE complex to catalyse
lamellipodial expansion.

CYRI interacts directly with activated Rac1 in vitro

Homology between CYRI and CYFIP (Supplementary Fig. 1b), suggested
potential interaction with Rac1. Yeast two-hybrid screening with Rac1612V as bait
retrieved CYRI-B from multiple cDNA libraries (Supplementary Fig. 2a). The
core interacting sequence of CYRI-B encompasses amino acids 30-236 (hereafter
the Rac Binding Domain - RBD), (Supplementary Fig. 2b-c). GFP-RBD expressed
in CHL-1 human melanoma cells interacted selectively with GST-Rac1Q6lL but not
GST-Rac1WT, Mutation of CYRI-B R160 or R161 (in GFP-RBD) to aspartic acid
abrogated this interaction (Fig. 2a-c and Supplementary Fig. 7). GST-CYRI-B
RBD and MBP-Rac1 also showed robust interaction (Supplementary Fig. 2d-f
and Supplementary Fig. 7). In this assay, CYRI does not co-precipitate with
Rac1T17N, Rac1612V, or Racl WT, likely due to the low affinity of CYRI-B for Rac1.
However, the double mutant Rac1 F295/Q61L recently shown to have a high affinity
for the Scar/WAVE complex?1, displayed enhanced binding to CYRI-B RBD (~3-
3.5-fold increase) over Rac1Q61L but no enhanced binding to Pak1-CRIB
(Supplementary Fig. 2 d-f and Supplementary Fig. 7). Using surface plasmon
resonance, immobilised CYRI-B RBD specifically interacted with Rac1 Q¢1L with a
Kg of 27 uM and the reverse assay, with Rac1 Q61L immobilised returned a K4 of
22 puM (Fig. 2g). As CYRI-RBD shows no homology to CRIB (Cdc42 and Rac
interaction binding) motifs, we probed the specificity of the interaction of CYRI
between Rac1, RhoA and Cdc42. Once again, CYRI-RBD interacted robustly with
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Rac1Q61L but not with constitutively active RhoAQ63L or Cdc4261L (Fig. 2d,
Supplementary Fig. 2g-h and Supplementary Fig. 7). Thus CYRI-B RBD
interacts specifically with active Rac1. Two conserved basic residues in the
DUF1394 (conserved in CYFIP) mediate this interaction. This suggests a signal-
regulated interaction between active Racl and CYRI, similar to the Rac1-CYFIP
interaction, defining DUF1394 as an active Rac1 interaction module.

CYRI interacts with active Rac1 in cells

We next explored the Rac1-CYRI interaction in cells. Proximity ligation?22
revealed an interaction between Rac1WT and CYRI-B in COS-7 cells, as well as a
stronger interaction between Rac1Q61L (Fig. 2h-i and Supplementary Figure 2i-
1). Mutation of key arginines in CYRI-BR160/161-HA abolished this interaction and
dominant negative Rac1T7N showed no interaction (Fig. 2 h-I and
Supplementary Fig. 2i-1). Targetting either CYRI or Rac1A to mitochondria?23
(Figure 2j) in Dictyostelium, revealed that CYRIWT, but not CYRI mutated for the
analogous R155/156D, strongly co-recruits active Rac1A P295/Q61L, The Pearson’s
coefficient of fluorescence correlation (PCC) for Rac1A-mCherry-mito and the
GFP-fusions revealed a PCC of the positive control CRIB-PBD 0.80 (SD: 0.20 -
n=6); CYRIWT 0.77 (SD: 0.21 - n=8 cells); and CYRIR155/156D 0,05 (SD: 0.12 - n=14
cells), where 1 = perfect, 0= no correlation and -1 = excluded. The PCC for Rac1A-
mCherry and GFP-mito-fusions were: CRIB-PBD 0.33 (SD: 0.12 - n=6); CYRI WT
0.44 (SD: 0.19 - n=12 cells) and CYRI R155/156D -(,23 (SD: 0.05 - n=6 cells). CYRI-
GFP did not co-localise with a control mitochondrial reporter mCherry-gemAuai
(PCC =-0.06) (SD: 0.15 - n=6 cells). Thus, CYRI interacts with activated Rac1,
mediated by key conserved arginines, in both mammalian and Dictyostelium
cells.

CYRI opposes recruitment of the Scar/WAVE complex to lamellipodia
Knockdown or knockout of CYRI-B by siRNA or CRISPR in COS-7 or CHL-1 cells
did not affect proliferation, but promoted unusually large and broad lamellipodia
highly enriched in WAVE2 (Fig. 3a-b, Supplementary Fig. 3a-g and
Supplementary Fig. 7). Cells spread over a larger area and adopted a “fried-
egg” phenotype, correlating with an increase in circularity (Fig. 3c-d,
Supplementary Fig. 3e-g). Expression levels of Scar/WAVE complex subunits
are not obviously altered in cyri-b knockout cells (Supplementary Fig. 3h and
Supplementary Fig. 7). Cell area and circularity were both rescued by re-
expression of untagged CYRI-BWT, but not the Rac1-nonbinding R160/161D
mutant (Fig. 3e-f, Supplementary Figure 3i-k and Supplementary Fig. 7).
CYRI-BG24 which cannot be N-myristoylated failed to rescue the phenotype (Fig.
3g-h, Supplementary 31-m and Supplementary Fig. 7), reinforcing the
importance of CYRI lipid modification. cyri knockout Dictyostelium cells also
showed enhanced recruitment of the Scar/WAVE complex (GFP-HSPC300
reporter) to a much broader leading edge (Supplementary Fig. 3n - yellow
dotted line and Supplementary Movie 1). Moreover, Scar/WAVE patches in
cyri knockout cells are ill-defined but longer-lived, suggesting CYRI’s ability to
suppress Scar/WAVE complex activity outside of active protrusions.
(Supplementary Fig. 3n, heat map). We conclude that CYR], via its interaction
with active Rac1 and membrane targeting, opposes active Scar/WAVE complex
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at the plasma membrane and thus drives the formation of more focused and
sharper lamellipodial protrusions.

To determine the requirement for Rac1 for the phenotype of cyri-b knockout
cells, we co-depleted Racl and CYRI-B from mouse tail skin fibroblasts with
ROSA26-Cre::ER™*;p16Ink4a /-, Rac1/f genotype?4, treated with
hydroxytamoxifen (OHT, to induce deletion of Rac1) and then with siRNA against
Cyri-b (Supplementary Fig. 30 and Supplementary Fig. 7). Deletion of Rac1
led to a spindle-shaped morphology and a loss of lamellipodia as previously
described 2527, Loss of CYRI-B did not cause excessive lamellipodia or rescue
circularity in Rac-deleted cells (Fig. 3i-K). Thus, Rac1 is absolutely required for
CYRI-B driven actin reorganisation.

The increased circularity of cyri-b depleted cells is reminiscent of Racl
hyperactivation phenotypes?8, suggesting that CYRI-B might buffer Rac1 activity.
Indeed, a dark acceptor mTq2-sREACH Raichu FRET probe?? 30showed a
consistent increase in Rac1 signaling activity in CYRI-B depleted cells, as
measured by FRET efficiency in both COS-7 (Fig. 31-m) and CHL-1 cells
(Supplementary Figure 3p-q), which was confirmed by biochemical pulldown
(Fig. 3n-o0 and Supplementary Fig. 7). Together, these data indicate an
increase in Racl signaling activity in CYRI-B depleted cells. Conversely,
inducible overexpression of untagged CYRI-B (Supplementary Fig. 4a-b and
Supplementary Fig. 7) resulted in fractal-like lamellipodia, decreasing WAVE2
recruitment, cell area and circularity (Fig. 4a-d, Supplementary Fig. 4c-f -
Vehicle-treated controls). In parallel, overexpression of CYRI-B also drove a
decrease in the Rac1 activity signal of the Raichu FRET probe (Fig. 4e-f) which
was fully reversed by an R160/R161 double mutation (Fig. 4g). Thus, CYRI-B
opposes Racl-Scar/WAVE mediated expansion of lamellipodia protrusions.
Adding a GFP-tag to either end of CYRI-B interfered with its function, precluding
dynamic analysis, likewise, available antibodies to Fam49B did not give specific
staining by immunofluorescence, but CYRI-B-FLAG showed significant co-
enrichment with WAVE?2 at leading pseudopods (Fig. 4h-i). Thus CYRI co-
accumulates with WAVE2 at lamellipodia protrusions. Overall, cyri-b knockout
cells show broader Scar/WAVE driven lamellipodia and increased Rac1
activation, supporting a role for CYRI-B as a buffer of Racl and Scar/WAVE
complex activation activity at the leading edges of cells.

CYRI regulates the duration and extent of protrusions

We next sought to determine the consequences of CYRI-B depletion for
lamellipodial actin dynamics. First, we observed actin dynamics live using fast
frame-rate videos in CHL-1 cells expressing GFP-Lifeact (Fig. 5a - Left panel and
Supplementary Movie 2). We tracked the cell edge and used unwrapped
(polar) kymographs (Fig. 5a middle panels) to visualise and measure the area of
protrusion (yellow colour) versus retraction (purple colour) over time. Control
cells showed small but rapid bursts of actin-based protrusion (yellow patches on
kymograph), while cyri-b knockouts had longer-lived less dynamic responses
(Fig. 5a,b). If CYRI-B buffers Rac1 at the lamellipodium, we speculated that cyri-
b knockout cells would struggle to restrain protrusion formation upon Rac1l
activation. To investigate this, we used the Rac1-LOV optogenetic probe, which
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triggers activation of Rac1 with blue light 31. Rac1 was activated with pulses of
blue light in a discrete area on the cell periphery (Fig. 5c-d and Supplementary
Movie 3). Cyri-b knockout cells showed a more sustained and extensive
protrusion response and increased peripheral propagation of lamellipodia (Fig.
5e-g). Thus, CYRI-B limits Rac1- mediated activation of the Scar/WAVE complex
and shortens the Racl-activated protrusion.

CYRI focuses actin assembly in leading pseudopods to promote plasticity of
migration

Plasticity of protrusion is important for directional migration, such as during
chemotaxis. CHL-1 melanoma cells are normally nearly static when seeded at
low density in 2D-culture, but cyri-b knockout cells migrated 1.5-2-fold faster
(Fig. 6a-b and Supplementary Movie 4). Cyri-b knockout cells frequently
assumed a C-shape, with a broad spread lamellipodium at the front half of the
cell and a convex rear which resembled the fast-moving goldfish keratocyte 32
(Supplementary Fig. 5a yellow arrows, Supplementary Movie 4). C-shaped
cells moved faster than the other common shapes (Fig. 6¢,d) and C-shape
correlated with faster migration (Fig. 6e-f and Supplementary Fig. 5b-c).
Lamellipodia need to be polarized and dynamic for efficient cell migration?27. 33,
so when cyri-b knockout cells became polarized into a C-shape, they gained
motility.

Since cells need to maintain plasticity of their lamellipodia to respond effectively
to directional cues34, we predicted that depletion of CYRI-B would affect
chemotactic migration. CHL-1 cells are not chemotactic to serum, but WM852
melanoma cells are highly chemotactic35. Loss of CYRI-B (Supplementary Fig.
5d-e and Supplementary Fig. 7) severely affected chemotaxis of these cells
towards a 10% serum gradient with no effect on basal speed; Knockouts often
migrated very long distances in the opposite direction to the chemoattractant
gradient, having lost the plasticity to reorient toward the gradient (Fig. 6g-i and
Supplementary Movie 5). Thus, CYRI-B strongly impacts how cells polarize and
remodel their lamellipodia and reorient during directed migration.

CYRI promotes pseudopod splitting and opposes persistent migration in
Dictyostelium

We examined Dictyostelium cells (Ax3, cyri knockout and rescue -
Supplementary Fig. 5f and Supplementary Fig. 7) migrating under agarose up
self-generated gradients of the chemoattractant folate3¢ (Supplementary Fig.
5g). Similar to CHL-1 cells, cyri knockout cells were rounder, with blunted
pseudopods (Fig. 6j-k, Supplementary Movies 6-7). Dictyostelium cells
primarily turn by splitting their leading pseudopod into differently-oriented
daughters8; automated segmentation and tracking revealed that cyri knockouts
generated fewer protrusions/min (Fig. 61) and showed fewer splits (from
~5/min to ~2/min, Fig. 6m) and decreased speed (Fig. 6n). Cells still oriented
towards the folate gradient, but their less efficient turning was clearly reflected
by a smaller angle of turn between steps (Supplementary Fig. 5h). Thus, CYRI
promotes pseudopod splitting in Dictyostelium cells, which is dispensible for
gradient sensing, but compromises the speed of migration and reorientation
while steering.
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We rescued Dictyostelium cyri knockouts with CYRIWT or CYRIR155/156D ag stable,
single-copy transfectants37 under an actin15 promoter (Fig. 6 j-n,
Supplementary Movies 6-7). CYRIWT expressing cells exhibited more
numerous fractal pseudopods as well as decreased circularity and enhanced
frequency of protrusion generation and pseudopod splitting (Fig. 6j-m) even
over WT cells. Rescue with CYRIWT also restored cells’ ability to turn during
chemotaxis (Supplementary Fig. 5h).

Another widely- used chemotaxis assay involves a chemoattractant-filled
microneedle introduced just next to Dictyostelium cells, inducing new
pseudopods directly toward the needle, and consequently reorienting the cells.
When cyclic-AMP (cAMP)-sensitive cyri knockout or rescue cells were challenged
with cAMP in a needle assay, cyri knockouts were initially unable to form new
pseudopods (Fig. 60), while CYRIWT cells rapidly protruded pseudopods and
reoriented toward the needle (Figure 60-p and Supplementary Movie 8). Cyri
knockouts eventually elongated and streamed toward the needle, but they
maintained resistance to new pseudopod formation and rapid reorientation.
Thus, cells that lack CYRI can still sense an attractant gradient, but their broad
and unfocussed protrusions split rarely, and their diminished ability to generate
new pseudopods cripples their response to changing gradients.

Modeling CYRI’s role in pseudopod plasticity

Since CYRI affects plasticity of pseudopod dynamics, we likened its activity to the
mathematical model of Meinhardt 38, where local inhibitors are recruited by an
activation signal and limit the amount of cell edge devoted to pseudopods. Actin
assembly pathways are not linear cascades, but rather feedback loops where
positive stimulation is self-reinforcing and causes further activation until
overcome by negative feedback?® 10. In models of migration based around
positive feedback, a locally-acting inhibitor is also needed to destabilise existing
pseudopods, so the cell can change direction. Without this, cells polarize, but
cannot turn to migrate toward an attractant. We used a modified version of a
published simulation3? based on the Meinhardt model38 to visualise the
concentrations of the activator and the local inhibitor at the cell edge
(Supplementary Fig. 5i and Supplementary Movie 9), to illustrate the how
CYRI-B regulates Racl and Scar/WAVE signaling. A peak in the activator (which
represents active Racl and Scar/WAVE) results in the formation of a new
pseudopod. The peak also causes an increase in the concentration of the local
inhibitor, which is smaller and thus diffuses faster38. Initially, the inhibitor limits
the lateral spread of the pseudopod (Supplementary Fig. 5i, panel 1); later,
levels of inhibitor rise in the middle of the pseudopod, destabilizing it and
causing a split (Supplementary Fig. 5i, panel 2). The weaker of the pseudopods
then retracts and the stronger is reinforced until the cycle of inhibition catches
up with it and re-starts the splitting cycle (Supplementary Fig. 5i, panels 3-4).
The local inhibitor thus increases both the morphological complexity of the cell
and the competition between pseudopods. This is supported by the lack of
pseudopod splitting in Dictyostelium and our optogenetic data showing that
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protrusions in cyri knockout cells are more long-lived and spread laterally to a
greater extent. Thus, Meinhardt’s model offers insight into the role of CYRI
proteins as local inhibitors, which enhance leading edge dynamics and add
plasticity to the positive feedback loops driving migration.

CYRI-B regulates epithelial polarity via a Racl-dependent mechanism
Finally, we tested a role for CYRI-B the polarized epithelial cyst 40.41 where
asymmetric Rac1 activation is also crucial. As cells form a cyst, they establish a
lumen via selective membrane trafficking and polarized recruitment/activation
of cytoskeletal components#2. Specific spatial regulation is dependent on matrix
and adhesions, but Rac1 activation also regulates lumen formation*3 and is
specified by differential recruitment of the GEF TIAM1 across the cyst, leading to
an apico-basal activation gradient*?. We hypothesized that CYRI-B might help
maintain the Rac1 activation gradient, allowing Scar/WAVE complex
recruitment and activation to be spatially controlled during cyst formation.
Indeed, knockdown of CYRI-B using shRNA in MDCK cells (Supplementary Fig.
6a-b and Supplementary Fig. 7) led to a multilumen phenotype during cyst
formation, similar to deregulation of active Rac1 (Figure 7a-b, 42). WAVE?2 is
normally prominently localized to the basolateral surfaces of the cysts, but
mostly absent from the luminal surface, as marked by podocalyxin (PODXL) (Fig.
7¢). However, when CYRI-B was depleted, WAVE2 staining was increased at the
luminal periphery coincident with PODXL staining (Fig. 7c). Mislocalisation of
the actin cytoskeleton machinery to cyst luminal surfaces results in aberrant
orientation of the mitotic cleavage plane during polarized cell division, which
occurred in cyri-b knockdown cysts (Supplementary Fig. 6¢-e). To test
whether the multilumen phenotype was due to inappropriate Racl activation,
we used moderate concentrations of either EHT1864 (Fig. 7d-e) or NSC23766
(Supplementary Fig. 6f) to dampen Rac1 activity; these both provided a
substantial rescue. Thus, loss of CYRI-B destabilised epithelial polarity during
the formation of epithelial cell cysts by allowing inappropriate Rac1-mediated
recruitment of the actin machinery to the nascent luminal surface. CYRI-B thus
maintains spatial regulation of activation of the Scar/WAVE complex by dynamic
buffering of Racl.

Discussion

CYRI is highly conserved and DUF1394 represents a Rac1 interaction
module

CYRI proteins are highly conserved in eukaryotes and function as a Racl
interaction module that directly limits Racl-mediated lamellipodia extension.
The DUF1394 domain of CYRI comprises the Rac1 binding site and is shared with
CYFIP proteins of the Scar/WAVE complex. This interaction requires two highly
conserved arginine/lysine residues, previously described on CYFIP13. CYRI, like
CYFIP1, is specific for activated Rac1 over RhoA and Cdc42. Myristoylation of
glycine 2 of CYRI may allow recycling of CYRI between active pseudopods and
the cytoplasm or membrane vesicles 44. The Racl-interacting formin FMNL2 is
also myristoylated*5, implying potential common mechanisms for recruitment to
actin protrusions. CYRI has no homology to GTPase activating proteins (GAPs),
so it likely doesn’t alter nucleotide hydrolysis by Racl. Why would a cell need
CYRI if it has Rac-GAPs? We propose CYRI could be a specific buffer for
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Scar/WAVE-driven lamellipodia plasticity, rather than a general protein to turn
off Racl.

CYRI opposes recruitment of active Scar/WAVE complex to leading edges
and promotes plasticity

Modulating the levels of CYRI differently affected cell speed in the cell types we
assayed. While this may seem paradoxical, the basal speeds of these cell types
and modes by which they migrate are different. Furthermore, migration speed is
multiparametric, being the result of a combination of protrusion, adhesion and
directionality/persistence. Migration speed is thought to require optimal levels
of Rac1 activation and can be slowed by too little/much active Rac133.
Dictyostelium are optimized by nature to be fast-moving and relatively non-
adhesive, so nearly any change will result in slower migration. In contrast, the
speed of adhesive slow-moving cancer cells may benefit from removing the
brakes on Rac1 activity.

Negative regulators of Arp2/3 complex have been described 111246, but thus far,
CYRI is the only negative regulator of the Scar/WAVE complex. Importantly, it is
widely conserved in evolution along with the Scar/WAVE complex, so is a
universal negative regulator. CYRI and CYFIP likely resulted from an ancient
gene duplication and retained the same Rac1 binding function, placing CYRI as a
Meinhardt local inhibitor38. But a local inhibitor should be present at high
enough concentration to compete with the activator. A recent quantitative mass
spectrometry study estimated concentrations of CYRI-B to be 4-fold higher in
protein copy number than Scar/WAVE complex 47 in 3 of 4 cell lines (A549 4-
fold, HepG2 5-fold, PC3 4.4-fold and U87 0.53-fold, based on comparison with
CYFIP1). Thus, there is likely enough CYRI-B in cells to compete with the
Scar/WAVE complex for Rac1 binding.

CYRI provides spatiotemporal regulation of the connection between Rac1l
and Scar/WAVE complex

Cell migration involves cycles of protrusion and retraction coupled with
adhesion to produce forward locomotion 48. Cells with wild-type levels of CYRI
showed rapid protrusion-retraction dynamics indicative of transient activation
of the Scar/WAVE complex (e.g. kymograph Fig. 5a). cyri knockouts showed
broader and more sustained lamellipodia and increased Scar/WAVE
recruitment, placing CYRI as a key part of the feedback loop controlling leading
edge actin dynamics, in line with Arpin, a negative regulator of the Arp2/3
complex 12 and coronin, which positively regulates Rac1 activation 49501,
Breaking the feedback loop by deleting CYRI affected both Scar/WAVE
recruitment and Rac1 signalling activity. Thus, the actin machinery feeds back to
Rac1 dynamically. This dynamic feedback is necessary for cells to change
direction and respond with plasticity to stimuli such as chemotactic gradients.

CYRI also regulates polarized function of Rac1-Scar/WAVE complex in epithelial
cells in 3D. Epithelial cells establish a Rac1 gradient that maintains polarity by
asymmetric distribution of B2-syntrophin and Par3 40. Par3, localized apically,
inhibits the Rac-GEF TIAM1, while B2-syntrophin, localized basally, activates
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TIAM1. This gradient is required for proper luminogenesis. CYRI helps direct
formation of a single polarized lumen by regulating the Rac1 gradient required
for proper spindle orientation. A role for CYRI in epithelia could have broad
implications for development and cancer.

Cell migration is the outcome of feedback loops that control the dynamics of cell
shapes 10.38,51-53 Travelling and spreading wave patterns (for example 10.51)
manifest in actin-based protrusions, implying positive feedback loops. However,
negative feedback is also required38 to prevent uniform activation. Actin and
actin-binding proteins can comprise an excitable system 10.52 also modulated by
systems involving small GTPases, kinases and signaling lipids e.g.°. Our data
imply that CYRI acts at the interface; by competing with Scar/WAVE (an actin-
nucleating complex) for Rac1 (a small GTPase) it connects signaling with actin
polymerization, moderating excitable behaviours.

In conclusion, we propose that CYRI is a highly conserved regulator of the
dynamics of the Racl - Scar/WAVE pathway, providing plasticity and adding
complexity to leading edge dynamics.
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Figure Legends

Figure 1 - CYRI (Fam49) proteins show homology to CYFIP and contain a
putative Rac1 interaction motif

a - Volcano plot illustrating pooled results from four LC-MS/MS experiments
showing comparison of formaldehyde crosslinked proteins co-
immunoprecipitating with GFP or GFP-NAP1 in Dictyostelium napA knockout
cells. Color-coding based on two-tailed Welch'’s t test difference. Curved line is
5% false discovery rate. Identified interactors are labeled with gene symbols and
presented in Supplementary Table 2. (n=4 independent experiments).

b - Schematic of human CYFIP1/2 and CYRI-A/B showing amino acid numbers
and domains. Common DUF1394 domain (Pfam PF07159) in red and CYFIP1/2
C-terminal cytoplasmic Fragile X Mental Retardation FMR1-interacting domain
(FragX-IP, Pfam PF05994) in light green.

¢ - Two views of ribbon crystal structure of the Scar/WAVE complex (PDB
3P8C)2. NCKAP1 in lilac, CYFIP1 in light green and red, Scar/WAVE in peach,
HSPC300 in yellow and ABI1 in orange. DUF1394 is red, with putative Racl
interaction residues in blue and highlighted by arrows.

d - Phyre prediction of structure of the DUF1394 domain of CYRI-B. The putative
Racl-binding domain of CYRI is blue with Argl60 and Argl61 indicated as a
stick representation.

e - Sequence alignment of the putative Rac1l-binding domain of CYRI in different
organisms. The CYFIP Lys189 and Argl90 equivalent residues are well
conserved in CYRI (Arg160 and Arg161) and are highlighted in red.

f - Sequence alignment covering the N-terminal region of CYRI from
representative evolutionarily diverse eukaryotes. UniProt accession numbers are
reported. Color code represents the number of entries with an identical amino
acid at this position. The glycine in the 2 position (highlighted red) is a putative
myristoylation site.

g-h - CLICK chemistry analysis of the glycine 2 of CYRI-B. Myristoylation was
labeled in HEK293T cells and measured by incorporation of myristate-azide
(green) in GFP, CYRI-BWT-GFP or CYRI-BG2A-GFP mutant transfected cells
(magenta), following GFP immunoprecipitation. Molecular markers shown left
(g) See also Supplementary Fig. 7 and Supplementary Table 6. Relative
incorporation was quantified by densitometry and reported in (h). One way
ANOVA with Tukey post-test was applied. *** p<0.001. (n=3 independent
assays). Bar graph represents mean and S.E.M.
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Figure 2 - CYRI proteins interact with active Rac1l

a-c - Western blot from pulldown of GST control, GST-Rac1WT or GST-

Rac1Q61L beads, with cell lysate expressing either GFP alone, positive control
PAK1 eCFP-CRIB-PBD, GFP-RBDWT, GFP-RBDR160D or GFP-RBDR161D (a).
Densitometry (b-c). (n=3 independent experiments for GFP-RBDR160D and GFP-
RBDR161D and n=4 for GFP and GFP-RBDWT).

d-f - Western blot pulldown of GST control, GST-Rac1?2% or GST-Rac1Q6lL or
GST-Rac1P295/Q61L heads, with cell lysate expressing controls or CYRI GFP-RBDWT
(d). Densitometry (e-f). (n=3 independent experiments).

g - Steady state SPR binding curves between Rac1?1L and CYRI-B-RBD. Left:
GST-CYRI-B immobilized vs increasing concentrations of Rac1Q61L.  Right: His-
Racl immobilised vs increasing CYRI-B RBD. Simple 1:1 binding model. Ky =
equilibrium dissociation constant, A.U. = arbitrary units.

h-i Proximity ligation assay COS-7 cells on laminin co-expressing CYRI and Racl
constructs. PLA signal (yellow), F-actin (magenta) and nuclei (blue). See
Supplementary Fig. 2 -negative controls. Data pooled across 4 independent
experiments in (i). One-way ANOVA with Dunn’s post-test between CYRI-BWT
and MYC-Rac1 constructs. Two-tailed Mann Whitney test between CYRI-BWT and
CYRI-BR160/161D for each MYC-Rac1 construct. n.s. p> 0.05, ** p<0.01, *** p<0.001.
(anti-HA n=55; anti-Myc n=54; Myc-WT/WT-HA n=55; Myc-WT/R160-161D-HA
n=55; Myc-T17N/WT-HA n=63; Myc-T17N/ R160-161D-HA n=84; Myc-
Q61L/WT-HA n=69; Myc-Q61L/ R160-161D-HA n=65, where n=cells)

Scale bar, 50 um.

J - Mitochondrial recruitment of CYRI-GFP to Rac1A-mCherry-mito (Forward) or
Rac1AF295/Q61lmCherry to CYRI-GFP-mito (Reverse) in Ax3 D. discoideum. (>300
mitochondria/cell). Far right panels negative control lacking Racl. Scale bar, 5
pm

a-j represent at least three biologically independent experiments. Graphs show

mean and S.E.M. Source data in Supplementary Table 6. Unprocessed Western
blots in Supplementary Figure 7.
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Figure 3 - Loss of CYRI-B increases Racl-mediated Scar/WAVE localisation
to lamellipodia

a-d - Immunofluorescence of control (Ctr) or cyri-b knockdown (siRNA #1 and 2)
COS-7 showing WAVE?2 (green), nuclei (blue) and F-actin (magenta). Scale bar =
50 um. Box insets zoom, scale bar = 10 pm.

Ratio of WAVE2 (yellow dotted line) vs total cell perimeter (b). Cell area in (c)
and circularity (d). One-way ANOVA with Dunn’s post-test n.s. p> 0.05, ***
p<0.001. (a-c: Scramble n=111; #1 n=95; #2 n=96 - d: Scramble n=115; #1
n=92; #2 n=98) n represents cells in a-o.

e-f -COS-7 with cyri-b knockdown and rescued with pLIX-mVenus si-resistant
CYRI-B (WT or R160/161D) or empty vector (EV). (see Supplementary Fig. 31).
Cell area (e) and circularity (f). One-way ANOVA with Dunn’s post-test n.s. p>
0.05, *** p<0.001. (Scramble/EV n=78; Scramble/WT n=58; Scramble/R160-
161D n=66; #1/EV n=66; #1/WT n=64; #1/R160-161D n=60).

g-h - Control or cyri-b knockdown COS-7 with pLIX-mVenus and si-resistant
CYRI-B (WT or G2A mutant) or EV. Cell area (g) and circularity (h). One-way
ANOVA with Dunn’s post-test n.s. p> 0.05, *** p<0.001. (Scramble/EV n=70;
Scramble/WT n=52; Scramble/G2A n=46; #1/EV n=63; #1/WT n=64; #1/G2A
n=65)

i-k - Control (DMSO) or racl knockout (OHT) mouse tail fibroblasts with
Scramble (siCtr) or Cyri-B siRNA, showing WAVE2 (i). Scale bar = 50 um.
Lamellipodial WAVEZ2 (j) and circularity (k). One-way ANOVA with Dunn’s post-
test *** p<0.001. two-tailed Mann Whitney test between OHT and control. ###
p<0.001. (n=30 cells/condition).

I-m - FLIM/FRET of mTq2-sREACH in control (siCtr) or cyri-b knockdown
(siCYRI-B #1 and #2) COS-7. Jet2 color code (left) average lifetime, 1-4 ns blue to
red. (1). FRET efficiency (m). One-way ANOVA with Dunn’s post-test. *** p<0.001.
(Scramble n=61; #1 n=61, #2 n=63)

Scale bar = 50 um

n-o - Active Racl pulldown comparing control CrispR (Vectorttr) or independent
cyri-b CrispR (#1 and #2) COS-7 lines. See also Supplementary Fig. 7.

Data in a-o represent three biologically independent experiments. All cells
plated on laminin. See also Supplementary Table 6.

Bar and scatter plots show data points with mean and S.E.M.

Whisker plots show 10-90 percentile, median (bar) and mean (cross).
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Figure 4 - Overexpression of CYRI-B opposes Racl-mediated Scar/WAVE
recruitment to the leading edge

a-d - Immunofluorescence of doxycycline-induced control empty vector (EV) or
CYRI-B overexpression in COS-7 cells and fixed after 4h showing WAVE2
(magenta), nuclei (blue) and GFP (green). Scale bar = 50 pm. Insets show zoom
of white dashed field. Scale bar = 10 pm (a). WAVE2 ratio and circularity in (b)
and (c) respectively. Cell area quantification was based on phalloidin staining
(d). Two-tailed Mann-Whitney test *** p<0.001. (Dox/EV n=73; Dox/CYRI-B
n=93) n represents cells in a-i

e-f - FLIM/FRET experiment with mTq2-sREACH Raichu Racl showing vehicle
or doxycycline-treated COS-7 cells expressing a control empty vector (EV) or
CYRI-B. The jet2 color code (bar at top) shows the average lifetime of the probe,
spanning 1-4 ns (blue to red) (e). Quantification of the FRET efficiency (f). Two-
tailed Mann-Whitney test n.s. p> 0.05, *** p<0.001. (Veh/EV n=47; Veh/CYRI-B
n=46; Dox/EV n=62; Dox/CYRI-B n=62)

Scale bar = 50 um.

g - FRET efficiency obtained from control (EV) or COS-7 cells overexpressing
CYRIWT or CYRI-BR160/161D after doxycycline induction. One-way ANOVA with
Dunn’s post-test was performed. n.s. p> 0.05, *** p<0.001. (EV n=59; WT n=62;
R160/161D n=63).

h-i - Immunofluorescence of COS-7 cells transfected with CYRI-B-FLAG and
stained for FLAG-tag (green), F-actin (top row) or WAVE2 (bottom row)
(magenta) and nuclei (blue). Scale bar = 50 pm (h). FLAG-staining is
quantified by normalizing the fluorescence intensity running across 17
representative cells and ending at the protrusive end (normalized distance:
1=protrusive end and O=opposite end). FLAG-tag and F-actin staining
intensity are shown in green and magenta respectively (i) (n=17).

Data in a-i represent three biologically independent experiments.

See also Supplementary Table 6.

Bar and scatter plots show data points with mean and S.E.M.

Whisker plots show 10-90 percentile, median (bar) and mean (cross).
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Figure 5 - CYRI-B controls the duration and extent of Racl-mediated
protrusions

a - Control (Vector ) and cyri-b CrispR knockout CHL-1 cells on laminin
expressing GFP-LifeAct, recorded for 3 minutes at 1 frame/sec. The cell
periphery (magenta) is tracked using the GFP-LifeAct signal (green) (Left panel).
The membrane is unravelled from the orange arrow and a representative polar
kymograph of the changes in membrane dynamics over time between control
(Vector Cr - Top) and cyri-b CrispR knockout (Bottom) CHL-1 cells is shown.
Membrane extensions (positive values) are visualised in yellow through to
orange, while retractions (negative values) are purple-blue (Middle
panel). Thresholding of the kymograph to remove noise (values = + 0.6) reveals
protrusions over time (white signal - Right panel)

Still from movie S2. Scale bar = 25 um.

b - Box plot representing the distribution of the average protrusion lifetime for
each individual cell. Whisker plots represent mean and S.D. Two-tailed Mann
Whitney test. *** p<0.001. (n= 20 cells/condition)

¢ - Schematic representation showing protruding (blue) and retracting
(magenta) area following photoactivation of Rac1-LOV probe. Photo activation
area (green circle) was used as the origin to measure the maximal protrusion
distance (outward - black line) and the longest uninterrupted lateral spread of
the protrusion (red dotted line)

d - Still pictures from videos of photoactivation time course showing selected
cells from DMSO (Control) or OHT-treated (knockout) immortalized CRE-ERT2*
Cyri-Bi/ft MEFs on fibronectin. Endpoint overlay as from schematic (c). Scale bar
=25 um.

e-f - Quantification of the protrusion distance (e) and the spread of activation (f)
between control (DMSO) or cyri-b knockout (OHT) MEFs.

Error bars represent 95% CI. Unpaired two-tailed t-test (e) and two-tailed
Mann-Whitney test (f). *** p<0.001, **** p<0.0001. (DMSO n=29 cells; OHT n=30
cells).

g - Kymograph representation before and after photo activation. Membrane
extensions are visualised in yellow through to orange, while retractions are
observed in purple-blue. Time of photoactivation is highlighted by a white dotted
line.

Data in a-g represent three biologically independent experiments.
See also Supplementary Table 6.
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Figure 6 - CYRI modulates protrusion plasticity during directional
migration

a-c - Spider plots CrispR and control CHL-1 cells on collagen-I, 17h (a) (See
movie S4). Black and red lines = distance > or <100 pm respectively. Average
speed (b). (c) Duration as C-shape (b,c) One-way ANOVA with Dunn'’s post-test
(b) (Ctr n=161; #1 n=228; #2 n=178). (c) (Ctr n=45; #1 n=53; #2 n=42). n=cells
in a-p.

d - Speed of CrispR and control CHL-1. One-way ANOVA with Dunn’s post-test
(Ctr n=45; #1 n=53; #2 n=42)

e-f - Immunofluorescence of CrispR and control CHL-1 on collagen. F-actin
(magenta) and nuclei (blue) (e). Scale bar = 50 pum. (f). Two-tailed Chi-square
test (95% confidence). (Ctr n=276; #1 n=216; #2 n=210)

g-i - Spider and Rose plots of CrispR and control WM852 cell chemotaxis (g) (see
movie S5). Red-dashed lines 95% confidence interval for mean direction. Cos®
(chemotactic index) (h) average speed (i). Two-tailed unpaired t-test. (Ctr
n=129; #1 n=132; #2 n=151).

j-n - DIC pictures from Dictyostelium under-agarose chemotaxis (j) (see movie
$6). Scale bar = 10 pm. Circularity (K), protrusions (1), split frequency (m), and
speed (n). One-way ANOVA with Dunn’s post-test. (k: WT n=360; cyri KO n=352;
cyri KO + CYRI WT n=480; cyri KO + CYRI R155/156 n=240 - I: WT n=45; cyri KO
n=57; cyri KO + CYRI WT n=53; cyri KO + CYRI R155/156 n=31 - m: WT n=42; cyri KO
n=62; cyri KO + CYRI WT n=46; cyri KO + CYRI R155/156 n=33 - n: WT n=2389; cyri
KO n=2460; cyri KO + CYRI WT n=3024; cyri KO + CYRI R155/156 n=1169)

0-p - Needle assay using WT or cyri knockout Ax3 cells with cAMP (see also
movie S8) (yellow start). Scale bar = 25 um (0). Spider plots during 0-100s (p).
(WT n=86; cyri KO n=79)

a-p represent three biologically independent experiments with mean and S.E.M
unless indicated. Whisker plots 10-90 percentile (b, k-m) and 1-99 percentile
(n) with median (bar) and mean (cross). n.s. p>0.05, * p<0.05, ** p<0.01, ***
p<0.001.

See Supplementary Table 6.
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Figure 7 - CYRI-B regulates Racl-dependent recruitment of Scar/WAVE
complex during epithelial cystogenesis

a-b - Immunofluorescence of control (Vector ¢) or cyri-b shRNA knockdown
(#1 and #2) MDCK cysts fixed after 5 days of culture and stained for Podocalyxin
(PODXL) (green), F-actin (red) and nuclei (blue). Top row is a confocal section
and bottom row represents Z-maximal projection intensity of PODXL staining.
Scale bar = 50 pum (a). Quantification of lumens in (b). One-way ANOVA with
Dunn’s post-test. *** p<0.001. (Ctr n=1000 cysts, #1 n=1000 cysts, #2 n=800
cysts).

¢ - Immunofluorescence of control (Vector ¢) or cyri-b shRNA knockdown (#1
and #2) MDCK cysts stained for WAVE2 (green) and Podocalyxin (PODXL) (red)
after 5 days of culture. Inverted LUT images, merge and representative surface
profile plots shown. PODXL (red) and WAVE2 (green) staining intensity was
measured along the blue line. Scale bar = 9 um. Insets provide a magnified view
of the dotted square area. Scale bar = 5 um.

d-e - Immunofluorescence of control (Vector ) or cyri-b shRNA knockdown
(#1 and #2) MDCK cysts grown during 5 days, treated or not with 50 nM
EHT1864 and stained for Podocalyxin (PODXL). Pictures represent the Z-
maximal projection intensity from a representative z-stack running across the
entire cyst volume. Scale bar = 50 um (d). Number of lumens per cyst was
quantified for vehicle or EHT1864-treated cysts and plotted in (e). One-way
ANOVA with Dunn’s post-test between control (Vector ¢r), shCYRI-B #1 and
shCYRI-B #2 whereas unpaired two-tailed t-test between vehicle and drug-
treated cyst. n.s. p>0.05, ** p<0.01 *** p<0.001. (250 cysts/condition)

Data in a-e represent N=3 biologically independent experiments.

Bar and scatter plots show data points with mean and S.E.M.

Whisker plots show 10-90 percentile, median (bar) and mean (cross).
See also Supplementary Table 6.
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Methods

Antibodies and constructs
Antibodies and DNA constructs are listed in Supplementary Tables 3 and 4
respectively.

Alignment and phylogenetic tree

Protein sequences were obtained from Uniprot http://www.uniprot.org/ and
aligned using MacVector software. The phylogenetic tree was constructed based on
the major eukaryotic superclasses as previously defined!* and based on previous
identification of Arp2/3 complex and Scar/WAVE complex sequences!> >4 BLAST
homology search on the NCBI website https://blast.ncbi.nlm.nih.gov/Blast.cgi.
Dictyostelium, human or a close relative were searched against the complete
translated genome of open reading frames from these organisms.

HMM logo was generated by feeding the Pfam database of the DUF1394 domain into
Skylign>s.

CYRI-B structure prediction

The predicted protein structure of CYRI-Bzi.292 was generated by the protein
homology/analogy recognition engine (Phyre)>¢ using the cytoplasmic fmrl-
interacting protein 1 (PDB 3P8C) as a template with 100% homology confidence and
18% sequence identity.

Mammalian cell lines and growth conditions

CHL-1, HEK293T, COS-7 cells were maintained in Dulbecco’s Modified Eagle’s
Medium supplemented with 10% FBS and 2 mM L-Glutamine (DMEM).
ROSA26:CreER%2*%  [nk4-/-Cyri-Bwt/wt, Raclf/f mouse tail skin fibroblasts and
ROSA26:CreER®%+*Ink4-/-; Cyri-Bf/f mouse embryonic fibroblasts were maintained in
DMEM complemented with 1 mg/mL of primocin.

COS-7 cells transfected with the doxycycline-inducible system were grown in 10%
tetracyclin-free FBS (ClonTech) and treated with 5 pg/mL doxycycline for 48h.
MDCK cells were maintained in 5% FBS and 2 mM L-Glutamine supplemented
minimum essential medium, high glucose, high sodium bicarbonate.

WM852 cells were grown in RPMI supplemented with 10% FBS and 2 mM L-
Glutamine.

All mammalian cell lines used in this study were maintained in 10 cm plastic dishes
at 37 °C and 5% COx.

Cell lines were regularly tested for mycoplasma contamination (MycoAlert - Lonza).

CLICK Chemistry of Mammalian CYRI-B

HEK293T cells plated on 24-well plate were transfected with 1 pg of pEGFPN1 or
CYRI-B-EGFP (wild-type or GZA mutant) using Lipofectamine 2000 and were
processed the next day. C14:0-azide was synthesised as previously described>’.
Transfected HEK293T cells were incubated with 100 uM of C14:0-azide (in DMEM
with 1 mg/mL defatted BSA) for 4 h at 37 °C. Cells were washed twice in PBS and
lysed on ice for 10 min in 100 pL lysis buffer (150 mM NaCl, 1 % Triton X-100, 50
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mM Tris-HCI, pH 8.0, containing protease inhibitors). Cell lysates were centrifuged
at 10000 x g for 10 min at 4 °C to remove cell debris. Alkyne IR-800 Dye to C14:0
azide was conjugated for 1 h at room temperature (RT) with end-over-end rotation
by adding an equal volume of freshly mixed click chemistry reaction mixture (10 pM
800 CW alkyne infrared dye, 4 mM CuS04, 400 uM Tris[(1-benzyl-1H-1,2,3-triazol-
4-yl)methyllamine, and 8 mM ascorbic acid in dH;0) to the supernatants. GFP-
tagged proteins were isolated using the pMACS GFP isolation kit following
manufacturer’s protocol and resolved by SDS-PAGE as described below. Protein
acylation was quantified by expressing the intensity of the CLICK signal relative to
the protein signal.

Yeast Two-Hybrid screen

Screening was performed at Hybrigenics services as per their standard protocols.
Briefly, the coding sequence for the constitutively active full-length Racl
(NM_006908.4 ; mutations G12V, C189S) was PCR-amplified and cloned into pB27
as a C-terminal fusion to LexA (LexA-Racl). All libraries use the prey vector pPé6.
pB27 and pP6 are derived from the original pPBTM11658 and pGADGH>? plasmids,
respectively.

The bait was screened against the different libraries using a mating approach with
YHGX13 (Y187 ade2-101::loxP-kanMX-loxP, mat alpha) and L40deltaGal4 (mat-a)
yeast strains as previously described®. Positive colonies were selected on a medium
lacking tryptophan, leucine and histidine, and supplemented with 3-aminotriazole.
The prey fragments of the positive clones were amplified by PCR and sequenced at
their 5" and 3’ junctions. Interacting proteins were identified in the GenBank
database (NCBI).

GST Pull-down of Mammalian CYRI-B and GTPases

DHb5alpha E. coli cells were grown at ODgoonm 0.4 and induced for 4h with 0.2 mM
IPTG. Pellet was resuspended in ice-cold buffer A (50 mM NacCl, 50 mM Tris-HCI pH
7.5, 5 mM MgClz, 3 mM DTT) and sonicated, followed by a 30 min spin at 20000 rpm
to yield lysate. GST tagged proteins were immobilized on pre-washed glutathione-
sepharose beads for 30 min at 4°C with gentle agitation and unbound proteins were
washed out 3 times in buffer A.

Cells transfected with GFP constructs were collected in ice-cold lysis buffer (100 mM
NaCl, 25 mM Tris-HCI pH 7.5, 5 mM MgCl,, 1X protease and phosphatase inhibitors,
0.5% NP-40). 1.5-2 mg of proteins were mixed with pre-equilibrated beads with
gentle agitation during 2h at 4°C. Beads were then washed 3 times in washing buffer
(100 mM NaCl, 25 mM Tris-HCl pH 7.5, 5 mM MgCl), resuspended in sample buffer
containing DTT and resolved by SDS-PAGE as described below.

MBP Pull-down

Recombinant proteins were purified as mentioned above and immobilized on MBP-
trap beads. Beads were mixed with similar amount of recombinant GST-tagged
proteins in ice-cold buffer A (see above) containing 0.05% Triton X100. Binding was
allowed for 2h at 4°C and beads were then thoroughly washed in ice-cold buffer A.
Proteins were eluted by adding boiling sample buffer directly to the beads and
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prepared for SDS-PAGE.

Mutagenesis of Mammalian CYRI-B

Point mutation was inserted using the Q5-site directed kit (New England Biolabs)
and following the manufacturer’s instructions. Primers were designed using
NEBaseChanger - see Supplementary Table 5.

Protein purification for SPR analysis

E. Coli BL21 CodonPlus (DE3)-RIL (Agilent Tech.) and E. Coli BL21 (DE3) pLysS
(Promega) were used for GST-tagged and His-Tagged proteins respectively.
Pre-culture was grown overnight in L-Broth (LB) containing appropriate antibiotics.
Once reaching ODgoonm 0.4, protein expression was induced using 0.2 mM IPTG and
culture was kept overnight at 20°C under agitation (200 rpm). Cells were lysed in
Buffer 1 (200 mM NaCl, 30 mM Tris-HCl pH 7.5, 5 mM MgCl;, 3 mM -
mercaptoethanol) containing protease inhibitors and passed through a 20,000 psi-
pressurised microfluidizer. The soluble fraction was collected by centrifugation (30
min, 20000 rpm) and loaded onto an equilibrated GSTrap HP or HisTrap HP column
using an AKTA machine (GE Healthcare). Proteins were either directly eluted using
Buffer 1 containing either 20 mM GSH for GST-tagged proteins or 300 mM Imidazole
pH 7.5 for His-tagged proteins. Cleavage on the column was performed overnight
with the appropriate protease, flowing at 0.1 ml/min in a loop connected to the
AKTA machine. Proteins were gel purified (HiLoad 16/600 Superdrex 75pg or
HiLoad 16/600 Superdrex 200pg) in Buffer 2 (150 mM NaCl, 25 mM Tris-HCl pH 7.5,
5 mM MgClz, 2 mM -mercaptoethanol), snap-frozen and stored at -80°C.

Surface Plasmon Resonance (SPR) protein binding assay

SPR analysis was performed using Biacore T200 (GE Healthcare) equilibrated with
buffer 2 (see above) supplemented with 0.5% of surfactant P20. GST-tagged
proteins were immobilised at 22°C onto CM5 sensor chip functionalized with anti-
GST and reached ~320 RU. Same procedure was used for His-tagged protein onto
NTA sensor chip and reached 650 RU. All immobilisation steps were done at a flow
rate of 10 pL/min. Serial dilution of each analyte was injected across a reference
flow cell and the flow cell containing the ligand at a flow rate of 30 puL/min. Data
were solvent corrected, reference subtracted, quality controlled and evaluated using
the Biacore T200 evaluation software. Affinity was determined by curve fitting a 1:1
binding model.

Proximity ligation assay

COS-7 cells expressing CYRI-B-HA and MYC-Rac1 constructs were plated on laminin-
coated coverslips and used for DuoLink in situ proximity ligation assay (Sigma -
mouse and rabbit - Red detection) using the manufacturer’s protocol. Mouse anti-HA
(Covance) and Rabbit anti-MYC-tag (CST) were used at 1:400 and 1:200 respectively.
Incubation with either antibody was performed as a negative control.

Enforced mitochondrial localisation
The Rac1A cDNA (gift of A. Kortholt, University of Groningen) was mutagenised to
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P29S/Q61L the stop codon removed. It was cloned N-terminal to mCherry-
mitochondrial anchor, or N-terminal to mCherry to give a cytosolic version.
Likewise, PakB-CRIB was cloned N-terminal to either GFP alone (to give a soluble
CRIB fusion) or GFP-mito (to give a mitochondrial-targeted version). CYRI was
similarly used in its WT or R155D R156D double mutant. The mitochondrial anchor
consists of the C-terminal tail (aa 602-658) of gemA, the Dictyostelium
mitochondrial-anchored Rho1/2 GTPases.

Live cell images were acquired at separate times using single-channel hardware
setups to ensure zero channel bleed-through or dual excitation of fluorophores. To
note, the cells move between image captures. Dual images were captured using a
double band-pass filter that allows both red and green signals to pass
simultaneously. The same cells are shown in the red, green and dual images.

Transfection, siRNA Treatment and Knockout Mammalian Cells.

Oligos used are listed in Supplementary Table 5.

Cells were plated a day before transfection at 70% of confluence and later
transfected using Lipofectamine 2000 according to the manufacturer’s instructions.
2-5 pg of DNA was used per reaction based on a 6-well plate format.

siRNA oligonucleotides targeting CYRI-B (Qiagen): Mouse tail fibroblasts and COS-7
cells were respectively treated with 75 nM of Mus musculus CYRI-B siRNA and 25
nM of Homo sapiens CYRI-B siRNA (recognised Cercopithecus aethiops) or matched
concentration of control siRNA (AllStars Negative siRNA - Qiagen) were transfected
using Lullaby transfection reagent according to manufacturer’s instructions. The
same step was repeated 48h later and cells were analysed after 24h.

For CrispR/Cas9 mediated knock out, sgRNA were selected using the MIT CrispR
designing tool (http://crispr.mit.edu/). Annealed oligonucleotides were cloned into
pLentiCrispRv2-Puro. Briefly, HEK293T cells were seeded at 1.5 x 10° cells/10cm
dish. Cells were transfected with 10 pg of the selected plasmid (Vector ¢ or
containing a gRNA against CYRI-B) 7.5 pg of pSPAX2 (Addgene 8454) and 4 ug of
pVSVG (Addgene 12260) in a final volume of 440 pL of sterile water, and
complemented with 500 puL 2X HBS and 120 mM CaCl,. Solution was incubated 30
min at 37°C before adding to HEK293T cells. Medium was removed after 24h and
replaced by 6 mL of 20 % FBS DMEM. Meanwhile, recipient cells were plated at 1 x
106 cells/10cm dish. The day after, supernatants were filtered through a 0.45 pm
pore membrane and mixed with 25 pg of hexadimethrine bromide (4.2 pg/mL final)
before infecting recipient cells. Infection was repeated the next day and stably
transfected cells were selected with 1 pg/mL of puromycin.

Same procedure was used for lentiviral infection of the MDCK cells and cells were
selected with 5 pg/mL of puromycin.

For CrispR COS-7 cyri-b knockout cells, human gRNAs against CYRI-B (CrispR#1 or
#2 - See Table 5) were cloned into a pSpCas9(BB)-2A-GFP vector (Addgene
plasmid #48138) using the restriction enzyme Bbsl as described in®1 COS-7 cells
were seeded onto 6 cm dishes and transfected the day after using Lipofectamine
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2000 with 5 pg of pSpCas9(BB)-2A-GFP (empty vector or CYRI-B targeting CrispR
gRNA) following the manufacturers guidelines. Cells were grown for approximately
24 h before FACS sorting. The transfected cells were trypsinised, resuspended in
serum free DMEM with DAPI (1 pg/ml) and filtered through a 0.45 pm pore
membrane for FACS. For FACS, gates were drawn to sort by cell size, live/dead and
GFP positive cells. GFP positive sorted cells were incubated with DMEM complete
and left to grow at normal culturing conditions. Knockouts for CYRI-B were analysed
by western blotting.

Generation of knockout mouse embryonic fibroblast and mouse tail skin fibroblast
cell lines were obtained by adding 1 uM of hydroxytamoxifen in the growth medium
every 3 days over 7 days.

FRET imaging of Mammalian Cells

The Rac1-Raichu-mTq2-sREACH probe is described in29. Cells were transfected with
the probe, plated the day after on laminin and imaged. FRET images were acquired
with the Nikon FLIM/TIRFsystem Z6014 microscope equipped with a Plan
Apochromat 63x/1.45 oil objective and a 465 nm LED. Dishes were placed in a 37°C
heated chamber perfused with 5% CO.. FRET efficiency was calculated by
standardizing the probe lifetime to the average lifetime of the donor alone as

follows:

FRET ef ficiency (%) = “0ereg¢ W etime donor — Lifetime probe
ef ficiency (%) = Average lif etime donor g

Active Rac1 pulldown

COS-7 cells were plated on laminin-coated dishes for 1h, washed twice with ice-cold
PBS and lysed using 50 mM Tris-HCI pH 7.4, 500 mM NaCl, 1% Triton X-100, 0.5%
sodium deoxycholate, 10 mM MgCl;, 1X protease and phosphatase inhibitors.
Cleared lysates were incubated with recombinant GST or GST-CRIB-PBD obtained
from DH5alpha cells as described above. 1-1.5 mg of lysate were incubated for 2 h at
4°C with a similar amount of GST-construct immobilised on glutathion-sepharose
beads. Beads were washed 3 times with 50 mM Tris-HCI pH 7.4, 500 mM Nacl, 10
mM MgCl; and prepared for SDS-PAGE analysis as described below.

SDS-PAGE and Western Blotting of Mammalian Cells

Lysates were collected on ice by scraping cells in RIPA Buffer (150 mM NaCl, 10 mM
Tris-HCl pH 7.5, 1 mM EDTA, 1% Triton X100, 0.1% SDS, 1X protease and
phosphatase inhibitors) and centrifuged 10 min at 15000 rpm and 4°C. Protein
concentration was measured at ODeoonm using Precision Red.

20-40 pg of protein were resolved on a NuPAGE Novex 4-12% Bis-Tris gels and
transferred onto a nitrocellulose membrane using the BioRad system. Membranes
were blocked in 5% non-fat milk in TBS-T (10 mM Tris pH 8.0, 150 mM NacCl, 0.5%
Tween 20) during 30 min before overnight incubation with primary antibodies at
4°C. Membranes were washed 3x 5 min in TBS-T and incubated 1h with Alexa-Fluor
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conjugated secondary antibodies. Blots were then washed 3x 5 min and imaged
using the LiCor Odyssey CLx.
All images were then analysed using Image StudioLite v.5.2.5.

Immunofluorescence of Mammalian Cells

Cells were collected and plated onto sterile 13mm glass coverslips coated overnight
at 4°C with 10 pg/mL of rat-tail collagen I, 10 pg/mL fibronectin or 10 pg/mL
laminin diluted in PBS. Coverslip were washed 3x in PBS before seeding cells. Cells
were fixed with 4% paraformaldehyde for 10 min, permeabilised (20 mM Glycine,
0.05% Triton X100) for 10 min and blocked with 5% BSA-PBS for 30 min. Primary
and secondary antibodies were diluted in blocking buffer and incubated 1h in a dark
and humidified chamber. Coverslips were washed twice in PBS and once in water
before being mounted on glass slides using ProLong Gold antifade reagent. Images
were taken using an inverted Olympus FV1000 confocal microscope using a Plan
Apochromat N 63x/1.40 oil SC or an Uplan FL N 40x/1.30 oil objective.

Images were processed and analysed using Fiji software (Image] v1.48t)16.

Membrane dynamics analysis

CHL-1 cells were transfected with GFP-LifeAct (5 pg AMAXA kit-T, program T-020)
and incubated overnight in complete DMEM. Cells were then plated onto a glass
bottom dish coated with laminin for 3 h before imaging within a contained unit at
37°C and 5% COz. Time-lapse images were taken using a Nikon microscope with a
CoolLED GFP filter set (470 nm LED) and a Nikon Plan Apo VC 100x/1.4 NA oil
immersion objective and captured using a Photometrics PRIME camera. GFP images
were taken at 1 frame per second for a total of 3 min. For each frame, a binary mask
was made of the cell based on the intensity of its LifeAct signal, and the intensity of
an associated edge image made by Canny edge detection. Differences between binary
images from one frame to the next were used to find areas of extension or retraction,
with extended areas positively valued and retracted areas negatively valued. Co-
ordinates for an outline of the binary image of each frame were extracted from the
ROI class in Image], and were used to measure the mean intensity of the
corresponding difference image in a 5x5 px area. These values were then written for
each cell to a new 2D image that we refer to as an "unwrapped kymograph", with
each two rows representing one frame and each column representing one outline
coordinate point for that frame. After smoothing this unwrapped kymograph, areas
of protrusion were identified by thresholding, with their extension in the y direction
(time) measured. This gave us an estimate of the active lifetime of each protrusion,
and a mean protrusion lifetime for each cell. Images were processed using
Metamorph and Fiji softwares.

Plugin used for creating kymograph will be provided upon reasonable request.

Rac1 photo activation

Transfection protocol: MEFs were transiently transfected by electroporation (Amaxa
kit T) with 5 pg of photoactivatable Rac1 plasmid3! (pTriEx-LOV2-Ja-Rac1l-mCherry).
The transfected cells were suspended in complete DMEM media, and plated onto
laminin-coated glass-bottom 35 mm dishes. After several hours, the media was
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replaced with serum-free DMEM and incubated overnight in darkness.

Imaging: Imaging was performed on a Zeiss 880 confocal microscope with a stage
incubator perfused with CO;. Time-lapse imaging of moderate mCherry expressing
cells was done for 150 frames at 2 second intervals between frames. Two images
were collected for each frame at 568 nm with bi-directional scanning averaged over
two frames to image the mCherry tag, and a transmitted light detector to show a
bright field image of the cell morphology, both at 1024x1024 resolution. An initial
29 frames (1 minute) was collected with 568 nm excitation to document baseline
protrusive activity. Photoactivation of Racl was started at frame 30, and continued
for each frame to 150, with a pulse of 458 nm excitation in a 100 pixel diameter
region of interest. The 568 nm excitation was at 7.5% laser power, with gain of 600-
800 depending on the brightness of the cell, and the pinhole set at 300 to maximize
collection of light levels and depth of field to capture ruffles. The 458 nm excitation
used laser power of 10% and scan speed set for a pixel dwell time of 8 psec.

Movies were processed using the Plugin found in Supplementary Note 1

Chemotaxis assay

Chemotaxis assays with WM852 human melanoma cells were performed as
described in3>. Briefly 8 x 104 cells were seeded onto fibronectin coated coverslips
and left overnight in serum-free RPMI. Coverslips were mounted onto Insall
chambers with RPMI containing 10% fetal bovine serum as the chemoattractant,
and images were taken every 15 min for 48 h with a Nikon TE2000-E time-lapse
microscope using Metamorph software. Cells were manually tracked using MTrack]
plugin in Fiji. All cells that moved independently of other cells were chosen for
tracking. Approximately 120 cells were tracked for each condition from 3
independent repeats per condition (see also legend Figure 6).

Random Migration Assay for Mammalian Cells

6-well glass bottom plates were coated overnight as described above. 1x10> cells
were plated and imaged every 10 min for 17 h using a Nikon TE2000 microscope,
PlanFluor 10x/0.30 objective and equipped with a heated CO2 chamber. Images were
analysed using Fiji software®3 (Image] v1.48t). Individual cells were tracked using
the mTrack] plugin, and spider plots were generated using the chemotaxis and
migration tool plugin (v.1.01).

Dictyostelium discoideum Cells

Axenic D. discoideum strains Ax3 was used as wildtype. cyri knockout cells were
generated in Ax3 genetic backgrounds. Ax3-derived napA KO cells are described
previously®4. Cells were grown in HL5 medium (Formedium) with 100 U/ml
penicillin and 100 pg/ml streptomycin in 10 cm plastic Petri dishes and incubated at
21°C.

Dictyostelium discoideum GFP-Trap with Formaldehyde Crosslinking

Cells were collected in PBS and lysed by adding ice-cold 3x lysis/crosslinking buffer
(1x buffer: 20 mM HEPES pH 7.4, 2 mM MgCl;, 3% formaldehyde, 0.2% Triton X-
100). After 5 min with gentle agitation at 4 °C, formaldehyde was quenched for
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10min on ice using 1.75 M Tris pH 8.0. Samples were centrifuged at 22000g for 4
min at 4 °C. Pellet was successively washed and resuspended with 1 mL of ice cold
quenching buffer (0.4 M Tris pH 8.0, 0.2% Triton X-100), wash buffer A (100 mM
HEPES pH 7.4, 2 mM MgCly, 0.2% Triton X-100) and wash buffer B (100 mM HEPES
pH 7.4, 2 mM MgCl;), with 3 min centrifugation step between washes. Final
resuspension was performed using 1mL of ice-cold RIPA buffer (50 mM Tris-HCl pH
8.0, 150 mM NacCl, 0.5% Triton X-100, 0.5% sodium deoxycholate, 0.15% SDS, 5 mM
EDTA, 2 mM DTT) and incubated 1h at 4 °C with gentle agitation. Supernatants were
mixed with pre-equilibrated GFP-Trap beads (Chromotek) following manufacturer’s
protocol. Beads were washed 3x with 50 mM Tris-HCI pH 8.0, 150 mM NacCl, 5 mM
EDTA followed by 1 wash with 10 mM Tris-HCl pH 8.0. Samples were eluted after
incubation with 2x SDS loading buffer and heating 10 min at 70°C before loading on
a SDS-PAGE.

Dictyostelium discoideum GFP-NAP1 ‘in gel’ Proteolytic Digestion - Mass
Spectrometry Analysis

Eluates from GFP-NAP1 immunoprecipitation were separated by SDS-PAGE and
stained with Coomassie blue. Each gel lane was divided in 6 slices and digested®>.
Tryptic peptides from in gel digestions were separated by nanoscale Cig reverse-
phase liquid chromatography using an EASY-nLC II (Thermo Fisher Scientific)
coupled online to a Linear Trap Quadrupole - Orbitrap Velos mass spectrometer
(Thermo Scientific) and desalted using a pre-column C18 NS-MP-10 100um i.d. x 0.2
cm of length (NanoSeparations). Elution was at a flow of 300 nl/min over a 90 min
gradient, into an analytical column C18 NS-AC-11 75um id. x 15 cm of length
(NanoSeparations). For the full scan a resolution of 30,000 at 400 Th was used. The
top ten most intense ions were selected for fragmentation in the linear ion trap
using Collision Induced Dissociation using a maximum injection time of 25 ms or a
target value of 5000 ions. MS data were acquired using the XCalibur software
(Thermo Fisher Scientific).

Raw data obtained were processed with MaxQuant version 1.5.5.16 and Andromeda
peak list files (.apl) generated were converted to Mascot generic files (.mgf) using
APL to MGF Converter [http://www.wehi.edu.au/people/andrew-webb/1298/apl-
mgf-converter.]. Generated MGF files were searched using Mascot (Matrix Science,
version 2.4.1), querying dictyBase®” (12,764 entries) plus an in-house database
containing common proteomic contaminants and the sequence of GFP-NAP1. The
common contaminant and reverse hits (as defined in MaxQuant output) were
removed.

Mascot was searched assuming trypsin digestion allowing for two miscleavages with
a fragment ion mass tolerance of 0.6 Da and a parent ion tolerance of 15 ppm. The
iodoacetamide derivative of cysteine was specified in Mascot as a fixed modification,
and oxidation of methionine and phosphorylation of serine, threonine and tyrosine
were specified in Mascot as variable modifications. Scaffold (version 4.3.2,
Proteome Software) was used to validate MS/MS based peptide and protein
identifications. Peptide identifications were accepted if they could be established at
greater than 95.0% probability as specified by the Peptide Prophet algorithm,
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resulting in a peptide false discovery rate (FDR) of 0.63%320. For label-free
quantification, proteins were quantified according to the label-free quantification
algorithm available in MaxQuant®8.

Significantly enriched proteins were selected using a Welch-test analysis with a 5%
FDR.

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset
identifier PXD010460.

Generation and Validation of cyri-knockout and rescued Dictyostelium
discoideum

Primers used are detailed in Supplementary Table 5.

Standard methods were used for construction of all Dictyostelium knockout and re-
expression vectors®?. A linear CYRI knockout construct (2758 bp in length), which
consisted of a blasticidin resistance (Bsr) cassette flanked by sequences matching 5’
and 3’ regions in the CYRI (DDB_G0272190 identifier at dictybase.org) gene locus
(18pb cross-over), was made by PCR amplification using the primers set 1 (5’ arm)
and set 2 (3’ arm). PCR-amplified arms were combined with the Bsr cassette in a
using the primers set 3.

Knockout clones were screened/validated by PCR, with primers set 4. cyri-knockout
yield a 2450 bp PCR product, random integrants (clones with a KO construct
integration elsewhere in the genome) and wild-type yield a 1983 bp PCR product.

Vector for expression of untagged CYRI was obtained by sub-cloning CYRI’s
genomic coding region into pDM358¢°. A REMI37 (non extra-chromosomal) vector
was derived from this by removal of the Dictyostelium plasmid propagation genes
and re-ligation of the vector backbone. This construct, while still having a strong
promoter, is expected to be present in just one copy per cell.

Transformation of Dictyostelium discoideum

3.0 x 107 cells/transformation were first centrifuged (3 min, 330 x g, 4°C), washed
with 10 ml ice-cold electroporation buffer (E-buffer; 10 mM sodium phosphate
buffer pH 6.1, 50 mM sucrose), and resuspended in 400 pl ice-cold E-buffer. Cells
were transferred into an ice-cold 0.2 cm electroporation cuvette and incubated 5
min with 0.5-1.0 pg of DNA on ice. Cells were electroporated (BTX-Harvard
Apparatus ECM 399) at 500V, giving a time constant of 3-4ms. Cells were
immediately transferred to HL5 medium in Petri dishes. Appropriate selection (50
pg/ml hygromycin or 10 pg/ml G418) was added the next day. For REMI
transfections, 10 pg of linearized DNA and 50 U of restriction enzyme were used, in
0.4cm cuvettes with a Bio-Rad Gene Pulser Il set at 1.2kV and 3puF.

Dictyostelium discoideum CYRI inclusion body purification

BL21(DE3) pLysS cells were grown to ODsoonm 0.2 and induced with 0.2 mM IPTG for
4h. Cells were pelleted, frozen and resuspended with 80 mL of lysis buffer (50 mM
Tris-HCl pH 8.0, 25 % sucrose (w/v), 1 mM EDTA) per 100g of cells. Cells were lysed
by adding 1% lysozyme (w/v) and kept on ice for 30 min. Lysate was resuspended
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with 10 mM MgClz, 1ImM MnClz, 10pg/mL DNase I and kept for another 30 min on
ice. Finally, 200 mL of detergent buffer (0.2 M NaCl, 1% deoxycholic acid (w/v), 1%
NP40, 20 mM Tris-HCI pH 7.5, 2 mM EDTA) was added to the lysate, which is then
centrifuged at 5000 x g for 10 min. Pellet is then washed in 0.5% NP40, 1 mM EDTA
and this step is repeated until a tight white pellet is obtained.

Dictyostelium discoideum CYRI antibody production

Inclusion bodies were dissolved in sample buffer with DTT and loaded onto a 10%
Bis-Tris acrylamide gel at 70V at 4 °C. Gel was Coomassie stained and fragments of
the band corresponding to CYRI was sent to BioGenes for injection into 2 rabbits.
Bleeds were collected every second week after initial immunisation/boost and
tested by western blot.

(Terminal bleed from rabbit 27724 after 5th boost used at 1:100).

Dictyostelium discoideum Under-agarose Chemotaxis Assay

This assay is based on a previous study’?. Surface of the 30 mm glass bottom dish
(MatTek) was coated with 10 mg/ml BSA for 10 min, washed with dH,0 and dried
for 5 min inside a laminar flow cabinet. 0.4% w/v SeaKem GTG agarose in SIH
medium (Formedium) containing 10 pM folate was poured and set for 1h. A well was
cut in the agarose and 2x10° cells/mL placed in it. After 3-4h cells were imaged by
Phase contrast and DIC microscopy with a Nikon Eclipse TE2000-E microscope
system equipped with a QImaging RETIGA EXi FAST 1394 CCD camera and a pE-100
LED illumination system (CoolLED) at 525 nm. A 10x/ 0.45 NA Ph1 objective and a
60x/1.40 NA apochromatic DIC objective were used for phase contrast and DIC,
respectively. Imaging was controlled through the pManager 1.4.9 software. All
microscopy was carried out at RT and images were analysed with Image]/Fiji 1.49i.
Pseudopod rate and split frequency was analysed from the DIC movies and manually
quantified frame by frame. For analysis of cell circularity, speed and migration
parameters, automated tracking plugins were developed for Image] (see Plugin2 in
Supplementary note 2). More information will be supplied upon reasonable request.

Dictyostelium discoideum development assay

Cells were harvested from axenic growth plates, washed twice in phosphate buffer
(10 mM Na/K phosphate pH 6.5) containing 2 mM MgCl; and 1mM CacCl, and plated
on 1% w/v agar prepared in the same buffer. For time-lapse imaging we used a
Nikon Eclipse TE2000-E microscope fitted with a Prior ProScan Il moving stage, and
equipped with a QImaging RETIGA EXi FAST 1394 CCD camera and a pE-100 LED
illumination system (CoolLED) at 525 nm.

cAMP needle assay

Cells were developed as described above until territories began to form, indicating
production and responsiveness to cAMP waves. Cells were harvested and placed into
phosphate buffer and their response to 10 uM cAMP (Eppendorf Injectman NI2
microinjector with Femtotips II) was monitored by timelapse microscopy (1
frame/5sec) using a Zeiss Axiovert A1l body with a plan/neofluar 20x 0.5NA
objective combined with a QI REtiga camera.
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HSPC300-GFP analysis

Wild type or cyri KO Ax3 cells were transfected with HSPC300-GFP as described
above and timelapse movies were obtained using a Zeiss 880 confocal microscope.
Processed images were used to obtain the unwrapped kymograph. Plugin used for
this analysis will be provided upon reasonable request.

3D MDCK cysts - Culture

shRNA-expressing MDCK cells were split 1:10 the day before plating in 3D, in
puromycin-free medium. Chilled 8-well chamber slides were coated by spreading 5
uL of undiluted Matrigel over the well surface and transferred to 37°C incubator for
10 min. MDCK cells were diluted to 4x10# cells/mL in puromycin-free medium and
thoroughly disaggregated by pipetting. Matrigel was then diluted to 4% in MEM
medium and mixed with the similar volume of cells diluted at 1.5x10% cells/mL,
bringing the final Matrigel concentration to 2%. Wells were filled with 300 pL of the
cell-Matrigel mix and cysts were grown 5 days at 37°C.

3D MDCK cysts - Immunofluorescence and Imaging

Medium was aspirated and wells were quickly washed twice with PBS. Cysts were
fixed using 4% PFA for 10 min, washed, and permeabilised for 10 min at RT using
0.5% Triton X100 diluted in PBS. Cells were blocked for 30 min using PFS (0.7%
(w/v) fish skin gelatin in 0.025% Saponin-PBS). Primary antibodies were diluted in
PFS and incubated overnight at 4°C with gentle shaking. Cysts were washed 3x in
PFS at RT. Secondary antibodies, nuclear dye and Phalloidin were diluted at 1:200 in
PFS and incubated for an hour at RT before further washes. Chambers were then
kept sealed in 0.02% NaN3-PBS at 4°C until analysis. Cysts were imaged using the
Nikon A1R Z6005 confocal microscope using either a Plan Apochromat 20x/0.75
DIC N2 or a Plan Fluor 10x/0.30 DIC L/N1 objective. In order to sharpen images,
factor line averaging was set up at 4. Z-stack images were acquired with a 4 um
increment step from the bottom to the top of the cyst.

Statistics and Reproducibility

Data sets were analysed using Prism5 v5.0c and Prism?7. Differences between
groups were tested for normality and then analysed using the appropriate statistical
test, mentioned in each figure legend. Error bars represent standard error of the
mean (S.E.M) unless stated otherwise. Significance levels are given as follows: ns:
p>0.05; * p<0.05; ** p<0.01; *** p<0.001. Cochran-Mantel-Haenszel test was
generated using R software and p-values are mentioned when appropriate.

All experiments were repeated independently as biological repeats at least 3x,
unless stated otherwise, and always gave similar trends. Individual values are
available in Supplementary Table 6.

Data Availability

Mass spectrometry data have been deposited in ProteomeXchange with the primary
accession code PXD 010460. Source data for Figs 1-7 and Supplementary Figs 2-6
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have been provided as Supplementary Table 6. All other data supporting the
findings of this study are available from the corresponding authors on reasonable
request.

Code Availability

The code used for analysis of cell protrusions in Figure 5 is available in
Supplementary Note 1. The code used for tracking Dictyostelium migration under
agarose is available in Supplementary Note 2. Homemade plugins from this study
will be made available from the corresponding authors upon reasonable request.
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