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 1 INTRODUCTION 18 

 19 

Efficient decontamination of pipeline system is an essential action in situations where a 20 

drinking water distribution system is contaminated. The challenge in decontamination is 21 

the fact that biofilms may protect faecal and pathogenic microbes against disinfectant after 22 

contamination event.
1,2

 The one of the most frequently used cleaning method for drinking 23 

water distribution networks is clorination.
3,4,5,6

 Shock-chlorination can be used for 24 

purification of microbial contaminated water distribution system in waterborne outbreaks. 25 

As an example, shock-chlorination was applied to clean the network after the severe 26 

waterborne outbreak in the Nokia city, Finland year 2007.
5,7

  27 

     It is also important to detect pathogenic microbes from water and biofilm samples as 28 

fast and efficient as possible if suspected contamination. The rapid and specific detection 29 

techniques for pathogenic bacteria could save valuable time and may reduce illness cases 30 

during an emergency situation. It also enables the verification of the success in the 31 

cleaning procedure.
8
 32 

     The new molecular biological techniques allow detection of viability of target 33 

pathogens as combination of Propidium monoazide (PMA)
9
 treatment with quantitative 34 

polymerase chain reaction (qPCR) and Direct Viable Count (DVC) cell elongation with 35 

Peptide Nucleic Acid probes and Fluorescence in situ Hybridization (PNA-FISH).
10

 36 

Moreover, the traditional cultivation could take several days to weeks for reporting final 37 

results
6
 when PCR and FISH based assays can provide results faster.

8,11,12
 In addition, the 38 

FISH and PCR based techniques have been reported to be able to observe pathogenic 39 

bacteria from water and biofilm samples when the traditional cultivation method was not 40 

able to detect them.
13, 8

  41 

     The aim of this study was to test how a pilot water distribution network can be cleaned 42 

after contamination with bacteria using shock-chlorination.  43 

 44 

 45 

2 THE EXPERIMENTAL SET-UP 46 

 47 

The pilot distribution system consisted of a 400m long PEX plastic pipeline. Water flow in 48 

the system was 1.8 l/min. The quality of water and growth of the biofilms was followed for 49 

a period of one month prior the contamination phase. The progress of decontamination was 50 
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followed with the chlorine concentration, DAPI staining and heterotrophic plate counts 1 

(HPC). The chlorine concentration used for shock-chlorination was 10 mg Cl2/l. During the 2 

experiment two parallel outlet water and three biofilm samples were took in each sampling 3 

point. 4 

     The experiments were carried out using Yersinia pseudotuberculosis strain, the closest 5 

relative surrogate bacteria for severe human bacterial pathogen Yersinia pestis. The effect 6 

of shock-chlorination for microbiological agents was followed with new molecular biology 7 

techniques such as PMA-PCR and PNA-DVC-FISH assays for the determination of 8 

viability of the surrogate bacteria. A photoreactive PMA compound cannot pass through 9 

the cell membrane of a viable bacterial cell. When a cell membrane is damaged, the PMA 10 

gets into the cell and covalently binds to the cell genome. The attached PMA inhibits real-11 

time PCR reactions which allow observing differences between viable and damaged 12 

cells.
9,14

 The combination of DVC-FISH technique includes enrichment of samples in the 13 

presence of an antibiotic.
10,15

 The antibiotic prevents normal cell division leading to 14 

elongation of viable cells.
16

 A fluorescent PNA probe can bind as a sequence specific for 15 

ribosomal RNA of target cells. The successful binding between the PNA probe and 16 

specific target can microscopically be observed. When the fluorescent elongated cells 17 

could be detected the bacterial viability state can be estimated.
17

 In addition, the Yersinia 18 

selective cefsulodin-Irgasan-novobiocin (CIN) plate counting was used as parallel with the 19 

new molecular biological techniques for detection of cultivable Yersinia cells. 20 

 21 

 22 

 3 RESULTS 23 

 24 

The concentration and viability of Yersinia pseudotuberculosis cells decreased rapidly in 25 

water and biofilm samples after start of the chlorination (Figure 1 and 2) as well as the 26 

counts of heterotrophic plate count and total microbial counts. In biofilms, the FISH counts 27 

of Yersinia were reduced by approximately 5 log and with qPCR 4 log. 28 
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Figure 1 The viable/ VBNC and total cell concentration in biofilm samples. 46 
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 15 
Figure 2  The viable/ VBNC and total cell concentration in water samples. 16 

 17 

In water, the FISH and qPCR counts of Yersinia were reduced by approximately 7 log. The 18 

new PCR and FISH techniques were able to detect Yersinia cells (total counts/ viable 19 

counts) while the selective culture method could not found any vegetative bacterial cells.  20 

 21 

 22 

 4 CONCLUSIONS  23 

 24 

In this study it was found out that the new qPCR and FISH based detection techniques 25 

were usable for determination of viability of the Yersinia pseudotuberculosis cells. 26 

According to previous studies, it has been stated that traditional FISH and PCR techniques 27 

could not separate live, viable but non-cultivable (VBNC) or dead cells from live 28 

culturable cells and that conventional cultivation based methods should be used for the 29 

detection of live, cultivable bacterial cells.
6,18

 It is known that chlorine damages nucleic 30 

acids
19  

which may affect the results of nucleic acid based FISH and qPCR methods. Over-31 

all, this study indicated that the shock-chlorination appeared to be an effective technique 32 

for cleaning a water distribution network after a bacterial contamination. However, it is 33 

obvious that some of the Yersinia cells introduced in the pipeline may have washed away 34 

from the pipeline network during the experiment. This might explain part of the rapid 35 

decrease in Yersinia cells in the water and biofilm samples. Therefore it is difficult to 36 

assess the true inactivation efficiency of shock-chlorination for the removal of the 37 

microbial contaminant. 38 
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