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Metabolomics guided pathway analysis
reveals link between cancer metastasis,
cholesterol sulfate, and phospholipids
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Nicholas J. W. Rattray2, Zahra Rattray8, Benedikt Warth1, Melissa Ritland4,9, Linh T. Hoang1, Celine Loriot4,

Jason Higa4, James E. Hansen3,8, Brunhilde H. Felding4* and Gary Siuzdak1*

Abstract

Background: Cancer cells that enter the metastatic cascade require traits that allow them to survive within the

circulation and colonize distant organ sites. As disseminating cancer cells adapt to their changing

microenvironments, they also modify their metabolism and metabolite production.

Methods: A mouse xenograft model of spontaneous tumor metastasis was used to determine the metabolic

rewiring that occurs between primary cancers and their metastases. An “autonomous” mass spectrometry-based

untargeted metabolomic workflow with integrative metabolic pathway analysis revealed a number of differentially

regulated metabolites in primary mammary fat pad (MFP) tumors compared to microdissected paired lung

metastases. The study was further extended to analyze metabolites in paired normal tissues which determined the

potential influence of metabolites from the microenvironment.

Results: Metabolomic analysis revealed that multiple metabolites were increased in metastases, including

cholesterol sulfate and phospholipids (phosphatidylglycerols and phosphatidylethanolamine). Metabolite analysis of

normal lung tissue in the mouse model also revealed increased levels of these metabolites compared to tissues

from normal MFP and primary MFP tumors, indicating potential extracellular uptake by cancer cells in lung

metastases. These results indicate a potential functional importance of cholesterol sulfate and phospholipids in

propagating metastasis. In addition, metabolites involved in DNA/RNA synthesis and the TCA cycle were decreased

in lung metastases compared to primary MFP tumors.

Conclusions: Using an integrated metabolomic workflow, this study identified a link between cholesterol sulfate

and phospholipids, metabolic characteristics of the metastatic niche, and the capacity of tumor cells to colonize

distant sites.
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Background
The biology of metastatic cancer is complex, and cells that

enter the metastatic cascade encounter a multitude of

challenges. The fraction of malignant cells that are shed

from the primary tumor require traits that allow them to

survive in circulation and colonize distant organs [1].

Once seeded, the cells must adapt to the new pool of

extracellular metabolites available and survive immune

surveillance. To do this, cancer cells reprogram their

microenvironment to assist tumor growth. Thus, the me-

tabolism, growth, and survival of the metastatic cells are

likely dependent on the attributes of the new site.

As cancer cells proliferate, they require energy to

synthesize macromolecules, support cell growth, and main-

tain redox homeostasis [2, 3]. Sources of energy can be con-

trolled by the expression of metabolic enzymes such as

hexokinase which converts glucose to glucose-6-phosphate

in the glycolysis pathway, as seen in many cancers, including

glioblastoma multiforme [4]. However, cancer cells can also

utilize transporters to help produce and import metabolites

from the microenvironment. A recent study revealed that

metastatic cells release an enzyme into the extracellular

space catalyzing the phosphorylation of creatine. Phospho-

creatine is then imported into disseminated cancer cells to

generate adenosine triphosphate (ATP), fueling metastatic

survival [5]. Moreover, stromal-epithelial metabolic coupling

has been described for symbiotic nutrient sharing in cancer.

A recent report revealed that adipocytes in the omentum

provide fatty acids for primary ovarian cancers promoting

rapid tumor growth and metastasis [6]. Metabolites can also

be directly involved in increasing cancer cell growth, for ex-

ample, succinate and fumarate are known to inhibit prolyl

hydroxylase enzymes producing a pseudo-hypoxic state,

driving glycolysis, and tumor proliferation [7]. Therefore,

understanding the metabolism of cancer cells in a primary

tumor versus those that have metastasized to a secondary

organ site can reveal metabolic adaptions of a disseminating

cancer cell.

A recently developed autonomous metabolomic workflow

was implemented with integrative metabolic pathway ana-

lysis to identify metabolites and guide further biological in-

vestigation [8]. A MDA-MB-435 xenograft model was used

to generate mammary fat pad (MFP) tumors in the mouse

and spontaneous metastases to the lung, to test the hypoth-

esis that metastatic cells undergo a metabolic adaption to

survive the new microenvironment [9]. These cancer tissues

were subjected to comprehensive metabolomics and pathway

analyses, which revealed a number of metabolic dependen-

cies for cancer cells that resided in these tissues.

Methods

The aims of this study were to assess the metabolic dif-

ferences between primary tumors and spontaneous me-

tastases. To carry out a comprehensive analysis of

metabolites in tissues, we used an autonomous mass

spectrometry-based metabolomic workflow on primary

tumor and metastasis tissue extracts [8].

Cell culture

MDA-MB-435 cells were grown in EMEM supplemented

with nonessential amino acids, vitamins, 2 mM L-glutam-

ine, 1 mM pyruvate, and 10% fetal bovine serum.

Animal treatment and sample collection

Six- to eight-week-old female C.B-17/SCID mice were

injected with F-luc-tagged cancer cells: 2.5 × 105 (30 μl)

MDA-MB-435 cells into the fourth mammary fat pad.

Primary tumors were removed surgically when they

reached 300 mm3 in size (approximately 4 weeks post-

injection), the endpoint. Mice were then examined

weekly (IVIS 200, Xenogen) by non-invasive biolumines-

cence imaging, 10 min after i.p. injection of D-luciferin

(100 mg/kg) to assess the presence of lung metastasis.

Animals were sacrificed 24 h after bioluminescence sig-

nal on the chest reached 1 × 107 photons/s/cm2. In

order to eliminate any artefacts that could occur with

the enzymatic procedure, i.p. injection of D-luciferin was

not used for the final dissection. Animal work complied

with the National Institutes of Health and institutional

guidelines (TSRI is AAALAC accredited).

Tissue sample extraction

Three sections were taken from different regions of

mammary fat pad tumors (core, middle, edges) with a

combined approximate weight of 15 mg. The tissues

were added to high recovery glass vials (Agilent Tech-

nologies, Santa Clara, CA) on dry ice. Lung metastases

were first assessed by bioluminescence imaging, as de-

scribed above, to guide the microdissection under the

microscope. The microdissected metastasis was then

pooled for each mouse, then similarly placed in vials on

dry ice. Each sample was homogenized in 400 μl metha-

nol/water (4:1) and 1 mm glass beads (BioSpec Products,

Bartlesville, OK) for 30 s at 3500 rpm. The homogenate

was added to glass vials, sonicated for 10 min at room

temperature, and stored at − 20 °C overnight. Samples

were then centrifuged at 13,000 rpm for 15 min and the

supernatant transferred to a new 1.5-ml centrifuge tube.

The pellet was resuspended in 600 μl ice cold acetone,

vortexed for 10 s, and sonicated for 10 min at room

temp. The pellet samples were stored at − 20 °C for 1 h

followed by centrifugation (13,000 rpm for 15 min). The

supernatant was pooled with the supernatant collected

earlier and dried down in a Speedvac for 4 h. The pellet

was used for protein quantification by microBCA

(Thermo Fisher Scientific, Waltham, MA).

Samples were resuspended in acetonitrile/water/iso-

propanol (50/40/10 v/v) according to the protein
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concentration; the lowest concentration was resus-

pended in 40 μl and the other samples adjusted accord-

ingly. Each sample was then sonicated for 10 min,

centrifuged at 13,000 rpm for 15 min, and the superna-

tants transferred to glass HPLC vials for LC/MS analysis.

Untargeted metabolomic analysis

Samples were randomized and analyzed by high-

performance liquid chromatography-electrospray

ionization quadrupole time-of-flight mass spectrometry

(HPLC-ESI-QTOFMS). A pooled sample containing

10 μl of each individual sample was injected (5 μl) every

five injections for quality control. In addition, a water-

based wash and blank were run after each sample. The

samples were analyzed by hydrophilic interaction liquid

chromatography (HILIC) analysis as previously de-

scribed [10] using an Agilent 6550 ion funnel QTOF in

ESI negative mode. HILIC analysis was used as we were

aiming to identify the polar metabolites which have been

previously shown to have roles in cancer metabolism

[11]. Each sample (5 μl) was injected onto a Luna Ami-

nopropyl column, 3 μm, 150 mm × 1.0 mm I.D. (Phe-

nomenex), the mobile phase was composed of A =

20 mM ammonium acetate and 40 mM ammonium hy-

droxide in 95% water and B = 95% acetonitrile. The lin-

ear gradient elution from 100% B (0–5 min) to 100% A

over 50 mins, held at 100% A for 5 min, and a 10-min

post-run at a flow rate of 50 μl/min.

ESI source conditions were set as follows: gas

temperature 200 °C, drying gas 11 l/min, nebulizer

15 psi, fragmentor 365 V, sheath gas temperature 300 °

C, sheath gas flow 9 l/min, nozzle voltage 500 V, and ca-

pillary voltage − 2500 V. The instrument was set to ac-

quire over the m/z range 60–1000 with a MS acquisition

rate of 1.67 spectra/s. The data were processed using

XCMS Online [12]. Paired parametric tests were per-

formed, with a p value < 0.05 having statistical signifi-

cance. The q value was also assessed to eliminate false

positive results. Features were compiled in a feature list

table and as an interactive cloud plot, containing inte-

grated intensities (extracted ion chromatographic peak

areas), observed fold changes across the two sample

groups, and statistical significance for each sample. Ten-

tative metabolic pathways were identified using mummi-

chog version 0.10.3, available as part of the XCMS

Online program. An autonomous metabolomic workflow

was also carried out for each sample by HILIC-MS in

ESI negative mode to obtain an automatic list of metab-

olite identifications post-run. These identifications are

based on precursor mass and fragment ions [8]. Acquisi-

tion was as follows: MS mode acquisition rate 2.86 spec-

tra/s; MS/MS mode acquisition rate 13.33 spectra/s at

20 eV with a narrow isolation width (1.3 Da); 10 max

precursors per cycle, with active exclusion after 4

spectra, released after 0.15 min; and a threshold of 200

counts. Two contaminant ions with m/z’s 172.9297 and

248.9762 were excluded throughout the whole run. Me-

tabolite identifications were further confirmed by com-

paring retention time and tandem MS to standard

compounds. For targeted identification of selected pre-

cursors, the default isolation width was set as narrow

(1.3 Da), with a MS acquisition rate at 2.87 spectra/s

and MS/MS acquisition at 2.87 spectra/s. The collision

energy was set to 20 and 40 eV on separate runs. An

overview of the workflow can be seen in Fig. 1.

Results
Metabolomic analysis reveals increased lipid species in

metastasis

An untargeted metabolomic approach was used to iden-

tify metabolites in extracts of primary tumors and their

spontaneous microdissected lung metastases (n = 4/

group). Of note, animals were euthanized when there

was a bioluminescence signal of 1 × 107 photons/s/cm2

for the lung metastasis. Paired analyses revealed a total

of 10,329 aligned metabolic features. Filtering to remove

isotopes and noise prioritized 110 features that were sig-

nificantly different in abundance between the two groups

of samples (p value < 0.01, q value < 0.1, fold change > 2,

intensity > 10,000, paired t test) (XCMS Online Job ID

#1060717). In order to identify the features, an autono-

mous workflow was used which acquired both quantita-

tive MS and qualitative MS/MS data. The data were

simultaneously matched to MS/MS fragmentation pat-

terns on the METLIN database [8]. Using this function,

it was possible to identify uridine monophosphate

(UMP), guanosine monophosphate (GMP), glutamine,

and cholesterol sulfate (Fig. 2). In order to increase the

identification of metabolite features, additional targeted

MS/MS was carried out on precursor ions from the pri-

oritized list, confirming the presence of citrate/isocitrate,

N6-succino adenosine, cytidine monophosphate (CMP),

16:0 Lyso phosphoethanolamine (PE), and 16:0 phospha-

tidylglycerol (PG). These metabolites were further con-

firmed by comparison to authentic standards. Table 1

displays these metabolites, their significance, and p

values in relation to their increased abundance in pri-

mary tumors or lung metastases. In order to expand on

the analysis and provide biological meaning to the me-

tabolites, we used the network mapping tool mummi-

chog to assess interconnectivity of metabolites in

biological pathways [13]. This software looks at patterns

of related putatively identified metabolites (based on

their m/z only) to lead further metabolite identification;

it is integrated as part of the XCMS Online platform

[12]. The top metabolite predictions made by mummi-

chog were glutamine, CMP, GMP, UMP, citrate/isoci-

trate, and adenosine monophosphate (AMP). AMP was
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further confirmed against a standard. As the pathway

analyses indicated an involvement of nucleotide

(p = 0.00139), glutamate (p = 0.00336), and phosphocho-

line (p = 0.01843) metabolism, these pathways were in-

vestigated further and revealed significant differences to

other metabolites housed in these pathways: uridine 5′-

diphospho (UDP)-glucuronate, N-acetyl-L-glutamate,

16:0 Lyso PG (DDPG), and 16:0–18:1 PG (POPG)

(Fig. 2). The LipidMaps database was used to further pu-

tatively identify DDPG, and POPG by MS/MS fragmen-

tation patterns, and was confirmed by comparison to

standards. Thus, the metabolites upregulated in metasta-

ses included phospholipids and cholesterol sulfate, and

those upregulated in the primary tumor were involved

primarily in glutamate metabolism and nucleotide syn-

thesis. Additional file 1: Figure S1 shows the distribu-

tions for each of the metabolites.

The cancer cell microenvironment as a source of nutrients

In order to assess the possibility of metabolite uptake

from the microenvironment, samples were analyzed

from normal MFP and lung tissues and compared to

MFP tumors and lung metastasis (n = 5/group). The

XCMS Online platform was used to perform multigroup

analysis by ANOVA (Job ID: 1095497) revealing the dis-

tributions of the metabolites in the tissues [14]. Figure 3

shows a cloud plot of all the statistically significant fil-

tered features. It can be seen that a number of metabo-

lites that were increased in the metastasis or primary

tumors were at similar abundances in their normal sur-

rounding tissues. These metabolites include glutamine,

cholesterol sulfate, and phospholipid compounds, indi-

cating that the microenvironment could be a source of

metabolites for cancer cells (Figs. 3 and 4). There were

also a number of metabolites that were only significantly

upregulated in tumor tissues and not in normal tissues:

citrate/isocitrate, UDP-glucuronate, and mononucleo-

tides Figs. 3 and 4).

Discussion

The metabolism of a cancer cell depends on both its gen-

etic reprogramming during malignant transformation and

tumor progression, as well as on its interactions with the

tumor microenvironment. In this study, we used an au-

tonomous metabolomic workflow to uncover the meta-

bolic differences between cancer cells in a primary tumor,

and those that have metastasized to a distant organ. Paired

analysis of primary MFP tumors and lung metastases in a

xenograft model revealed a number of significantly altered

metabolites between the tissues. Notably, cholesterol sul-

fate was highly upregulated in spontaneous pulmonary

metastases compared to their paired primary tumors and

thus raised interest for further investigation due to its

previously implicated roles in cancer invasion and cell sig-

naling. Cholesterol sulfate is a metabolic product of chol-

esterol and, along with phospholipids and ceramides, is

integral to maintaining the cellular plasma membrane and

determines its elasticity. This metabolite has known sig-

naling functions and can modify the activity of serine pro-

teinases of the coagulation cascade [15, 16]. Thus, it can

potentially promote platelet interaction with circulating

cells including disseminating tumor cells within the blood-

stream [15, 16]. Cholesterol sulfate can also accelerate the

proteolytic activity of matrix metalloproteinase-7 towards

selective substrates in the extracellular matrix, thus poten-

tially aiding in metastasis [17], and can regulate protein

kinase C, which is involved in cellular differentiation and

carcinogenesis [18].

Fig. 1 Overview of metabolomic workflow. Untargeted metabolomic analysis was carried out on tissue extracts from a mouse model of

metastasis. Autonomous metabolomic and pathway analysis of paired tissues (primary tumor versus metastasis) revealed correlated metabolic

pathway changes, in particular the increased production of cholesterol sulfate in metastasis
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In our study, comparison of normal and tumor tissues

also revealed that cholesterol sulfate was higher in both

normal lung tissue extracts and lung metastases com-

pared to MFP. The lung metastases were microdissected

and validated to contain only minimal traces of normal

lung tissue. Therefore, the presence of this metabolite in

pulmonary lesions could have arisen by uptake from the

extracellular environment as well as by cancer cell pro-

duction. For the latter hypothesis, it is possible that a

subset of cells within the primary tumor have increased

expression of cholesterol sulfotransferase, facilitating the

production of cholesterol sulfate and thereby supporting

hematogenous dissemination of metastatic cancer cells

to the lung.

In addition to the roles of cholesterol sulfate itself, the

enzyme sulfotransferase (SULT)2B1b which has a high

affinity for cholesterol sulfonation has also been linked

to carcinogenesis [19]. Recent studies in mice have

shown that prostate cancer cells with RNAi-mediated

knockdown of SULT2B1b decrease cell growth and in-

duce cell death [20]. In addition, SULT2B1b promoted

proliferation of hepatocellular carcinoma cells [21],

Fig. 2 Paired untargeted metabolomics analysis of primary mammary fat pad tumors compared to lung metastasis (n = 4). Upper panel,

autonomous metabolomics aids in the identification of metabolites by automated tandem MS matching to the METLIN database; the panels

show experimental and reference tandem MS comparisons for glutamine, cholesterol sulfate, uridine monophosphate and guanosine

monophosphate at a collision energy of 20 eV. Lower panel, mummichog pathway analysis integrated with XCMS Online software, reveals

pathways that are putatively correlated to differences between primary and metastatic cancer cells

Johnson et al. Cancer & Metabolism  (2017) 5:9 Page 5 of 9



decreased migration of a metastatic non-small cell lung

cancer cell line [22], and promoted angiogenesis in gas-

tric cancer [23] and cell growth and invasion in colorec-

tal cancer [24]. Studies also show that patients whose

tumors express higher levels of SULT2B1b have a worse

prognosis [22–25]. There is strong evidence that indi-

cates a role for both SULT2B1b and cholesterol sulfate

in cancer; our hypothesis is that the target organ uses

cholesterol sulfate to facilitate seeding of metastatic

cancer cells.

In addition to changes in cholesterol sulfate, phospho-

lipids were also highly upregulated in metastases. They

were also similarly elevated in normal lung tissues and

lung metastases. Phospholipids have been previously as-

sociated with cancer, with proposed mechanisms in pro-

tein trafficking, promoting the onset and progression of

Table 1 List of metabolites significantly changed in metastasis tissues (n = 4) compared to primary tumor tissues (n = 4), paired

Welch’s t test

Metabolite name Mass-to-charge ratio
[M-H]−

Fold change Retention time (min) Direction of change
in metastasis

p value

Cholesterol sulfate 465.3050 5.7 15.59 ↑ 4.00E−04

16:0 Lyso phosphatidylethanolamine 452.2771 3.0 16.67 ↑ 1.86E−03

DPPG (16:0 phosphatidylglycerol) 721.5012 15.2 17.11 ↑ 2.80E−03

POPG (16:0/18:1 phosphatidylglycerol) 747.5185 2.5 17.03 ↑ 1.41E−02

16:0 Lyso phosphatidylglycerol 483.2719 14.0 18.66 ↑ 1.68E−02

Cytidine monophosphate 322.0443 4.3 36.70 ↓ 9.20E−04

Citrate/isocitrate 191.0202 2.8 42.79 ↓ 1.20E−03

Guanosine monophosphate 362.0505 2.2 39.84 ↓ 1.24E−03

Uridine monophosphate 323.0286 3.8 36.96 ↓ 2.40E−03

N6-succinyl adenosine 382.0999 7.0 36.42 ↓ 4.44E−03

Glutamine 145.0621 1.8 21.63 ↓ 6.14E−03

N-acetyl-L-glutamate 188.0565 6.5 34.66 ↓ 4.32E−02

Adenosine monophosphate 346.0560 2.0 37.23 ↓ 4.92E−02

Uridine 5′-diphosphoglucuronate 579.0262 2.1 42.95 ↓ 4.99E−02

Fig. 3 Multigroup analysis by XCMS Online. Cloud plot represents significantly altered metabolites, and box-and-whisker plots detail the relative

abundance of metabolites in all four tissue types (ANOVA with Bonferroni correction, n = 5/group, p < 0.015)
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the disease [26]. They have also been associated with

metastatic cancer cells [27]. It has been previously dem-

onstrated that fatty acids are synthesized de novo for

phospholipid and subsequent cell membrane synthesis.

However, a recent study showed that proliferating cells

scavenge highly abundant fatty acids from the extracellu-

lar environment for phospholipid synthesis, in contrast

to cells that are surrounded by low concentrations of

fatty acids and carry out de novo synthesis [28]. Con-

versely, cancer cells can scavenge unsaturated fatty acids

from lysophospholipids [29]. In addition, studies have

shown that cancer cells use macropinocytosis to internalize

extracellular proteins which then undergo proteolytic deg-

radation, yielding amino acids for growth [30, 31]. Thus, it

is possible that it is more efficient for cancer cells to take

up nutrients from the microenvironment, where they are

in high supply, rather than, or in addition to, utilizing intra-

cellular resources for de novo synthesis [32]. Likewise, in

normal MFP tissues, glutamine was at similar abundance

levels to those found in the primary MFP tumors, indicat-

ing that these cancer cells may also use the microenviron-

ment as a source of energy-rich metabolites. However,

there were a large number of metabolites that were only

increased in the primary tumors and not present in normal

tissue:citrate/isocitrate, AMP, GMP, CMP, UMP, and UDP-

glucuronate indicating that these metabolites are generated

intracellularly by the tumor cells and are either not taken

up from the microenvironment or are potentially products

of other metabolites.

As aforementioned, there were several metabolites in-

volved in DNA/RNA synthesis and the TCA cycle that

were elevated in primary tumors compared to metastases.

This indicates that the metastases have depleted nutrients

available for nucleotide synthesis, including essential co-

factors such as NADPH. De novo lipogenesis, which

similarly requires high levels of NADPH, is shut down to

preserve NADPH for nucleotide synthesis and cancer cell

survival; therefore, cells use alternative methods to scav-

enge nutrients for growth, such as fatty acids from phos-

pholipids [29, 33]. Fatty acids derived from phospholipids

can supply more energy to the cell through mitochon-

drial oxidation than from oxidation of glucose or amino

acids, so are an important nutrient source for the tumor

cell [34]. This hypothesis is further supported by the de-

creased levels of both glutamine and citrate by the metas-

tases; glutamine can undergo reductive carboxylation to

Fig. 4 Distribution of relative abundances for metabolites in tumor and normal tissues. a Metabolites increased in primary tumor only. b Metabolites

increased in normal stroma and tumor. Box-and-whisker plots generated by XCMS Online for a multigroup analysis (ANOVA, n = 5/group, whiskers,

median with minimum-maximum; boxes, interquartile range) (POPG = 16:0/18:1 phosphatidylglycerol)

Johnson et al. Cancer & Metabolism  (2017) 5:9 Page 7 of 9



citrate for lipid generation [35]. Phospholipid scavenging

has previously been reported for cells that are under hyp-

oxic stress and require additional nutrients for growth

[29]. Cells that have constitutive mTORC1 signaling and

hypoxia also have been shown to have a dependency on

extracellular desaturated fatty acids to support protein

synthesis [36]. Of importance, tumor cells that acquire

lipids through extracellular scavenging are resistant to

stearoyl-CoA desaturase 1 (SCD1) inhibitors [29].

The metabolic changes that occur in cancer cells that

gain metastatic activity have been reported in the litera-

ture, and it is evident that tumor cell metabolic rewiring

is dependent on the organ in which the metastatic cells

are seeded. A recent study showed that breast cancer

cells which metastasize to the liver favor glycolysis, while

those that metastasized to the lung and bone favor oxi-

dative phosphorylation (OXPHOS) [37]. This difference

is likely due to genetic features that underlie specific

cancer subtypes. A study of clinical samples from 15

cancer types in the Cancer Gene Atlas consortium

showed that suppression of OXPHOS genes was a com-

mon feature of metastases when comparing to primary

tumors and correlated with poorer clinical outcome [38].

It also confirmed that metastasis is not only dependent

on genetics but also on the metabolic environment of

the new organ site.

Conclusions
Metabolic reprogramming, recognized as a typical hall-

mark of cancer cell metabolism, is influenced by an

interplay between tumor microenvironment and genetic

complement that has given rise to the developments of a

new generation of therapeutics. Herein, this study re-

ports a model for rapid identification of metabolites in

primary tumors and metastases and has shown that

cholesterol sulfate and phospholipid species are highly

upregulated in metastasis. Our hypothesis is that tumor

cells scavenge fatty acids, as an alternative energy source

concomitant with observed decrease of nucleotides, glu-

tamine, and citrate, indicating a nutrient-depleted meta-

static phenotype associated with tumor aggression.

Future studies will further assess the role of cholesterol

sulfate and phospholipids in fueling metastatic cancer

and the involvement of transporters in mediating the

flow of metabolites between disseminating tumor cells

and their microenvironments.

Additional file

Additional file 1: Figure S1. Distributions of relative abundance for each

confirmed metabolite. Box-and-whisker plots were generated by XCMS Online

(whiskers, median with minimum-maximum; boxes, interquartile range).

(PG phosphatidylglycerol, PE phosphoethanolamine, DPPG 16:0 phosphatidyl-

glycerol, POPG 16:0/18:1 phosphatidylglycerol.) (TIFF 357 kb)
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