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Abstract: In this paper, the active front-end (AFE) converter topology for the total harmonic distortion

(THD) reduction in a wind energy system (WES) is used. A higher THD results in serious pulsations

in the wind turbine (WT) output power and several power losses at the WES. The AFE converter

topology improves the capability, efficiency, and reliability in the energy conversion devices; by

modifying a conventional back-to-back converter, from using a single voltage source converter (VSC)

to use pVSC connected in parallel, the AFE converter is generated. The THD reduction is achieved

by applying a different phase shift angle at the carrier of digital sinusoidal pulse width modulation

(DSPWM) switching signals of each VSC. To verify the functionality of the proposed methodology,

the WES simulation in Matlab-Simulink® (Matlab r2015b, Mathworks, Natick, MA, USA) is analyzed,

and the experimental laboratory tests using the concept of rapid control prototyping (RCP) and the

real-time simulator Opal-RT Technologies® (Montreal, QC, Canada) is achieved. The obtained results

show a type-4 WT with a total output power of 6 MVA, generating a THD reduction up to 5.5 times

of the total WES current output by Fourier series expansion.

Keywords: active front-end converter; back-to-back converter; permanent magnet synchronous

generator (PMSG); THD; type-4 wind turbine; wind energy system; Opal-RT Technologies®

1. Introduction

Nowadays, the number of wind energy systems (WES) has increased dramatically, as evidence

of this; in 2013, WES were installed in more than 80 countries, generating a power of 240 GW [1],

in 2014, the generation reached a capacity of 369.9 GW [2], in 2015, a production of 432.883 GW was

generated [3]. By the end of 2016 a global generation of 487 GW was installed [4], and in 2021 the

installed capacity is expected to exceed 800 GW [5]. Within the types of variable speed wind turbines

(WT) there are three types: Type-2 (squirrel-cage induction generator (SCIG)), type-3 (double-fed

induction generator (DFIG)) and type-4 (squirrel-cage induction generator (SCIG)/permanent magnet

synchronous generator (PMSG) with full-scale back-to-back converter); in which, type-2 has a 10%

variability in the rotor, type-3 has a 30% variability, and type-4 has 60% in the variability of the

rotor speed [6]. The type-3 (DFIG) wind turbine schemes constitute the majority of variable speed

commerce applications; however, the type-4 WT with a PMSG (WT-PMSG) is an attractive and the best

option since this is not directly connected to the grid, presenting advantages such as: High efficiency,
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increased reliability, major variable speed operation, and low cost in maintenance and installation,

due the absence of gearboxes [7]. In the type-4 WT-PMSG installation the important aspects to prevent

are associated problems with the wind-nature fluctuations. For example: The flicker generation is

mainly caused by load flow changes, due to its continuous operation [8]; a power factor not unity,

this characteristic happens as the modulation index of the back-to-back converter is not high [9].

Voltage sags occur by the sudden changes in the rotor speed of the type-4 WT-PMSG and cause a

decrement in the transferred power from the dc-link to the grid [10]. A higher total harmonic distortion

(THD) is mainly produced by the power converters switching, this results in serious pulsations in the

type-4 WT-PMSG output power and in several power losses at the WES [11,12]. All these problems can

be mitigated through the full-scale back-to-back converter in the type-4 WT-PMSG scheme, and this

generates the following advantages [13–16]: (i) Bidirectional power flow; (ii) adjustable dc-link voltage;

(iii) a sinusoidal grid-side current with an exchange of active and reactive power. These advantages

are possible because the generated whole power by the type-4 WT-PMSG on the AC grid is supplied

through the back-to-back converter.

However, its implementation is very difficult, since this must handle very high powers of up

to 6 MVA. Notwithstanding, the Active Front-End (AFE) converter topology provides a viable and

efficient solution to improve the power transfer capacity and reliability of the WES quality; the AFE

converter is generated by modifying a conventional back-to-back converter, from using a single voltage

source converter (VSC) to use pVCS connected in parallel, as shown in Figure 1. As evidence, in [3]

the authors describe the principal WT manufacturers, those in low voltage and medium voltage

technologies are classified, generating power ratings of >3 MVA and <3 MVA, respectively. In the open

literature there exists some research works that address the AFE converter topology applied to WES;

for example, in [17] the authors analytically and experimentally present the control method for the

current balance in an AFE power converter of 600 kVA, this is a very important topic in the parallel

connection of power converters, however, the authors make the AFE converter analysis connecting

only two VSCs in parallel, generating: A THD of 4.32% (three times higher than in our research work

with THD of 1.23%); in addition, they use the space vector modulation for the switching of VSCs,

which generates a more complex control if pVSC in parallel are connected.

ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ Ȭ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ Ȭ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ
Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ Ȭ Ȭ ȱ ȱ ȱ
ȱ Ȭ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

Ȭ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ Ȭ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ
ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

Ȭ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ

Figure 1. Type-4 wind turbine (WT) connected at wind energy system (WES) through the active

front-end (AFE) converter parallel topology.

The main goal of this work is the AFE converter topology application for the THD reduction in a

WES and the increase of power transfer between the WT and the AC grid; generating greater capability,

efficiency, and reliability in the energy conversion at the WES.

Contributions from this Work
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In this paper, the AFE converter topology applied in the THD reduction at WES is made. Through

the AFE converter parallel topology the following advantages were possible:

(i) Increased the converter power capacity.

(ii) Minimized size of each VSC unit, which manages a portion of the total nominal power.

(iii) A reduced ripple on the injected current, which improves the voltage quality at the Point of

Common Coupling (PCC).

(iv) An increased equivalent switching frequency, generating a smaller passive filter on the AC-side.

(v) The possibility of THD Reduction at the WES, modifying the Digital sinusoidal pulse width

modulation (DSPWM) switching signals in each VSC.

To verify the functionality and robustness of the proposed methodology, an AFE converter formed

with three VSCs connected in parallel is incorporated, as shown in Figure 1. The WES simulation in

Matlab-Simulink® is analyzed, and the experimental laboratory tests using the concept of rapid control

prototyping (RCP) and the real-time simulator Opal-RT® is achieved. The obtained results show a

WES prototyping that incorporates a type-4 wind turbine with a total output power of 6 MVA and a

THD reduction of up to 5.5 times.

This paper is organized as follows: Section 2 details the modeling of the Type-4 WT-PMSG;

first, the modeling power transfer control between the WT-PMSG and AFE converter is generated;

subsequently, the modeling of the machine-side VSC control, DC-link control and the grid-side

VSC control of the AFE converter is analyzed, and finally, the design of the AFE converter system

parameters is presented. Section 3 presents the modeling of the DSPWM Technique Applied in the

THD Reduction. Section 4 shows the simulated results of a study case for WES. Section 5 presents the

real-time simulation results of a study case for WES using Opal-RT Technologies®. Finally, in Section 6,

the conclusions are presented.

2. Modeling of the Type-4 WT-PMSG

The AFE converter structure consists in two power electronics converters: A machine-side VSC

(MSC) to provide power conversion between medium AC voltage and low DC voltage levels, and a

grid-side VSC (GSC) to generate the voltages required by the consumers [18], for which, the next

sections describe the control modeling of MSC and GSC and these are shown in Figure 2.
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2.1. Modeling of the Machine-Side VSC Control at AFE Converter

The MSC provides the rotor flux frequency control, thus enabling the rotor shaft frequency to

optimally track wind speed [19]. The time-domain relationship of the VSC AC-side is given by:

[

d
(

ih
MSC(t)

)

/dt
]

= −
(

Rh
MSC/Lh

MSC

)[

ih
MSC(t)

]

+
(

1/Lh
MSC

)[

vh
MSC(t)

]

−
(

1/Lh
MSC

)[

vh
WT−PMSG(t)

]

(1)

where h is the MSC three-phase vector (a,b,c), LMSC is the PMSG armature inductance, RMSC is the

PMSG stator phase resistance, vMSC and iMSC are the MSC voltage and current, respectively, vWT-PMSG

is the generated WT-PMSG voltage.

Then, the dq reference frame model derived from the AC-side of the MSC, including the

inductances cross-coupling, is described as:

[

d(idMSC(t))
dt

]

= −

(

Rd
MSC

Ld
MSC

)

[

id
MSC(t)

]

+

(

ωrPMSG L
q
MSC

Ld
MSC

)

[

i
q
MSC(t)

]

+

[

vd
MSC(t)

Ld
MSC

]

−

[

vd
WT−PMSG(t)

Ld
MSC

]

(2a)

[

d(i
q
MSC(t))

dt

]

= −

(

R
q
MSC

L
q
MSC

)

[

i
q
MSC(t)

]

−

(

ωrPMSG Ld
MSC

L
q
MSC

)

[

id
MSC(t)

]

−

[

(λmPMSG)(ωrPMSG)

L
q
MSC

]

+

[

v
q
MSC(t)

L
q
MSC

]

−

[

v
q
WT−PMSG(t)

L
q
MSC

]

(2b)

where ωrPMSG is the PMSG rotor angular velocity; λmPMSG is the maximum flux linkage generated by

the PMSG rotor magnets and transferred to the stator windings.

The generated MSC voltage is given by:

[

v
g
MSC(t)

]

= (1/2)
[

m
g
MSC(t) ∗ VDC(t)

]

(3)

where g is the dq components reference frame vector of the MSC, VDC is the DC-link voltage, m
g
MSC is

the modulated index vector.

Making LMSC = Ld
MSC = L

q
MSC, the presence of ωrPMSGLMSC in (2) indicates the coupled dynamics

between id
MSC and i

q
MSC. To decouple these dynamics, the i

q
MSC vector signals are changed, based in

the dq reference frame, i.e.,

[

md
MSC(t)

]

= (2/VDC(t))
[

d
MSC(t)−

(

(ωrPMSG·LMSC)i
q
MSC(t)

)

+ vd
WT−PMSG(t)

]

(4a)

[

m
q
MSC(t)

]

= (2/VDC(t))
[

q
MSC(t) +

(

(ωrPMSG·LMSC)i
d
MSC(t)

)

+ λmPMSGωrPMSG + v
q
WT−PMSG(t)

]

(4b)

where Ed
MSC(t) and E

q
MSC(t) are two additional control inputs.

The MSC plant is obtained by substituting (4) into (3), subsequently, (3) is substituting into (2)

generating a first order lineal system that, in Equation (5) is described.

[

g
MSC(t)

]

= LMSC

[

di
g
MSC(t)/dt

]

+ RMSC

[

i
g
MSC(t)

]

(5)

Equation (5) in the time domain is represented; its representation in the frequency domain is

shown in (6); which describes a decoupled and first-order linear system, controlled through E
g
MSC(s).

[

g
MSC(s)

]

= (sLMSC + RMSC)
[

i
g
MSC(s)

]

(6)

Rewriting equation (6), the transfer function representing the MSC plant is given, i.e.,

[

i
g
MSC(s)

]

=
[

g
MSC(s)

]

(sLMSC + RMSC)
−1 (7)
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With the purpose of tracking the i
g
MSC(s) reference commands in the loop, the

proportional-integral (PI) compensators are used, obtaining:

[

g
MSC(s)

]

≈
[

k
g
MSC(s)

]

=

[

(αMSCskp
g
MSC + αMSCki

g
MSC)

αMSCs

]

=

[

(αMSC

s

)

(

(skp
g
MSC + ki

g
MSC)

αMSC

)]

(8)

where kp
g
MSC and ki

g
MSC are the proportional and integral gains, respectively, αMSC=2.2/τMSC is the

MSC bandwidth of the closed loop control and τMSC is compensator response time.

Substituting Equation (8) into (7), the closed-loop transfer function
[

ι
g
MSC(s)

]

is formed:

[

ι
g
MSC(s)

]

≈
[

i
gre f
MSC(s)− i

g
MSC(s)

]

=

[

( αMSC
s

)

(

skp
g
MSC(s)+ki

g
MSC(s)

αMSC

)

(

1
sLMSC(s)+RMSC(s)

)

]

(9)

If in open loop the expression (9) tends to be ∞ when s = jω → 0 , this guarantees that, in closed

loop the system will not have a phase shift delay.

Based on (9), the relation between the plant pole and the PI compensator zero is obtained through

(10), generating the kp
g
MSC and ki

g
MSC control gains.

[

kp
g
MSC

]

= [αMSCLMSC] = [(2.2/τMSC)LMSC] (10a)

[

ki
g
MSC

]

= [αMSCRMSC] = [(2.2/τMSC)RMSC] (10b)

Compensator response time, τMSC, in the range from 5 to 0.5 ms is selected, in this case a

τMSC = 2.2 ms is designated.

2.2. Modeling Power Transfer Control between the WT-PMSG and AFE Converter

In the WT-PMSG power transfer modeling the following power-speed characteristics are

considered [20]: (i) The base angular velocity of the WT is determined by the base rotor angular

velocity of the PMSG, ωWTb = ωrPMSGb; (ii) the WES base power is determined by the WT-PMSG

nominal power, PWESb = PWT-PMSGb; iii) the output base power of the AFE converter is determined by

the base WES power, PAFEb = PWESb; this power is transferred from WT to PMSG through the electric

torque, this is represented by:

[TePMSG] = (3/2)
[(

(Ld
MSC − L

q
MSC)i

d
MSCi

q
MSC

)

+ (λmPMSGi
q
MSC)

]

(11)

where TePMSG is the PMSG electrical torque, Ld
MSC and L

q
MSC are the dq reference frame components of

the PMSG armature inductance.

However, considering that the rotor has a cylindrical geometry, then it is established that,

Ld
MSC = L

q
MSC [21], generating (12):

[TePMSG] = ((3/2)λmPMSG)
[

i
q
MSC

]

(12)

Then, to realize the WT-PMSG variable speed control, it is necessary to generate the plant model

that represents it. Therefore, in (13) the dynamic characteristics are shown as a time function so that it

represents:
[

d(ωrPMSG)

dt

]

=
1

2H
[TmWT − TePMSG − DωrPMSG(t)] (13)

where D is the PMSG viscous damping, H is the inertia constant (s), TmWT is the WT mechanical torque.
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Equation (13) analyzes the WT-PMSG in the time domain; however, the WT-PMSG plant

representation requires a transfer function to design the ωrPMSG control. By using Laplace

transformation, the WT-PMSG plant in the frequency domain is represented, i.e.,

[ωrPMSG(s)] =
[

(TmWT − TePMSG)(2Hs + D)−1
]

(14)

Equation (14) shows a multiple inputs single output system (MISO); however, because in steady

state it is valid that TmWT ≈ TePMSG, then, in the control design it is considered that TmWT = 0; generating

a single input single output system (SISO), as shown in (15).

[

ωrPMSG(s)

−TePMSG

]

=

[

1

2Hs + D

]

(15)

With the purpose of tracking the ωrPMSG reference commands in the closed-loop transfer function,

the proportional-integral (PI) compensators are used. The feedback loop
[

ι
q
rPMSG(s)

]

is:

[

ι
q
rPMSG(s)

]

=
[

ω
re f
rPMSG(s)− ωrPMSG(s)

]

=

[

( αPMSG
s

)

(

(skp
q
rPMSG+ki

q
rPMSG)

αPMSG

)

(

1
(2Hs+D)

)

]

(16)

where kp
q
rPMSG and ki

q
rPMSG are the proportional and integral gains, respectively.

From (16), the relation between the plant pole and PI compensator zero is obtained and the control

gains using the next expression are generated:

[

kp
q
rPMSG

]

= [2HαPMSG] = [(2.2/τPMSG)2H] (17a)

[

ki
q
rPMSG

]

= [αPMSGD] = [(2.2/τPMSG)D] (17b)

where the subscript τPMSG is the response time by the closed loop of the WT-PMSG first-order transfer

function. This is selected according to the WT-PMSG transferred power and this must be at least ten

times higher than τMSC.

2.3. Modeling of the Grid-Side VSC Control of the AFE Converter

The GSC is used to keep the DC-link constant, transferring the generated power between the

WT-PMSG and AC grid. The time-domain relationship of the VSC AC-side is given by:

[

d
(

il
GSC(t)

)

/dt
]

= −
(

Rl
GSC/Ll

GSC

)[

il
GSC(t)

]

+
(

1/Ll
GSC

)[

vl
GSC(t)

]

−
(

1/Ll
GSC

)[

vl
WES(t)

]

(18)

where l is the VSC three-phase vector (a,b,c ), LGSC and RGSC are the RL filter parameters through which

the AFE converter is connected to the grid, vGSC and iGSC are the GSC voltage and current, respectively;

vWES is the generated WES voltage.

Then, from (18) the derived dq model is described as:

LGSC

(

did
GSC(t)/dt

)

= (ω0·LGSC)
[

i
q
GSC(t)

]

− (RGSC)
[

id
GSC(t)

]

+
[

vd
GSC(t)

]

−
[

vd
WES(t)

]

(19a)

LGSC

(

di
q
GSC/dt

)

= −(ω0·LGSC)
[

id
GSC(t)

]

− (RGSC)
[

i
q
GSC(t)

]

+
[

v
q
GSC(t)

]

−
[

v
q
WES(t)

]

(19b)

where ω0 is the WES angular frequency; the generated GSC voltages are given by:

vk
GSC(t) = (VDC/2)

[

mk
GSC(t)

]

(20)

where k is the dq components reference frame vector of the grid-side VSC, mk
GSC is the modulated

index vector.
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Making LGSC = Ld
GSC = L

q
GSC, the presence of ω0LGSC in (19) indicates the coupled dynamics

between id
GSC and i

q
GSC. Decoupling these dynamics changes md

GSC and m
q
GSC, based in the dq reference

frame, i.e.,
[

md
GSC(t)

]

= (2/VDC(t))
[

d
GSC(t)−

(

(ω0 · LGSC)i
q
GSC(t)

)

+ vd
WES(t)

]

(21a)

[

m
q
GSC(t)

]

= (2/VDC(t))
[

q
GSC(t) +

(

(ω0 · LGSC)i
d
GSC(t)

)

+ v
q
WES(t)

]

(21b)

where Ed
GSC(t) and E

q
GSC(t) are two additional control inputs.

The GSC plant is obtained by substituting (21) into (20), subsequently, (20) is substituting into (19)

generating a first order lineal system, this in Equation (22) is described as:

LGSC

[

dik
GSC(t)/dt

]

=
[

k
GSC(t)

]

− RGSC

[

ik
GSC(t)

]

(22)

The frequency domain of the Equation (22) is shown in (23); which describes a decoupled,

first-order, linear system, controlled through Ek
GSC(s). Also, Equation (23) represents the grid-side

VSC plant.

[

ik
GSC(s)

]

=
[

k
GSC(s)

]

(sLGSC + RGSC)
−1 (23)

With the purpose of tracking the ik
GSC(s) reference commands in the closed loop, the

proportional-integral (PI) compensators are used, obtaining:

[

k
GSC(s)

]

≈
[

kk
GSC(s)

]

=

[

(αGSCskpk
GSC + αGSCkik

GSC)

αGSCs

]

=

[

(αGSC

s

)

(

(skpk
GSC + kik

GSC)

αGSC

)]

(24)

where kpk
GSC and kik

GSC are the proportional and integral gains, respectively.

The feedback loop ιkGSC(s) is:

[

ιkGSC(s)
]

=
[

i
kre f
GSC(s)− ik

GSC(s)
]

=

[

(αGSC

s

)

(

(skpk
GSC + kik

GSC)

αGSC

)

(

1

sLGSC + RGSC

)

]

(25)

The relation between the plant pole and the PI compensator zero is obtained in (26), generating

the kpk
GSC and kik

GSC control gains and αGSC=2.2/τGSC is the GSC bandwidth of the closed-loop control.

[

kpk
GSC

]

= [αGSCLGSC] = [(2.2/τGSC)LGSC] (26a)

[

kik
GSC

]

= [αGSCRGSC] = [(2.2/τGSC)RGSC] (26b)

where τGSC is selected from 5 to 0.5 ms based on the transferred power.

2.4. The DC-Side Control of the AFE Converter

GSC improves the DC-link control. The time-domain relationship of the DC-link of the AFE

converter is given by:

[dVDC(t)/dt] = [IDC(t)/CDC]− [VDC(t)/(CDC·RDC)] (27)

The sum of currents entering the capacitor is:

[IDC(t)] =
1

2

c

∑
l=a

ml
GSC(t)

[

il
GSC(t)

]

(28)
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The functionality of the AFE converter requires that:

VDC ≥ |2(vWESL−L)| (29)

The DC-link control is calculated through the stored energy in the capacitor, that is,

[UDC(s)] = (CDC/2)
[

V2
DC(s)

]

(30)

where UDC is the stored energy in the capacitor and CDC is the DC-link capacitance.

Considering that UDC(s) ≈ PGSCref(s), and using the d reference frame component of grid-side

VSC plant described in (22) the DC-link control is made, generating the active power control, that is:

[

PGSCre f (s)
]

= (CDC/2)
[

V2
DCre f (s)− V2

DC(s)
][

Ed
GSC(s)

]

(31)

The reactive power control is made with the q reference frame component of the GSC plant

described in (22), that is,

[

QGSCre f (s)
]

=
[

QWESre f (s)− QWES(s)
][

d
GSC(s)

]

(32)

where QWES is the presented reactive power at the WES.

It is important to consider that, the subscript τWES presented in (32) must be at least ten times

higher than τGSC.

2.5. System Parameters Design of the AFE Converter

The correct operation of the type-4 WT control depends on the precise design of the AFE

converter parameters; thus, the element’s values of the MSC are obtained from the WT-PMSG

nominal power, PWT-PMSG, that is: the current is iMSC = (2/3)(PWT-PMSG/vMSC); the machine-side

impedance is ZMSCt = vMSC/iMSC, thus, the MSC works with 15% of the total WT-PMSG impedance,

i.e., ZMSC = (0.15)ZMSCt; from the WT-PMSG characteristics the following parameters are taken: LMSC,

RMSG, D, H. The element’s values of the GSC are obtained from the WES nominal power, but to

achieve PWES = PWT-PMSG iGSC is generated using iMSC = (2/3)(PWES/vGSC); the grid-side impedance

is ZGSCt=vGSC/iGSC the GSC works with 15% of the total WES impedance, i.e.,: ZGSC = (0.15)ZGSCt;

therefore, LGSC is calculated with LGSC = ZGSC/ω0, the RGSC value varies according to the transferred

power, in a range from 0.1 Ω to 0.5 Ω; the base WES capacitance CWES is calculated with

CWES = 1/(ZGSCω0). Then, a better time response in the WES feedback is achieved, since the LMSC

and RMSC values are used in (10), H and D values are used in (17), LGSC and RGSC values are used in

(26), to obtain the system feedback gains. It is important to establish that from the generated active

power by the GSC, vWES is kept constant in the presence of any perturbation; for which, it is essential

to calculate the correct capacitance value that maintains the DC-link compensation. This is determined

from the base DC-link capacitance, i.e., CDC = (3/8)CWES, determining the store energy in Equation (30).

3. Modeling of the DSPWM Technique Applied in the THD Reduction

Digital modulation techniques are the most generalized framework in the control of modern

power electronics converters applications. Digital sinusoidal pulse width modulation (DSPWM) is a

modulation technique created by the internal generation of the modulated and carrier signals using a

digital controller [22].

THD reduction is achieved by modifying the DSPWM switching signals in each VSC. This is

carried out by applying a different phase shift angle in each carrier signal of each VSC; the modulated

signal angle is not changed. Then, the output signals (voltage or current) of each VSC are added.

In this paper, the AFE converter is built with three VSC connected in parallel. Figure 3 shows the

comparison between the modulated (without phase shift angle) and carrier (with phase shift angle)
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signals, generating the DSPWM signal (phase a) corresponding to each VSC connected in parallel.

The correct phase shift angle between each carrier signal is established putting up different values of

total phase shift angle at the WES, see Figure 2. The analysis is shown in Table 1.ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ  ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
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ȱ ȱ ȱ ȱ ȱ
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 ȱ ȱ  ȱ  ȱ ȱ
 ȱ ȱ  ȱ  ȱ ȱ
 ȱ ȱ  ȱ  ȱ ȱ
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Figure 3. Digital sinusoidal pulse width modulation (DSPWM) signal applied to each voltage source

converter (VSC) connected in parallel (phase a).

In Table 1 it is observed that the angle that generates a lower THD is 3π/2; hence, this angle

divides the number of VSCs placed in parallel, i.e.,

θp = (3π/2)/p (33)

where p is the number of VSC connected in parallel and θp is the carrier signal phase shift angle of

each VSC.

Table 1. Analysis of different phase shift at the carrier signal.

Total Phase Shift (θp)
Carrier Phase Shift in Each VSC

% Total Harmonic Distortion (THD)
θ1 θ2 θ3

0 0 0 0 6.8%
π/6 0 π/18 π/9 4.33%
π/3 0 π/9 2π/9 1.99%
π/2 0 π/6 π/3 2.054%
2π/3 0 2π/9 4π/9 1.271%
5π/6 0 5π/18 5π/9 1.608%
π 0 π/3 2π/3 4.616%

7π/6 0 7π/18 7π/9 5.635%
4π/3 0 4π/9 8π/9 2.864%
3π/2 0 π/2 π 1.239%
5π/3 0 5π/9 10π/9 1.36%

11π/6 0 11π/18 11π/9 1.867%
2π 0 2π/3 4π/3 2.756%
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The n-harmonics content is calculated through the Fourier series expansion, i.e.,

F(t) = C0 +
∞

∑
n=1

(

Cn
MSC,GSC cos(nω0t + σ)

)

(34)

where n is the harmonic number, Cn
MSC,GSC =

√

(an
MSC,GSC)

2 + (bn
MSC,GSC)

2,

σ = tan−1(bn
MSC,GSC/an

MSC,GSC) and C0 = a0/2.

The magnitude of each harmonic is calculated by,

an
MSC,GSC =

2

T

(

∫ T/2

−T/2
F(t) cos(nω0t)dω0t

)

(35)

bn
MSC,GSC =

2

T

(

∫ T/2

−T/2
F(t) sin(nω0t)dω0t

)

(36)

To calculate the THD in the AFE converter, the individually equivalent circuit of each three-phase

VSC is analyzed.

A three-phase VSC equivalent circuit is shown in Figure 4.
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Figure 4. Three-phase VSC equivalent circuit.

The three-phase VSC is represented by the next equation,







2(Z ∗ ia) −(Z ∗ ib) −(Z ∗ ic)

−(Z ∗ ia) 2(Z ∗ ib) −(Z ∗ ic)

−(Z ∗ ia) −(Z ∗ ib) 2(Z ∗ ic)







MSC,GSC

=













va − vb

vb − vc

vc − va







MSC,GSC

−







va − vb

vb − vc

vc − va







WT−PMSG,WES






(37)

Using Kirchhoff’s current law (KCL), the currents flowing towards the MSC or/and GSC node

must be equal to the currents leaving the MSC or/and GSC node, i.e.,

ic
MSC,GSC = −

(

ia
MSC,GSC + ib

MSC,GSC

)

(38)
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Replacing equation (38) in (37) gives line-to-line current of the MSC or/and GSC, i.e.,







iab
MSC,GSC

ibc
MSC,GSC

ica
MSC,GSC






=

(

1

3Zh,l
MSC,GSC

)













va − vb

vb − vc

vc − va







WT−PMSG,WES

−







va − vb

vb − vc

vc − va







MSC,GSC






(39)

where vWT-PMSG represents the WT-PMSG voltage, vWES exemplifies the WES voltage, vMSC,GSC is

the VSC AC-side output voltage of MSC or/and GSC, and Zh,l
MSC,GSC is the AC-side filter of MSC

or/and GSC.

The vMSC,GSC value depends on Mh,l
MSC,GSC signal modulation. The modulated and carrier signals

implement the DSPWM technique of Figure 3; these have modulation frequencies of 60Hz (ω0) and

7kHz (f ω), respectively.

The carrier signal is composed by an up-slope and a down-slope, calculated as,

Ct1 p = 1 −
(

(4/ f ω)
(

ω0t1 − θp

))

(40)

Ct2 p =
(

(4/ f ω)
(

ω0t2 − ( f ω/2)− θp

))

− 1 (41)

where Ct1,t2p is the composed carrier signal, θp is phase shift angle of each VSC, f ω is switching

frequency of the carrier signal, t1 is the time for the up-slope, t2 is the time for the down-slope.

Time t1 for up-slope is:

θp ≤ t1 ≤
(

( f ω/2) + θp

)

(42)

Time t2 for down-slope is:

(

( f ω/2) + θp

)

≤ t2 ≤
(

f ω + θp

)

(43)

Modulated signals in each VSC are described by the carrier signal time, that is:

Mh,l
t1 p = cos(t1 + ϕ)

Mh,l
t2 p = cos(t2 + ϕ)

(44)

where h,l = a,b,c the VSC phases in MSC and GSC, respectively, and ϕ is the corresponding angle of

each phase in the modulated signal.

The comparison between modulated and carrier signals defines the DSPWM signal,

its representation is:

DSPWMh,l
t1 p =

∣

∣

∣M
h,l
t1 p ≤ Ct1 p

∣

∣

∣

DSPWMh,l
t2 p =

∣

∣

∣M
h,l
t2 p ≤ Ct2 p

∣

∣

∣

(45)

Multiplying the DSPWM signal and DC voltage amplitude generates the VSCs output voltage for

each phase value in MSC and GSC, i.e.,

vh,l
MSC,GSC = VDC ∗ DSPWMh,l

MSC,GSC (46)

The WT-PMSG voltage vh
WT−PMSG is generated by,

vh
t1WT−PMSG = PMSG(cos(ωrPMSGt1 + θrPMSG))

vh
t2WT−PMSG = PMSG(cos(ωrPMSGt2 + θrPMSG))

(47)

where PMSG is the WT-PMSG amplitude voltage and φ is the corresponding angle of each phase in

the three-phase WT-PMSG.
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And the WES voltage vl
WES is produced by,

vl
t1WES = WES(cos(ω0t1 + φWES))

vl
t2WES = WES(cos(ω0t2 + φWES))

(48)

where WES is the AC grid amplitude voltage and φWES is the corresponding angle of each phase in the

three-phase WES grid.

The output current in each VSC is calculated as,

[

ih,l
t1 MSC,GSC

]

= (1/(3ZMSC,GSC) )
([

vh,l
t1WT−PMSG,WES

]

−
[

vh,l
t1 MSC,GSC

])

[

ih,l
t2 MSC,GSC

]

= (1/(3ZMSC,GSC) )
([

vh,l
t2WT−PMSG,WES

]

−
[

vh,l
t2 MSC,GSC

]) (49)

The harmonic content spectrum to obtain the THD is required. By using (35), (36), and (49) the

spectrum is calculated as,

an
MSC,GSC =

(

2
T

)

[(

∫ ( f ω/2)+θp

θp

(

ih,l
t1 MSC,GSC cos(nω0t1)

)

dω0t1

)

+
(

∫ f ω+θp

( f ω/2)+θp

(

ih,l
t1 MSC,GSC cos(nω0t2)

)

dω0t2

)]

(50)

bn
MSC,GSC =

(

2
T

)

[(

∫ ( f ω/2)+θp

θp

(

ih,l
t1 MSC,GSCsin(nω0t1)

)

dω0t1

)

+
(

∫ f ω+θp

( f ω/2)+θp

(

ih,l
t2 MSC,GSCsin(nω0t2)

)

dω0t2

)]

(51)

For the harmonic content of the output current signal, the magnitude of the individual harmonics

is calculated for each VSC connected in parallel to the MSC and GSC and these are added, i.e.,

an1
MSC,GSC + an2

MSC,GSC + . . . + a
np
MSC,GSC (52)

bn1
MSC,GSC + bn2

MSC,GSC + . . . + b
np
MSC,GSC (53)

where p is the number of VSCs placed in parallel and n is the number of harmonics.

The THD in the AFE converter output current is,

THDih,l
MSC,GSC =

∣

∣

∣

∣

∣

∣





1

C
1p
MSC,GSC





√

∞

∑
n=2

(

C
np
MSC,GSC

)2

∣

∣

∣

∣

∣

∣

∗ 100 (54)

where C
1p
MSC,GSC is the fundamental harmonic magnitude and C

np
MSC,GSC is the ntth harmonic magnitude.

Finally, the lower THD content in the output current of the AFE converter is generated when the

output current signals of each VSC are added, i.e.,

ih,l
MSC,GSC = ih,l

MSC1,GSC1 + ih,l
MSC2,GSC2 + . . . + ih,l

MSCp,GSCp (55)

Figure 5 shows the flow diagram that describes the generated method for a lower harmonic

content, represented from Equations (33) to (55).
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ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱFigure 5. Flow diagram for the lower total harmonic distortion (THD) generation.

4. Simulation Results: Study Case for WES

In this paper, Matlab-Simulink® (Matlab r2015b, Mathworks, Natick, MA, USA) and Opal-RT

Technologies® module (OP-5600) (Montreal, QC, Canada) are the main elements in the WES real-time

simulation, since the OP-5600 module uses the rapid control prototyping (RCP) concept, which allows

testing of the control law without the need for any programming code.

In Figure 2, the simulated WES is shown. It contains a WT-PMSG to supply the MSC, the AFE

parallel converter and the infinite bus (considered as an ideal voltage source) to supply the GSC. The

MSC and GSC are connected to WT-PMSG and the AC grid through RL filters, both converters are

formed by three VSCs connected in parallel and each one is designed to possess a power and voltage

of 2 MVA and 2.5 kV, respectively. The characteristics of the WT-PMSG are described in Table 2.
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Table 2. Wind turbine-permanent magnet synchronous generator (WT-PMSG) characteristics.

Wind Turbine (WT)

Nominal output power 2 MW Base wind speed 12 m/s
Pitch angle 45 deg base generator speed 1.2 pu

Permanent Magnet Synchronous Generator (PMSG)

Mechanical input −8.49 × 105 N.m. Stator resistance 8.2 × 10−4 Ω

Armature inductance 1.6 × 10−3 H Flux linkage 5.82

Viscous damping 4.04 × 103 N.m.s Inertia 2.7 × 106 kg.m2

Pole pairs 4 Rotor type Round

To verify the correct WES operation in Figure 2, in Figure 6 the behavior of the WT mechanical

torque and the PMSG electric torque are analyzed.
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Figure 6. The behavior of the WT mechanical torque and the permanent magnet synchronous generator

(PMSG) electric torque in the presence of wind fluctuations. (a) Wind fluctuations; (b) mechanical and

electric torque.

Figure 6a details the wind fluctuations applied to the WT, which are generated in

Matlab-Simulink® by a rotor wind model developed by RISOE National Laboratory based on Kaimal

spectra. Figure 6b shows the behavior of the WT mechanical torque and the PMSG electric torque in the

presence of wind fluctuations. It is possible to observe that the electric torque follows the mechanical

torque behavior, due to the effective structure of the MSC closed-loop control.

Figure 7 shows the generated current by the WT-PMSG, which is controlled through the MSC of

the AFE parallel converter. Because the MSC is formed using the parallel connection of three VSCs,

each VSC can handle one third of the total current generated by the WT; Figure 7a–c illustrates the

current in the (1), (2), and (3) VSCs, respectively, and in Figure 7d the MSC total current is shown.
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Figure 7. Current present in machine-side VSC (MSC) of Active Front-End (AFE) parallel converter.

(a) (1) VSC; (b) (2) VSC; (c) (3) VSC; (d) total current.

While, the main MSC function is the rotor flux frequency control, generating the power conversion

between medium AC voltage and low DC voltage levels, the most important GSC function is to keep

the DC-link constant, transferring the generated power between the WT-PMSG and AC grid in the

voltages required by the consumers.

Figure 8a shows that the DC-link remains constant at 5kV, because, when the MSC requires a

reactive power exchange, due to the wind fluctuations of Figure 6a, the GSC restores the DC-Link,

and at the same time injects the needed reactive power, as shown in Figure 8b.
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Figure 8. DC-Link and Reactive Power controlled by the grid-side VSC (GSC). (a) DC-link voltage;

(b) exchange of reactive power in WES.

Figures 9–11 detail the applied DSPWM to each of the VSCs connected in parallel for the correct

operation of the GSC, at the stability time from 4.5 to 4.509 ms. In Figure 9, it can be seen that both the

carrier signal of Figure 9a and the modulated signal of Figure 9b start at the same time, i.e., the carrier
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signal does not present any phase shift, generating the DSPWM signal in Figure 9c, this is applied to

the first VSC connected in parallel in the GSC. In Figure 10, the DSPWM generation applied to the

second VSC connected in parallel to the GSC is shown; in Figure 10a, a phase shift of π/2 (rad/s) in

the carrier signal is observed. This is compared with the modulated signal of Figure 10b, originating

the DSPWM with the phase shift of Figure 10c. Finally, in Figure 11, the DSPWM signal applied to the

third VSC connected in parallel of the GSC is presented; in Figure 11a the carrier is observed with a

phase shift of π (rad/s) with respect to the modulated signal of Figure 11b, generating the DSPWM of

Figure 11c.
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Figure 9. DSPWM signal applied to the control of the first VSC connected in parallel in GSC. (a) Carrier

signal; (b) modulated signal; (c) DSPWM.
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Figure 10. DSPWM signal applied to the control of the second VSC connected in parallel in GSC.

(a) Carrier signal; (b) modulated signal; (c) DSPWM.
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Figure 11. DSPWM signal applied to the control of the third VSC connected in parallel in GSC.

(a) Carrier signal; (b) modulated signal; (c) DSPWM.

Figure 12 shows the electrical variables present at the GSC when the corresponding phase shift in

the carriers of each VSC connected in parallel is performed, according to Equation (33). Figure 12a

shows the (1) VSC current generated due to the phase shift at the carrier of Figure 9a; in which, a zoom

in time is made from 9.9 to 10.1 s, observing the current magnitude and behavior in the presence of the

reactive power exchange at Figure 8b. Figure 12b shows the (2) VSC current generated due the phase

shift at the carrier of Figure 10a; Figure 12c shows the (3) VSC current generated due the phase shift

at the carrier of Figure 11a; in Figure 12a–c, each current magnitude is 330 A, generating a total GSC

current of 990 A, as seen in Figure 12d; Figure 12e details a zoom in time from 9.9 to 10.1 s, observing

the generated voltage at the GSC, the magnitude of which corresponds to 2500 V.
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Figure 12. Electrical variables generated by the GSC. (a) Zoom of the handled current at the (1) VSC;

(b) the handled current at the (2) VSC; (c) the handled current at the (3) VSC; (d) total current; (e) zoom

at the magnitude voltage.
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Finally, the current THD is shown in Figure 13; Figure 13a contents the THD without any phase

shift between carriers of each VSC of the AFE converter, which corresponds to 6.8%. Please observe

that, in Figure 13b, when the corresponding phase shift is performed in the carriers, the current THD

is reduced to 1.239%, as specified in Table 1. The Figure 13 shows the harmonics magnitude reduction

or even their elimination, once the phase shift between carriers has been made. The THD was reduced

by approximately 5.5 times.
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Figure 13. THD present at the WES. (a) Without phase shift between carriers of each VSC; (b) with

phase shift between carriers of each VSC.

5. Real Time Simulation Results: Study Case for WES using Opal-RT Technologies®

To verify the robustness of the applied control in the AFE converter and the THD reduction at the

WES, the grid of Figure 2 in real time using the Opal-RT Technologies® is simulated; generating an

RCP concept that tests the WES dynamics without the need for any programming code. Specifically,

the VSC of the AFE converter is composed by the insulated gate bipolar transistor (IGBTs), these use

a switching frequency of 7 kHz. Figure 14a shows the wind fluctuations generated by a rotor wind

model developed by RISOE National Laboratory based on Kaimal spectra. Figure 14b contains the

mechanical torque behavior generated by the wind turbine, and in response to the applied control at

the MSC, the PMSG electric torque is able to follow the same behavior.

ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ
ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ Ȭ ȱ  ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ

Figure 14. Behavior of the WT mechanical torque and the PMSG electric torque in the presence of

wind fluctuations simulated in the Opal-RT Technologies®. (a) Wind fluctuations; (b) Mechanical and

Electric torque.
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Figure 15 presents the main electrical variables of the WES simulated in real time by OPAL-RT®.

Figure 15a contains the current portion that handles the first VSC connected in parallel; as can be

seen, as only three VSCs are connected in parallel, each one handles only a third of the total current

generated by the MSC. The total current is presented in Figure 15b, and this is transferred by the

WT-PMSG to the AC grid through the AFE converter. In Figure 15c, the generated voltage by the

MSC is observed. It is important to mention that the main objective of the GSC is to support the

constant DC-link in the presence of any disturbance (such as voltage/current variations due to wind

fluctuations or reactive power exchanges by the behavior of the WT). This is evidenced in Figure 15d

and is possible due to the applied control robustness. Figure 15e shows the GSC ability to exchange

reactive power, that is, the ability of the injection/absorption of 6 MVA into the AC grid. Figure 15f

contains the handled current portion by the first VSC connected in parallel at the GSC; similarly, as

only three VSCs are connected in parallel, each one handles only a third of the total current generated

by the GSC; the total current is presented in Figure 15g. Finally, in Figure 15h, the handled voltage

by the GSC is observed, this is taken from the PCC attached to the AC grid. The THD of the handled

total current by the GSC is generated through the OPAL-RT®. The generated THD without phase shift

between the carriers of each VSC connected in parallel corresponds to 8.85%. The produced THD

once the phase shift between the carriers of each VSC is made corresponds to 2.18%, and the phase

shift from equation (33) is calculated; therefore, it is demonstrated that making the WES real-time

simulation and applying the phase shift between the carriers of each VSC, the THD can be reduced up

to four times.

ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
Ȭ  ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ  ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ ȱ ȱ ȱ ȱ

 

ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭ ȱ  ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ Ȭ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ
ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ

ȱ ȱ ȱ

Figure 15. Electrical variables generated at the WES simulated in the Opal-RT Technologies®. (a) The

handled current by the (1) VSC of MSC; (b) total current handled by the MSC; (c) voltage present at

the MSC; (d) DC-Link voltage controlled by the GSC; (e) reactive Power controlled by the GSC; (f) the

handled current by the (1) VSC of GSC; (g) total current handled by the GSC; (h) voltage present at

the GSC.
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Finally, it is important to mention that, the block –written to file– produces the results of Figures 14

and 15 in the MATLAB–Simulink® interface; this allows plotting the variables in MATLAB windows

in order to have a better presentation.

6. Conclusions

In this paper, the AFE converter topology has been analyzed for the THD reduction in a WES.

The WES has been formed by a WT-PMSG connected to the AC grid through an AFE converter.

The AFE converter topology has been made from the use of a single VSC to use pVCS connected

in parallel.

The effective THD reduction has been made through the variation in the DSPWM technique

applied to each VSC, that is, applying a different phase shift angle at the carrier signals of each VSC

connected in parallel, while the modulated signal angle has been kept constant.

To verify the robustness to the applied control, the WES control law has been simulated in real

time using the Opal-RT Technologies®, generating an RCP concept, which tests the WES dynamics

without the need for any programming code.

The obtained results have shown a type-4 WT with total output power of 6MVA generates a THD

reduction up to 5.5 times of the total WES current output by Fourier series expansion.
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Nomenclature

αGSC GSC bandwidth of the closed-loop control

αMSC MSC bandwidth of the closed-loop control

ϕ Modulated signal angle

φ WT-PMSG three-phase angle

φWES WES three-phase angle

λmPMSG PMSG maximum flux linkage

θp Phase shift angle of each VSC

τGSC GSC compensator response time

τMSC MSC compensator response time

τPMSG PMSG compensator response time

ωrPMSG PMSG rotor angular velocity

ωrPMSGb PMSG base rotor angular velocity

ωWTb WT base angular velocity

ωo WES angular frequency

AFE Active Front-End

Ct1,t2p Composed carrier signal

CDC DC-link capacitance

CWES WES capacitance

D PMSG viscous damping

DFIG Double-fed induction generator

DSPWM Digital sinusoidal pulse width modulation

DSPWMGSC Modulated index vector at GSC

DSPWMMSC Modulated index vector at MSC

EGSC GSC control input
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EMSC PMSC control input

fω Switching frequency

GSC Grid-side VSC

H Inertia constant

iGSC GSC current

iMSC MSC current

irPMSG PMSG rotor current

IDC DC-link current

kiGSC GSC integral compensator gain

kiMSC MSC integral compensator gain

kirPMSG PMSG integral compensator gain

kpGSC GSC proportional compensator gain

kpMSC MSC proportional compensator gain

kprPMSG PMSG proportional compensator gain

LGSC GSC inductance

LMSC WT-PMSG armature inductance

MSC Machine-side VSC

p Number of VSC in parallel

PCC Point of Common Coupling

PGSCref GSC active power reference

PMSG Permanent magnet synchronous generator

PWESb WES base power

PWT-PMSGb WT-PMSG base power

PAFEb AFE converter base power

QGSCref GSC reactive power reference

QWESref WES reactive power reference

QWES WES reactive power

RCP Rapid control prototyping

RDC DC-link resistance

RGSC GSC resistance

RMSC MSC resistance

s Laplace operator

SCIG squirrel-cage induction generator

Superscript d d axis of dq reference frame

Superscript g MSC dq components vector

Superscript h MSC three-phase vector

Superscript k VSC dq components vector

Superscript l VSC three-phase vector

Superscript n Harmonic number

Superscript q q axis of dq reference frame

Superscript ref Corresponding Reference value

t1 up-slope time

t2 down-slope time

TePMSG PMSG electrical torque

THD Total Harmonic Distortion

TmWT WT mechanical torque

UDC Energy capacitor

vGSC GSC voltage

vWES WES voltage

vWESL-L WES line to line voltage

vMSC WT-PMSG voltage

vWT Wind turbine voltage
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vWT-PMSG Generated WT-PMSG voltage

VDC DC-link voltage

VDCref DC-link voltage reference

VSC voltage source converter

WES Wind Energy System

WT Wind Turbine

ZGSCt GSC impedance

ZGSC Total WES impedance

ZMSC Total WT-PMSG impedance

ZMSCt MSC impedance
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