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Soft-bound Interval Control System and its Robust

Fault-tolerant Controller Design
Jinglin Zhou Member, IEEE and Hong Yue, Senior Member, IEEE

Abstract—In this work, a soft-bound interval control problem1

is proposed for general non-Gaussian systems with the aim2

to control the output variable within a bounded region at a3

specified probability level. To find a feasible solution to this4

challenging task, the initial soft-bound interval control problem5

has been transformed into an output probability density func-6

tion (PDF) tracking control problem with constrained tracking7

errors, thereby the controller design can be handled under the8

established framework of stochastic distribution control (SDC).9

Fault tolerant control has been developed for soft-bound interval10

control systems in presence of faults. Three fault detection11

methods have been proposed based on criteria extracted from the12

initial soft-bound control problem and the recast PDF tracking13

problem. An integrated design for fault estimation and fault tol-14

erant control (FTC) is proposed based on a double proportional15

integral (PI) structure. This integrated FTC is developed through16

linear matrix inequality (LMI). Extensive simulation studies have17

been conducted to examine key design factors, implementation18

issues and effectiveness of the proposed approach.19

Index Terms—Non-Gaussian systems, soft-bound control,20

stochastic distribution control (SDC), probability density function21

(PDF), fault detection, fault tolerant control (FTC).22

I. INTRODUCTION23

Stochastic control has been an active area in control engi-24

neering and applications since 1970’s as most practical sys-25

tems have stochastic characteristics. Continuous efforts have26

been made in development of minimum variance control [1]–27

[3], linear quadratic Gaussian (LQG) control [4], Markovian28

stochastic control [5], stochastic adaptive control, stochastic29

optimization and forecasting, sliding mode control [6]–[8], to30

name a few. Most of these methods are focused on stochastic31

features of system variables, mean and variance for exam-32

ple, under the assumption of Gaussian distribution. In real33

applications, however, a large number of stochastic processes34

are non-Gaussian, examples include molecular weight distri-35

bution control in polymerization [9], [10], pulp fiber length36

distribution control in paper industries [11], particulate process37

control in powder industries [12], crystal size distribution38

control in crystallization [13], soil particle distribution control39

[14], flame temperature distribution control in furnace systems40

[15], [16] and power probability density function control in41

nuclear reactors [17], among others. For these systems new42
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approaches need to be developed to control the full shape of 43

the system output(s), which is equivalent to directly control 44

the output probability density function (PDF) under general 45

non-Gaussian assumption. The latter is also called output PDF 46

shaping control or output stochastic distribution control (SDC) 47

in literature [11], [18], [19]. 48

Various output PDF control algorithms have been developed 49

such as optimal tracking control [20], minimum entropy con- 50

trol [21], robust PDF tracking control [22], [23] and predictive 51

PDF control [24]. Most of these controllers are designed to 52

drive the output PDF towards a target PDF as close as possible, 53

which can be taken as an output PDF tracking problem. 54

Without considering the control cost, a typical performance 55

index for PDF tracking problem can be formulated with the 56

following index 57

J(k) =

∫ b

a

(

γ(y, u(k))− γg(y)
)2
dy, (1)

where γ(y, u(k)) is the output PDF with its random variable, 58

y, defined on [a, b]; γg(y) is the desired or target PDF defined 59

on the same region of [a, b] and it is independent of u(k); 60

u(k) is the vector of control inputs; k is the time index. 61

While controlling the output PDF may fully determine the 62

output distribution, it is also crucial to control the output 63

variable itself. Following operational requirements, the process 64

outputs, v(k), can be classified into two broad categories in 65

control [25]: (i) outputs to be controlled at desired values 66

or set-points, and (ii) outputs to be controlled within desired 67

intervals (also called zone control). For stochastic systems, 68

the output variables are stochastic terms, a natural choice is 69

to control the output within a specified region with a desired 70

probability. This interval control can be described as 71

J0(k) = P{a0 ≤ v(k) ≤ b0, u(k)} ≥ P0, (2)

where a ≤ a0 < b0 ≤ b, and P0 is a pre-specified probability 72

level. This control problem is similar to control the output 73

variable with a soft-bound constraint [25]–[28]. For a Gaussian 74

system, it can also be taken as a generalization of the output 75

within the region of [µ−3σ, µ+3σ] with over 99% probability 76

for example (µ and σ are mean and standard deviation). Here 77

we call the problem with performance function in (2) soft- 78

bound interval control. The word ’soft bound’ is used in 79

comparison to the ‘hard bound’ interval control that controls 80

the output to stay within a region under all circumstances. 81

In (2), the [a0, b0] interval is the soft-bound region and P0 82

is the required or expected soft-bound probability level to be 83

achieved through control actions. In practice, both the soft- 84
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bound region and the level of soft-bound probability should85

be determined following system or process requirements.86

This work is focused on the soft-bound interval control of87

non-Gaussian systems. It is not a trivial task to find the optimal88

solution to this problem. One major contribution of this work89

is to propose an effective method that transforms the soft-90

bound interval control into an output PDF tracking problem91

with constrained tracking errors. The latter can be solved92

through our previous results under the output SDC framework.93

We therefore call this new strategy soft-bound PDF tracking94

control.95

Another key exploration through this work is to investigate96

fault detection and diagnosis (FDD) and fault-tolerant control97

(FTC) for soft-bound interval control systems that may contain98

faulty signals. This will help to improve reliability, security99

and economical efficiency of the controlled systems. Numer-100

ous methodologies for FDD and FTC have been established101

[29]–[33]. A well-developed technique for model-based FDD102

and FTC relies on its analytical redundancy in the form of103

dedicated observers [34]–[40]. Most current FDD and FTC104

algorithms for stochastic systems are developed for Gaussian105

processes, with only very few results for general non-Gaussian106

SDC systems. In a SDC system, the purpose of FDD is to107

use information on the control input and the output PDF to108

determine whether a fault occurs, and to estimate and locate109

the fault. Observer-based (filter-based) methods are often used110

in FDD, where it is crucial to generate residual signals that are111

robust to unknown inputs but sensitive to fault signals [41]–112

[46]. In [47], an observer is designed via the use of linear113

matrix inequalities (LMIs) and the fault detection threshold114

is determined by the bounds imposed on model uncertainties.115

A nonlinear adaptive observer-based fault diagnosis algorithm116

[48] and an iterative learning observer-based fault diagnosis117

algorithm [44] are employed for normal and singular non-118

Gaussian systems, respectively.119

Back to the novel idea of soft-bound interval control, fault120

detection for Gaussian systems is relatively straightforward121

that can be realized from the analysis of output data without122

designing a filter. An over 99% level is commonly used as123

the detection threshold, which corresponds to the probability124

that the Gaussian distributed variable falls within the region of125

[µ−3σ, µ+3σ]. For non-Gaussian SDC systems, however, one126

question is whether a fault can be detected by a probability127

threshold (or any other given threshold)? If yes, how such128

a threshold can be determined from the output stochastic129

distribution information? Is it necessary to develop a separate130

fault diagnosis observer (filter) for FTC in soft-bound control131

systems? These questions will be discussed in this work. A132

new design of integrated FDD and FTC for soft-bound PDF133

tracking makes another major contribution of this work.134

The remaining of the paper is organized as follows. In135

Section II, the soft-bound interval control problem is recast136

into output PDF tracking control with constrained errors.137

A structured proportional integral (PI) robust controller is138

developed through LMI for fault-free systems in Section139

III. For soft-bound output control systems in presence of140

faults, three fault detection methods are proposed, based on141

which an integrated design of FDD and FTC is proposed142

with a double-PI structured robust controller in Section IV. 143

Simulation studies are conducted in Section V to examine the 144

feasibility, effectiveness and key design factors of the proposed 145

algorithm. Conclusions and discussions are given in Section 146

VI. Theoretical proof of lemmas and theorems are provided 147

in appendix. 148

II. SOFT-BOUND OUTPUT CONTROL AND CONSTRAINED 149

PDF TRACKING 150

A. Modeling of Output PDFs 151

For a dynamic stochastic control system, denote v(k) ∈ 152

[a, b] as the random output and u(k) ∈ R
q×1 as the control 153

input vector. At time k, the distribution of v(k) can be 154

characterized by its PDF, γ(y, u(k)). The probability that v(k) 155

locates in the range of [a, ζ] under control u(k) is represented 156

by 157

P{a ≤ v(k) ≤ ζ, u(k)} =

∫ ζ

a

γ(y, u(k))dy. (3)

Using the square root B-spline approximation [11], the PDF 158

of the output variable can be represented by 159

√

γ(y, u(k)) =

n
∑

i=1

wi(u(k))Bi(y) + e0(y, u(k)), (4)

in which Bi(y)(i = 1, 2, · · ·n) are the n pre-specified basis 160

functions defined on the interval [a, b], wi(u(k)) are the 161

corresponding weights dependent on u(k). This square-root B- 162

spline model guarantees positiveness in PDF approximation. 163

Since the integration constraint of
∫ b

a
γ(y, u(k))dy = 1 is 164

required for all PDFs, only (n−1) weights are independent in 165

this B-spline model. The PDF approximation errors, e0(y, u), 166

can be considered as modeling uncertainty as shown later on. 167

To start with, dropping the error term for simplicity, (4) can 168

be rewritten into a compact form as 169

√

γ(y, u(k)) = C(y)V (k) +H(V (k))Bn(y), (5)

where C(y) = [B1(y), B2(y), · · · , Bn−1(y)] is the vector 170

of independent basis functions, and V (k) = [w1(u(k)), 171

w2(u(k)), · · · , wn−1(u(k))]
T is the vector of the correspond- 172

ing weights. Denote 173

Φ1 =

∫ b

a

CT(y)C(y)dy

Φ2 =

∫ b

a

C(y)Bn(y)dy

Φ3 =

∫ b

a

B2
n(y)dy.

(6)

Following the PDF integration constraint of
∫ b

a
γ(y, u(k))dy = 174

1, it can be derived from (5) that 175

H(V (k)) =
±
√

Φ3 − V T(k)Φ0V (k)− Φ2V (k)

Φ3
, (7)

where Φ0 = Φ1Φ3 −ΦT
2 Φ2. For simplify, only the “+” in (7) 176

is considered in the rest of the paper. Denoting Σ = Φ1 − 177

Φ−1
3 ΦT

2 Φ2, from (7), the following inequality 178

V T(k)ΣV (k) ≤ 1 (8)
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needs to be satisfied. This constraint on V (k) makes the179

output PDF tracking controller design more complicated [47].180

Under inequality (8), we have Lemmas 1 and 2 stated in the181

following.182

Lemma 1: For a function183

f(V (k1), V (k2)) =
√

V T(k1)Φ0V (k1)−
√

V T(k2)Φ0V (k2),

it has a λ = λmax(Φ0)√
λmin(Φ0)

such that

‖f(V (k1), V (k2))‖ ≤ λ ‖‖V (k1)‖ − ‖V (k2)‖‖ .
Lemma 1 and its proof can be found in reference [24]. This184

Lemma is introduced to prove Lemma 2 presented as follows.185

Lemma 2: For the given V (k1) and V (k2) in (8), there exist186

Mmax and Mmin such that187

‖H(V (k1))−H(V (k2))‖ ≤ Mmax‖V (k1)− V (k2)‖
‖H(V (k1)) +H(V (k2))‖ ≥ Mmin‖V (k1) + V (k2)‖

(9)

hold. In particular, when188

V T(k1)Φ0V (k1) + V T(k2)Φ0V (k2) ≤ Φ3,

there are189

Mmax =

λmax(Φ0)√
λmin(Φ0)

+ ‖Φ2‖

‖Φ3‖

Mmin =
‖
√

λmin(Φ0)− ‖Φ2‖‖
‖Φ3‖

where λmax(Φ0) and λmin(Φ0) are the maximum and the190

minimum eigenvalues of Φ0, respectively.191

Proof: See Appendix A.192

B. Output PDF Tracking Control with Constrained Errors193

With the use of PDF, the soft-bound output control objective194

in (2) can be written as195

∫ b0

a0

γ(y, u(k))dy ≥ P0. (10)

For a Gaussian system, the output PDF can be determined by196

its mean value (µ) and the standard deviation (σ), therefore,197

the soft-bound output control can be realized by controlling198

these two parameters to the settings of (µg, σg) that correspond199

to P0 and accordingly a target PDF, γg(y). This means under200

Gaussian assumptions, the soft-bound output control problem201

can be transformed into an output PDF tracking problem with202

the perfect tracking performance (zero tracking errors). For a203

general non-Gaussian system, however, its output PDF may204

not be explicitly determined by several parameters. It is not205

always possible to find an exact target PDF that would lead to206

a solution to (10) through an equivalent perfect (output) PDF207

tracking control. Next we will discuss how to choose a suitable208

target PDF so that the soft-bound output control objective can209

be achieved via output PDF tracking control with constrained210

tracking errors.211

To keep the modeling consistency, the target PDF is also212

approximated by the same square-root B-spline model in (5),213

therefore214

√

γg(y) = C(y)Vg +H(Vg)Bn(y), (11)

where Vg is the corresponding weights vector for the target 215

PDF, γg(y). The integration of γg(y) over the soft bound 216

region gives a probability, P1, i.e. 217

P1 =

∫ b0

a0

γg(y)dy =

∫ b0

a0

(C(y)Vg +H(Vg)Bn(y))
2
dy.

(12)

In general, P1 needs to be greater than P0. The difference or 218

closeness between the two probability levels is defined as 219

α0 = P1 − P0. (13)

We call α0 ’the probability discrepancy factor’ for soft-bound 220

output control. This is a key factor that affects the controller 221

design. 222

An output PDF tracking control performance index is for- 223

mulated following the square root B-spline approximation, 224

J1(k) =

∫ b

a

(

√

γ(y, u(k))−
√

γg(y)

)2

dy

= 2− 2

∫ b

a

√

γ(y, u(k))γg(y)dy.

(14)

Remark 1: The PDF tracking performance index in (14) is 225

dependent on the the coupling of the output PDF and the target 226

PDF. Apparently, when P1 = P0, the soft-bound output control 227

problem is equivalent to seeking J1 = 0 or γ(y, u(k)) = 228

γg(y), which is a perfect PDF tracking for the SDC system 229

[11]. When P1 6= P0, the soft-bound output control problem 230

cannot be equivalent to a perfect PDF tracking control, instead, 231

the PDF tracking errors will present. 232

Remark 2: It can be revealed from (14) and Lemma 2 that 233

a good choice of the weight vector Vg (corresponding to the 234

target PDF γg(y)) is to make V T
g Φ0Vg stay far away from Φ3 235

under the Lemma 2 requirement. If V T
g Φ0Vg is chosen to be 236

very close to Φ3, it will leave rather limited room for controller 237

design. With a proper chosen Vg , the controller design should 238

also ensure other constraints relevant to Mmax and Mmin, such 239

as V T
g Φ0Vg + V T(k)Φ0V (k) ≤ Φ3. In this case, a variable 240

structure strategy [20] could be a proper choice for controller 241

design. 242

When a target PDF is given, under the soft-bound output 243

control objective (10), the output PDF tracking error, measured 244

by (14), will also be a bounded term as discussed through the 245

following theorem. 246

Theorem 1: Consider a SDC system with its output PDF 247

described by (5) and the soft-bound output control requirement 248

in (10). Given a target PDF, modeled by (11), the instant output 249

PDF tracking performance in (14) is bounded as follows 250

J1(k) =

∫ b

a

(

√

γ(y, u(k))−
√

γg(y)

)2

dy ≤ α1 (15)

where 251

α1 = min{‖Φ‖θ21(α0), ‖Φ‖θ22(α0)}, (16)

and 252

θ1 =
‖Vg‖‖Φmin‖ −

√

‖Vg‖2‖Φmin‖2 − α0‖Φmin‖
‖Φmin‖

253

θ2 =

√

‖Vg‖2‖Φmin‖2 + α0‖Φmin‖ − ‖Vg‖‖Φmin‖
‖Φmin‖
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with ‖Φmin‖ = ‖Φ01‖ + 2‖Mmin‖‖Φ02‖ + ‖M2
min‖‖Φ03‖,254

Φ01 =
∫ b0

a0

CT(y)C(y)dy, Φ02 =
∫ b0

a0

C(y)Bn(y)dy, Φ03 =255

∫ b0

a0

B2
n(y)dy, ‖Φ‖ = ‖Φ1‖+2‖Φ2‖‖Mmax‖+‖Mmax‖2‖Φ3‖.256

Proof: See Appendix B.257

Remark 3: As shown in Theorem 1, when the soft-bound258

output control is transformed into a PDF tracking control259

following a (chosen) target PDF, the PDF tracking error is260

guaranteed to be bounded. The bound is determined by the261

probability discrepancy level, α0, and the shape of the target262

PDF, Vg . For the same Vg , the larger is α0, the larger is the263

constraint bound of the PDF tracking errors.264

We can take this bounded PDF control problem as a special265

case of the conventional output PDF control, in which the266

control objective is to make the output PDF stay “as close as267

possible” to the target PDF. The bounded PDF tracking control268

problem is formulated as follows.269

min J(u(k)) =

∫ b

a

(

√

γ(y, u(k))−
√

γg(y)

)2

dy

s.t. J(u(k)) ≤ α1, k → ∞, and

V T(k)ΣV (k) = ‖V (k)‖Σ ≤ 1

(17)

Different from the conventional “as close as possible” PDF270

tracking control, this new control problem contains two con-271

straints: one is the square-root B-spline PDF modeling con-272

straint raised in (8), the other is the steady-state constraint for273

the PDF tracking performance.274

III. STRUCTURED ROBUST TRACKING CONTROLLER275

DESIGN276

A. Formulation of the Constrained PDF Tracking Control277

Problem278

Using the B-spline PDF modeling, the PDF tracking error279

can also be measured by the errors between weights vectors280

corresponding to the output PDF and the target PDF, i.e.,281

e(k) = V (k)− Vg = [e1(k), e2(k), · · · en−1(k)]
T. (18)

For simplicity but without losing any key characteristics of282

the soft-bound output control under discussion, the following283

linear model is assumed for the weights dynamics, in which284

an additive term, ω(k), is introduced to accommodate distur-285

bance, model uncertainties and/or output PDF approximation286

errors.287

V (k + 1) = A0V (k) +B0u(k) + E0ω(k) (19)

A0, B0 and E0 are known coefficient matrices with compatible288

dimensions that can be established from data-based modeling.289

With (19), the weights tracking error in (18) can be further290

written as291

e(k+ 1) = A0e(k) +B0u(k) + (A0 − I)Vg +E0ω(k). (20)

The purpose of controller design is to determine the control292

inputs, u(k), such that the output PDF follows a pre-specified293

target PDF, γg(y), with an α0-related upper bound on e(k).294

Denoting U(k) as295

B0U(k) = (A0 − I)Vg +B0u(k), (21)

this control problem is equivalent to making
√

γ(y, U(k)) 296

follow
√

γg(y) with an upper bound on the tracking error. 297

Taking the two PDFs in (5) and (11) into the performance 298

index in (17), there is 299

J(U(k)) =

∫ b

a

(

√

γ(y, U(k))−
√

γg(y)

)2

dy

=

∫ b

a

[(H(V (k))−H(Vg))Bn(y)

+ C(y)(V (k)− Vg)]
2
dy

(22)

The performance index in (22) consists of two parts: one is 300

a linear function of V (k); the other is regarding the nonlinear 301

term H(V (k)) which is a continuous function with respect to 302

V (k) as defined in (7). Following Lemma 2 and the conti- 303

nuity nature of function H(V (k)), ||H(V (k))−H(Vg)|| and 304

||V (k) − Vg|| have the same minimum point in optimization 305

when V (k) = Vg . This suggests that the problem of mini- 306

mizing J(U(k)) in (22) can be realized through minimizing 307

(C(y)(V (k)− Vg))
2

alone. 308

The performance index in (22) is in fact bounded by

∫ b

a

(

√

γ(y, U(k))−
√

γg(y)

)2

dy ≤ ‖e(k)‖2‖Φ‖.

This gives one constraint as 309

‖e(k)‖2‖Φ‖ ≤ α1. (23)

The PDF integration constraint for e(k) can be developed from 310

(8) to give 311

‖e(k) + Vg‖Σ ≤ 1. (24)

The two constraints in (23) and (24) can be combined into a 312

single constraint in the form of 313

‖e(k)‖2‖Φ‖ < α2, k → ∞ (25)

where 314

α2 = min{α1, (1− ‖Vg‖Σ‖Φ‖/‖Σ‖)}. (26)

Therefore, the constrained PDF tracking control problem 315

can be transformed into the following optimization problem, 316

min J(U(k)) = eT(k + 1)Λ̄e(k + 1)

s.t. e(k + 1) = A0e(k) +B0u(k) + (A0 − I)Vg

+ E0ω(k);

‖e(k)‖2‖Φ‖ < α2

(27)

where Λ̄ > 0 is a given (weighting) matrix and in most cases 317

can be chosen as Λ̄ = Φ0. 318

Remark 4: The original soft-bound output control problem 319

is stated in (10) with the probability level of P0 set up for the 320

control objective. This control problem is then transformed 321

to the bounded PDF tracking problem as described in (17) 322

with two constraints on the performance index and the PDF 323

integration, respectively. The integration of the target PDF 324

over the soft-bound region is P1 that can be calculated by 325

(12). The difference between P0 and P1 is defined as the 326

probability discrepancy factor, α0, which is used to determine 327

the constraint for PDF tracking errors. Taking the PDF tracking 328

error e(k)as the states and considering the uncertainty term 329
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ω(k), the dynamic model is further represented by (20), in330

which the control action is denoted by U(k) as in (21).331

Accordingly, the two constraints are re-written and combined332

into a single constraint as in (constraint3), which is used in333

controller design as the constraint level for PDF tracking errors334

in terms of e(k). The final constrained optimization problem335

is given in (27).336

Algorithm 1 The following procedure is provided for337

implementation of this soft-bound control algorithm step by338

step.339

i) Set up the soft-bound region, [a0, b0], and the desired340

probability level, P0, as described in the soft-bound output341

control objective in (10).342

ii) Establish the dynamic model for output PDF, γ(y, u(k)),343

using the square-root B-spline approximation. The com-344

pact form of the model is shown in (5). Calculate ‖Φ‖ as345

discussed in Theorem 1.346

iii) Establish the constraint on PDF integration as shown in347

(8).348

iv) Choose a target output PDF, γg(y), and establish the B-349

spline approximation model in (11) for the target output350

PDF. Calculate the probability level P1 by (12).351

v) Calculate the probability discrepancy factor α0 by (13).352

vi) Determine the bound for the output PDF tracking error,353

α1, following (16) in Theorem 1.]354

vii) Considering the tracking error term e(k) in (18), estab-355

lish A0, B0 and E0 through parameter estimation using356

collected input and output data, or simply take given357

information if known. This will set up the error dynamic358

model in (20).359

viii) Calculate α2 with (26) for the combined constraint in360

(25).361

ix) Set up the weighting matrix Λ̄ in the performance index,362

solve the constrained optimization problem in (27) to363

obtain the optimal control action, U(k). Note here U(k)364

is introduced in (21) for the error dynamic model.365

It can be seen from the above procedures that with steps i)366

to vi), the soft-bound output control problem in (10) has been367

recast into a constrained output PDF tracking problem (17).368

With further steps in vii) and ix), the optimization problem369

in (17) has been transferred to the constrained optimisation370

in (27) considering the PDF tracking error as variables to be371

controlled.372

B. Structured PI Controller Design via LMI373

For most SDC problems with an instant PDF tracking374

performance index, only numerical solutions can be developed375

for control input [47]. This can be inconvenient for analysis376

of control performance such as closed-loop stability and377

robustness. It would be advantageous to design a structured378

controller for the proposed soft-bound PDF tracking problem.379

For the constrained PDF tracking control problem in (27),380

the following generalized PI control structure is proposed381

U(k) = KP0
ε(k) +KI0ν(k)

ν(k + 1) = ν(k) + T0ε(k)

ε(k) =

∫ b

a

(

√

γ(y, U(k))−
√

γg(y)

)

dy

(28)

where KP0
and KI0 are the proportional and integral gain 382

matrices, ε(k) is an integral term that reflects the output PDF 383

tracking error at time k. The controller design task is to find 384

KP0
and KI0 to solve the constrained optimization problem. 385

Denote xS(k) = [eT(k), νT(k)]T and 386

h(k) = H(V (k))−H(Vg), (29)

the following augmentation system can be constructed 387

xS(k + 1) = ASxS(k) +BSh(k) + ESw(k), (30)

where 388

AS =

[

A0 +B0KP0
Σ0 B0KI0

T0Σ0 I

]

,

BS =

[

B0KP0
Σ1

T0Σ1

]

, ES =

[

E0

0

]

.

Here Σ0 =
∫ b

a
CT(y)dy, Σ1 =

∫ b

a
BT

n (y)dy. The following 389

theorem provides a solution to the constrained PDF tracking 390

control problem with the proposed PI control structure. 391

Theorem 2: With the known parameters, λ, µ1, µ2 and

matrix Mmax, suppose that there exist Λ > 0 and K0 =
[KP0

,KI0 ] such that the following LMI is solvable,








Ψ0 0 0 AT
S0
Λ +AT

S1
R

∗ −λ2I 0 BT
S0
Λ +BT

S1
R

∗ ∗ −µ2
1I ET

SΛ
∗ ∗ ∗ −Λ









< 0 (31)

in which

Ψ0 = −Λ + µ2
2T + λ2MT

maxMmax

T = diag{Φ, 0}
and

AS0
=

[

A0 0
T0Σ0 I

]

, AS1
=

[

ΣT
0 Σ

−1
1 0

0 I

]

BS0
=

[

0
T0Σ1

]

, BS1
=

[

I
0

]

Λ =
[

Λ1 Λ2

]T
R =

[

r1 r2
]T

then the closed-loop system (30) is stable and satisfies 392

eT(k)Φe(k) < µ−2
2 µ2

1‖ω(k)‖2. 393

Proof: The proof of this Theorem is similar to the proof 394

of Theorem 3, the latter is detailed in Appendix C. 395

In this case, the PI control gains, KP0
and KI0 , can be 396

solved via r1 = ΣT
1 K

T
P0
BT

0 Λ1 and r2 = KT
I0
BT

0 Λ2, respec- 397

tively. When appropriate values for µ1 and µ2 are selected 398

such that α2 ≥ µ−2
2 µ2

1‖ω(k)‖2, the PDF tracking control 399

performance can be achieved at k → ∞. The PI-structured 400

robust controller (28) will be expanded to FTC design for 401

soft-bound PDF tracking next in Section IV. 402

IV. FAULT DETECTION AND FAULT-TOLERANT TRACKING 403

CONTROL DESIGN 404

A. Fault Detection Methods Based On Output PDF Data 405

Assume that the faulty system can be expanded from model 406

(19) as, 407

V (k + 1) = A0V (k) +B0u(k) + E0ω(k) +GF (k), (32)
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where F (k) represents the fault signal and G is a known408

matrix for the fault term. For a non-Gaussian SDC system, a409

fault detection observer needs to be constructed with a selected410

threshold. This is different from handling Gaussian systems411

where a fault can be detected directly from the output data by412

setting a reasonable threshold without using an observer. There413

are various ways to detect faults in a SDC system. For the414

soft-bound output control system, we propose the following415

three fault detection methods following criteria from the initial416

soft-bound output control problem and the transformed PDF417

tracking problem.418

Method A - output probability fault detection: For the soft-419

bound output control problem in (10), a fault might occur if420

the expected probability level of P0 is not achieved, i.e., a421

fault is detected when422

P (k) =

∫ b0

a0

γ(y, u(k))dy < P0. (33)

In practice, the fault alarm interval, [a′0, b
′

0], can be set to be423

wider than the soft-bound control interval, [a0, b0], where a′0 ≤424

a0 and b′0 ≥ b0. This is equivalent to introducing additional425

dead-band to the fault detection within [a0, b0], i.e., a fault is426

detected when427

P (k) =

∫ b0

a0

γ(y, u(k))dy < P0 − αA. (34)

where αA is the dead-band width that can be tuned in fault428

detection. This method is called ‘output probability fault429

detection (Method A)’.430

Method B - PDF tracking error fault detection: In Section431

II, the soft-bound output control is transformed into PDF432

tracking control with constrained errors, therefore the fault433

can be detected by checking whether the PDF tracking error434

moves beyond the constraint, that is, a fault is detected when435

∫ b0

a0

(

√

γ(y, u(k))−
√

γg(y)

)2

dy > αB , (35)

where αB = max{‖Φ‖θ21(α0), ‖Φ‖θ22(α0)}. αB is in fact the436

upper bound for
∫ b0

a0

(

√

γ(y, u(k))−
√

γg(y)
)2

dy for the437

soft bound PDF tracking performance. Here we use αB for438

fault detection since it is directly linked to the tracking error439

constraint within the soft-bound region. Similar to fault detec-440

tion Method A, by taking into account the dead-band effect,441

αB = max{‖Φ‖θ21(αN ), ‖Φ‖θ22(αN )} with αN = α0 + αA.442

This method is called ‘PDF tracking error fault detection443

(Method B)’.444

Method C - control performance assessment fault detec-445

tion): In addition to the above two methods, we can also use446

the index of tracking control performance assessment (CPA)447

as a fault detection measure. One such index is presented as448

follows,449

η =
S2

S1 + S2
. (36)

a ba0 b0

S2

S1
( , ( ))y u k( )g y( )y

y

Fig. 1. Illustration of tracking control performance assessment

S1 and S2 are depicted in Fig. 1, in which

S2 =

∫ b

a

(γ(y, u(k)) ∩ γg(y)) dy

S1 + S2 =

∫ b

a

(γ(y, u(k)) ∪ γg(y)) dy.

Here S1 + S2 = 2 − S2. This performance index is a scalar 450

taking values between 0 and 1: η = 1 when the process output 451

PDF matches the target PDF completely; η = 0 when there’s 452

no overlap at all between these two PDFs. A fault can therefore 453

be detected by η < αC , where αC is the fault detection 454

threshold that can be adjusted. 455

To determine a proper level of αC , it is critical to compute 456

S2. From the illustration in Fig.1, it can be seen that 457

S1 =

∫ b

a

|γ(y, u(k))− γg(y)|dy

Furthermore, we have S2 = 1− 1
2S1, and 458

1

2
S1 =

∫ b

a

(γg(y)− γ(y, u(k)))dy, for all γg(y) ≥ γ(y, u(k))

. From the proof of Theorem 1, it is easy to find that

1

2
S1 ≤ −min{θ21(αN ), θ22(αN )}‖Φ‖

+ 2‖Vg‖min{θ1(αN ), θ2(αN )}‖Φ‖.

This fault detection method is called ‘CPA fault detection 459

(Method C)’. 460

Remark 5: Here three fault detection methods are proposed 461

using different detection criteria. While Method A is based on 462

the output PDF information, Methods B and C are developed 463

on PDF tracking performances. In these algorithms, the output 464

PDF is required, which can be obtained either by measurement 465

or via a kernel density function estimation method. These 466

options provide a wider choice of fault detection methods 467

for non-Gaussian systems. The computational loads for these 468

methods are similar to those conventional output PDF control 469

problems. 470
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B. Integrated Design for Fault Estimation and Robust Fault-471

Tolerant Tracking Control472

In Section III, a PI-structured controller is proposed for the473

soft-bound PDF tracking problem without considering possible474

faults in the dynamic system. This structured controller (in475

(28)), will be expanded for robust FTC of soft-bound PDF476

tracking of faulty systems, where the fault can be estimated477

from the output PDFs using a fault diagnosis filter as in [44],478

[45].479

The following double-PI structure (PI controller and PI fault480

estimator) is constructed for the soft-bound fault-tolerant PDF481

tracking control.482

e(k + 1) = A0e(k) +B0Ũ(k) + E0w(k) +GF̃ (k)

F̃ (k + 1) = F̃ (k)−Kp(ε(k)− ε(k − 1))−KIε(k)

ν(k + 1) = ν(k) + T0ε(k)

Ũ(k) = KP0
ε(k) +KI0ν(k)

ε(k) =

∫ b

a

(

√

γ(y, Ũ(k))−
√

γg(y)

)

dy

(37)

where

B0Ũ(k) = (A0 − I)Vg +B0u(k) + F̂ (k),

F̃ (k) = F (k)− F̂ (k),

F̂ (k + 1) = F̂ (k) +Kp(ε(k)− ε(k − 1)) +KIε(k).

Denote x(k) = [eT(k), νT(k), F̃T(k)]T, the following483

state-space model is established484

x(k + 1) =A1x(k) +B1h(k) + Ew(k)

+A2x(k − 1) +B2h(k − 1)
(38)

where h(k) is defined in (29) and485

A1 =





A0 +B0KP0
Σ0 B0KI0 G

T0Σ0 I 0
−(KI +KP )Σ0 0 I



 ,

B1 =





B0KP0
Σ1

T0Σ1

−(KI +KP )Σ1



 , E =





E0

0
0



 ,

B2 =





0
0

KPΣ1



 , A2 =





0 0 0
0 0 0

KPΣ0 0 0



 .

Based on the proposed FTC structure (37), or equivalently486

its state-space formulation in (38), we have the following487

theorem.488

Theorem 3: With known parameters λ, µ1, µ2 and matrix489

Mmax, suppose that there exist Λ̃ > 0, S > 0, K0 =490

[KP0
,KI0 ] and K = [KP ,KI ] such that the following LMI491

Ψ =

















Q1 0 0 0 0 Q3

∗ Q2 0 0 0 AT
21R2

∗ ∗ −λ2I 0 0 Q4

∗ ∗ ∗ −λ2I 0 BT
21R2

∗ ∗ ∗ ∗ −µ2
1I ETΛ̃

∗ ∗ ∗ ∗ ∗ −Λ̃

















< 0

(39)

In which,

Q1 = −Λ̃ + S + λ2MT
maxMmax + µ2

2diag{Φ, 0}
Q2 = −S + λ2MT

maxMmax

Q3 = AT
10Λ̃ +AT

11R1 +AT
12R2

Q4 = BT
10Λ̃ +BT

11R1 +BT
12R2

and

A10 =





A0 0 G
T0Σ0 I 0
0 0 I



 B10 =





0
T0Σ1

0





A11 =





ΣT
0 Σ

−1
1 0 0

0 I 0
0 0 0



 B11 =





I
0
0





A12 =





ΣT
0 Σ

−1
1 0 0

0 0 0
0 0 0



 B12 =





I
0
0





A21 =





0 0 0
ΣT

0 Σ
−1
1 0 0

0 0 0



 B21 =





0
I
0





Λ̃ =





Λ̃1

Λ̃2

Λ̃3





T

R1 =





r11
r12
0



 R2 =





r21
r22
0





is solvable, then the closed-loop system (38) is stable and 492

satisfies eT(k)Φe(k) < µ−2
2 µ2

1‖ω(k)‖2. The corresponding 493

K0 = [KP0
,KI0 ] and K = [KP ,KI ] can be solved by r11 = 494

Σ1K
T
P0
BT

0 Λ̃1,r21 = Σ1(KI +Kp)
TΛ̃3, r12 = KT

I0
BT

0 Λ̃2 and 495

r22 = Σ1K
T
P Λ̃3 496

Proof: See Appendix C. 497

Remark 6: Different from the conventional fault estimator 498

(either P- structure or I- structure), this PI- structure fault esti- 499

mator has more design freedom. What’s more, this integrated 500

design for fault estimator and FTC (similar ideas see [49], 501

[50]) with double-PI structure can be easily extended to other 502

FTC systems. 503

Remark 7: The open-loop system (32) is a linear system 504

without time-delay, but the closed-loop system in (37) is a 505

nonlinear system that can involve time-delay terms. Therefore, 506

the result of Theorem 3 can be easily generalized to accom- 507

modate nonlinear systems where the nonlinearity satisfies the 508

Lipschitz conditions and/or contains a bounded time-delay 509

term because in this integrated scheme of controller design 510

and fault estimation, only information on output PDFs is 511

employed. 512

V. SIMULATION STUDY 513

A. Model and Simulation Settings 514

In the following simulation study, the output PDF is defined 515

in the range of [a, b] = [2, 7]. The soft-bound region is set up 516

to be [a0, b0] = [4, 7], and the soft-bound control target is 517

specified as
∫ 7

4
γ(y, u(k))dy ≥ 0.975, i.e., P0 = 0.975. 518
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The output PDF is modeled by (5) with the following B-

spline basis functions (n = 3, y ∈ [2, 7]):

B1(y) =
1

2
(y − 2)2I1 + (−y2 + 7y − 23

2
)I2 +

1

2
(y − 5)2I3,

B2(y) =
1

2
(y − 3)2I2 + (−y2 + 9y − 39

2
)I3 +

1

2
(y − 6)2I4,

B3(y) =
1

2
(y − 4)2I3 + (−y2 + 11y − 59

2
)I4 +

1

2
(y − 7)2I5

where Ii =

{

1, y ∈ [i+ 1, i+ 2]

0, Otherwise
i = 1, 2, · · · 5.519

With this square-root B-spline approximation, there are 2520

independent weights among the 3. It is therefore a second-521

order system with the following dynamics considered522

V (k + 1) = A0V (k) +B0u(k) + E0ω(k) +GF (k),

where

A0 =

[

0.978 0.03
0.09 0.975

]

, B0 =

[

0.02 0.01
0.03 0.02

]

,

E0 =

[

0.02
0.04

]

, G =

[

0.01
0.02

]

.

The disturbance term, ω(k), is chosen as a stochastic variable523

following the uniform distribution defined within the range of524

[−0.1, 0.1].525

The time-varying fault term is constructed as follows526

F (k) =































0, 0 < k ≤ 80

0.04(k − 80), 80 < k ≤ 130

2− 0.04(k − 130), 130 < k ≤ 180

0, 180 < k ≤ 230

1.2, k > 230

. (40)

In the first stage of the process when k ≤ 80, it is assumed527

that the system is fault free.528

In the following simulation study, three target PDFs, γg1(y),529

γg2(y) and γg3(y), are selected to investigate how to tune the530

algorithm to achieve effective and robust performance. These531

target PDFs are also modeled by the same B-spline approx-532

imation using B1, B2 and B3. Their corresponding weights533

vectors, values of P1 =
∫ 7

4
γg(y)dy, and the probability534

discrepancy factor, α0 = P1 − P0, are listed in Table I. The535

three target PDF curves are shown in Fig. 2.536

TABLE I
THREE SELECTED TARGET PDFS AND RELEVANT PARAMETERS

Vg P1 α0

target PDF1 [0.152, 0.204]T 0.9796 0.0046

target PDF2 [0.080, 0.435]T 0.9796 0.0046

target PDF3 [0.010, 0.240]T 0.9965 0.0215

In all simulations, 20 times Monte Carlo computations are537

implemented, and the initial weights vector is always set to538

be V0 = [0.5, 0.3]T.539

y

2 3 4 5 6 7

γ
(y
)

0

0.2

0.4

0.6

0.8

1

1.2

PDF1

PDF2

PDF3

Fig. 2. Three target PDFs. Mean value of PDF 1, 2, 3:
5.3738, 5.2609, 5.4022, central value of [4,7] is 5.5

k

0 50 100 150 200 250 300

F
a
n
d
F̂

-0.5

0

0.5

1

1.5

2

F

F̂

Fig. 3. Fault and fault estimation signals over time

B. Fault Detection and FTC for Target PDF1 540

With target PDF1, the transformed PDF tracking problem 541

has error constraint of α2 = α1 ≤ 6.2384 × 10−4 (Mmin = 542

0.3315, Mmax = 2.2103, θ1 = 0.0125, θ2 = 0.0119). The 543

profiles of the fault signal and its estimation are illustrated in 544

Fig. 3, from which a rapid response and a small estimation 545

error can be observed after the fault is detected. 546

In the fault-free case (k ≤ 80), the parameters of the 547

LMI method are λ2 = 0.01, µ2
1 = 0.04 and µ2

2 = 1.0. 548

The structured fault-free controller in (28) is applied and the 549

control gain matrix K0 is obtained from (27) to be 550

K0 = [KP0
,KI0 ] =

[

−0.4330 −0.6216
−5.0970 −6.5786

]

.

When applying FTC based on the detected fault, the parame- 551

ters of the LMI method are selected as λ2 = 0.015, µ2
1 = 0.04, 552

µ2
2 = 1.0, and αA = 0.001. The double-PI structured FTC in 553

(37) is applied, and the control input gain matrix and the vector 554
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k

0 50 100 150 200 250 300

u
(k
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

u1

u2

Fig. 4. Time profiles of the two FTC input signals (target PDF1)

of fault estimation parameters are calculated to be555

K0 = [KP0
,KI0 ] =

[

−0.4272 −0.6318
−6.9787 −3.8001

]

,

K = [KP ,KI ] = [−3.8936, 5.1032]. (41)

The three fault detection methods are simulated based on556

which the proposed FTC is developed. The results from 20557

Monte Carlo simulations are averaged and shown in Figs. 4558

- 7. Figure 4 displays the time profiles of the two control559

signals. Under the proposed soft-bound control strategy, the560

output variable falls within the specified region of [4, 7] with561

a probability around 98% in the fault-free condition (see Fig.562

5 for the period up to k = 80). When a fault occurs in the563

system after the 80th sample time, the robust fault tolerant564

tracking control is activated once the fault is detected (here565

fault detection Method A is used in Fig. 4).566

Fig. 5 shows the FTC result using the output probability for567

fault detection (Method A); Fig. 6 illustrates the FTC result568

with fault detection made on the PDF tracking error (Method569

B); and Fig. 7 presents the results using the CPA index in570

fault detection (Method C). In these three figures, the dash-dot571

lines are the fault detection threshold lines. The fault detection572

criteria parameters are: αA = 0.001, i.e. P0−αA = 0.974, for573

Method A; αB = 1.1×10−3 for Method B; and αC = 0.9556574

for Method C. These results demonstrate that all three fault575

detection methods can be used to detect faults effectively when576

P1 is close to P0. Satisfactory control performance has been577

achieved using the proposed soft-bound output PDF controller.578

Comparison of Fault Detection Time using Target PDF1579

The fault detection time using the three different methods580

are compared in Table II for target PDF1, where ‘C1’ repre-581

sents αA = 0.001 and ‘C2’ represents αA = 0.005. It can582

be seen that it takes certain amount of time to detect the583

fault for a dynamic system (10 - 14 samples in all of the584

20 Monte Carlo simulations for this example). Among the585

three methods, the fault detection time using Method A is the586

shortest. This is because the fault detection threshold used in587

Method A is directly linked to the soft-bound output control588

k

0 50 100 150 200 250 300

P
(k
)

0.965

0.97

0.975

0.98

0.985

P (k)
P0 − αA

P0

Fig. 5. FTC with fault detection Method A based on output probability (target
PDF1, αA = 0.001)

k

0 50 100 150 200 250 300

J
f
(k
)

×10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

Jf (k)

αB

Fig. 6. FTC with fault detection Method B based on PDF tracking error
(target PDF1, αB = 1.1× 10−3)

k

0 50 100 150 200 250 300

η

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

η

αC

Fig. 7. FTC with fault detection Method C based on tracking CPA (target
PDF1, αC = 0.9556)
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goal. Methods B and C, however, take thresholds following589

the transformed PDF tracking control with constrained errors,590

which are slightly more conservative and therefore take longer591

time for fault detection.592

TABLE II
FAULT DETECTION TIME OF THE THREE DETECTION METHODS (TARGET

PDF1)

Method A Method B Method C
C1 C2 C1 C2 C1 C2

1 94 100 95 103 95 103

2 94 101 95 103 95 103

3 94 100 96 102 96 102

4 95 102 95 103 97 103

5 93 101 94 103 94 103

6 97 100 97 104 97 104

7 96 102 97 103 97 103

8 94 99 95 104 95 104

9 94 100 95 105 95 105

10 95 100 95 102 96 102

11 96 101 96 103 97 103

12 95 102 96 103 96 104

13 94 100 94 104 95 104

14 93 101 96 102 96 102

15 93 102 94 104 95 104

16 96 100 96 104 96 104

17 94 101 97 103 97 103

18 93 100 94 102 95 102

19 95 100 95 102 95 102

20 92 101 96 102 97 102

Mean 94.35 100.65 95.4 103.05 95.8 103.1

C. Fault Detection and FTC for Target PDF2593

Target PDF2 is selected to have the same level of P1594

as target PDF1, and therefore share the same probability595

discrepancy factor, α0 = 0.0046. However, the shape of596

target PDF2 is different from target PDF1, which are defined597

by Vg1 and Vg2, respectively. Therefore, their correspond-598

ing tracking error constraint bounds are different. For target599

PDF2, α2 = α1 ≤ 2.1399 × 10−4, while for target PDF1,600

α2 = α1 ≤ 6.2384× 10−4), when αA = 0.001.601

The PDF tracking error constraint is smaller for target602

PDF2 compared to target PDF1. We need to select smaller603

parameters to meet the tracking error constraint requirements.604

In this case, λ2 = 0.01, µ2
1 = 0.02, µ2

2 = 1.0, and The double-605

PI structured FTC in (37) is again applied. The control input606

gain matrix and the vector of fault estimation parameters are607

calculated to be608

K0 = [KP0
,KI0 ] =

[

−0.4330 −0.6216
−5.0976 −6.5771

]

,

K = [KP ,KI ] = [−3.7832, 4.9012]. (42)

Note with smaller parameters in (µ1, µ
−1
2 ), there is a larger609

numerical risk of getting no solution to the LMI. For this610

reason, in choosing a target PDF for the transformed PDF611

tracking control, the one with a larger value of error constraint612

is favored when appropriate.613

Figs. 9 - 11 present the FTC results under target PDF2614

using three different fault detection methods. The fault de-615

tection criteria parameters are: αA = 0.001 (Method A),616

αB = 3.6286× 10−4 (Method B), αC = 0.9461 (Method C).617

k
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4

5

u1

u2

Fig. 8. Time profiles of the two FTC input signals (target PDF2)

k
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P
(k
)

0.965

0.97

0.975

0.98

0.985

P (k)

P0 − αA

P0

Fig. 9. FTC with fault detection Method A based on output probability (target
PDF2, αA = 0.001)

The two control signals are shown in Fig. 8 for target PDF2. 618

Comparing the results for using target PDF1 and target PDF2, 619

it can be seen that their FTC performances are very similar, 620

however, the control cost with target PDF2 is much higher 621

than that using target PDF1. This suggests that the selection 622

of the target PDF will affect the controller design. Even with 623

the same level of P1, two target PDFs in different shapes will 624

lead to different results. 625

D. Fault Detection and FTC for Target PDF3 626

Target PDF3 is selected to have a larger value of P1 627

compared with target PDF1 & 2. The difference between P1 628

and P0 is thus increased (see α0 = 0.0215 in Table I). In this 629

case, the error constraints of the transformed PDF tracking 630

problem are α2 = α1 ≤ 0.0128 with αA = 0.001. Setting 631

λ2 = 0.02, µ2
1 = 0.36, µ2

2 = 1.0, the control input gain matrix 632

and the vector of fault estimation parameters are 633

K0 = [KP0
,KI0 ] =

[

−0.4274 −0.6319
−6.8495 −3.7212

]

,

K = [KP ,KI ] = [−3.5738, 5.2102]. (43)
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Fig. 10. FTC with fault detection Method B based on PDF tracking error
(target PDF2, αB = 3.6286× 10−4)
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Fig. 11. FTC with fault detection Method C based on tracking CPA (target
PDF2, αC = 0.9461)

The fault detection and FTC simulation results are illus-634

trated in Figs. 12 - 13. Here only the fault detection Method635

A is used for comparison.636

Comparing the results from target PDF3 to those with637

target PDF1 & 2, it can be argued that the fault detection is638

more difficult when using target PDF3 because the difference639

between P1 and P0 is larger. From the 20 Monte-Carlo640

simulations, the averaged fault detection time (point) using641

Method A is 129.65 for target PDF3, 94.15 for target PDF2,642

and 94.35 for target PDF1. From the robust control point of643

view, a better robustness is achieved for target PDF3 although644

the cost is larger control activities.645

E. Comparison of Control W/O Fault Tolerant Design646

We then applied the structured fault-free controller in (28)647

to the same SDC system for comparison with the proposed648

controller in (37). Target PDF1 & 3 are selected for compar-649

ison study with and without FTC design.650
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Fig. 12. Time profiles of the two FTC input signals (target PDF3, αA =
0.001)
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Fig. 13. FTC with fault detection Method A based on output probability
(target PDF3, αA = 0.001)

Figs. 14 and 15 illustrate the soft-bound output control re- 651

sults for target PDF1 and target PDF3, respectively. Compared 652

with the corresponding results under the proposed FTC, see 653

Fig. 5 for target PDF1 and Fig. 13 for target PDF3, it can 654

be seen that the control performance without FTC is rather 655

poor when the system is in presence of faults. This surely 656

indicates the importance, and also the effectiveness, of using 657

the proposed FTC for a faulty SDC system. The control signals 658

from the fault-free design are shown in Figs. 16 and Fig. 17 for 659

target PDF 1 & 3, respectively, from which it can be seen that 660

the control cost for target PDF3 is higher than that of target 661

PDF1. This is a consistent conclusion obtained for using FTC. 662

From the above extensive simulation studies, it can be 663

concluded that the proposed integrated fault detection and 664

FTC design can achieve satisfactory control performance for 665

the soft-bound output control problem. The selection of the 666

probability discrepancy factor, α0, is crucial to controller 667

design. The larger is α0, the better FTC robustness can be 668

obtained but with a price of larger control activities. The 669
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Fig. 14. Output probability without FTC (target PDF1)
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Fig. 15. Output probability without FTC (target PDF3)
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Fig. 16. Time profiles of the two FTC input signals (target PDF1)
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Fig. 17. Time profiles of the two FTC input signals (target PDF 3)

selection of target PDF will also affect the controller design, 670

for example, under the same level of α0, the target PDF 671

corresponding to larger PDF tracking error constraint will be 672

more suitable for numerical searching of the control solution 673

through LMI. 674

VI. CONCLUSIONS 675

In this paper, a fault-tolerant soft-bound interval control 676

problem has been discussed for general non-Gaussian SDC 677

systems. The aim is to control the output variable within the 678

required interval at a certain (large) probability level. This idea 679

is inspired by real process control requirements, e.g. product 680

quality, operational cost, etc., to be achieved under stochastic 681

environments, where it is unrealistic to set up hard-bound 682

constraints. To achieve the overall objective of developing 683

robust FTC for soft-bound interval control systems, our work 684

are conducted including the following four major parts: (I) 685

propose and formulate the soft-bound interval control problem 686

and recast it into output PDF tracking problem with an 687

added constraint on tracking errors; (II) develop various fault 688

detection methods following the initial soft-bound interval 689

control problem and the transformed PDF tracking problem, 690

and (III) develop the integrated fault estimation and FTC 691

with double PI-structured design. The proposed algorithm has 692

been simulated under various scenarios and satisfactory control 693

performances have been achieved in presence of time-varying 694

faults. 695

The overall robustness performance of the proposed control 696

strategy can be achieved from various ways within the soft- 697

bound design framework, among them the following are per- 698

haps most relevant. Firstly, compared with hard-bound control, 699

the robustness of soft-bound control can be obtained by setting 700

up the probability level, P0. In general, a smaller value of 701

P0 would lead to a less conservative controller. Similarly, the 702

robustness effects can be obtained by tuning the soft-bound 703

control interval, [a0, b0]. The wider is this region, the less 704

conservative is the controller. Secondly, the robustness can 705

be obtained from FTC design in the sense that the system 706

is able to handle time-varying faults. We’ve also included an 707
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uncertainty term in the model as a common practice in robust708

controller design. Thirdly, the PI-structured integration design709

for both fault estimation and FTC provides robustness to some710

extent as widely accepted by control practice.711

APPENDIX712

A. Proof of Lemma 2713

For simplicity, assume

Φ3 ≥ V T(k2)Φ0V (k2) ≥ V T(k1)Φ0V (k1),

then for the two functions,

g1 =
√

Φ3 − V T(k1)Φ0V (k1)−
√

Φ3 − V T(k2)Φ0V (k2),

g2 =
√

V T(k2)Φ0V (k2)−
√

V T(k1)Φ0V (k1),

denoting714

V T(k1)Φ0V (k1) = Φ3 sin
2 ϑ,

715

V T(k2)Φ0V (k2) = Φ3 sin
2 β,

respectively, where π/2 ≥ β ≥ ϑ ≥ 0, we have

g1 =
√

Φ3 [cosϑ− cosβ]

= 2
√

Φ3

[

sin

(

ϑ+ β

2

)

sin

(

β − ϑ

2

)]

,

g2 =
√

Φ3 [sinβ − sinϑ]

= 2
√

Φ3

[

sin

(

β − ϑ

2

)

cos

(

ϑ+ β

2

)]

.

Therefore, if ϑ 6= β, then g1 ≤ M1g2 when M1 ≥ tan
(

ϑ+β
2

)

;716

if ϑ = β then g1 = M1g2 for any real values of M1. Consider717

the case that M1 ≥ tan
(

ϑ+β
2

)

together with the use of718

Lemma 1, we can find Mmax719

Mmax =
M1

λmax(Φ0)√
λmin(Φ0)

+ ‖Φ2‖

‖Φ3‖
.

Similarly, for given V (k1) and V (k2) such that

Φ3 ≥ V T(k2)Φ0V (k2) ≥ V T(k1)Φ0V (k1),

if M2 ≤ cot
(

ϑ+β
2

)

, then720

√

Φ3 − V T(k1)Φ0V (k1) +
√

Φ3 − V T(k2)Φ0V (k2)

≥ M2

(

√

V T(k2)Φ0V (k2) +
√

V T(k1)Φ0V (k1)

)

,

and721

Mmin =
‖M2

√

λmin(Φ0)− ‖Φ2‖‖
‖Φ3‖

.

However, for arbitrary V (k1) and V (k2), the value of M1722

could be infinitely large and M2 infinitely small. This indicates723

that in order to find a feasible Mmax, certain constraints724

need to be satisfied. For example, if V T(k1)Φ0V (k1) +725

V T(k2)Φ0V (k2) ≤ Φ3 or ϑ + β ≤ π/2, then the maximum726

value of M1 and the minimum value of M2 are both 1.727

B. Proof of Theorem 1 728

Assume
∫ b0

a0

γ(y, u(k))dy ≤ P1, then we have 729

∫ b0

a0

(γg(y)− γ(y, u(k))) dy ≤ α0

⇔
∫ b0

a0

[

√

γg(y)−
√

γ(y, u(k))

]

×
[

√

γg(y) +
√

γ(y, u(k))

]

dy ≤ α0

⇔ eTg Φ01(V (k) + Vg) + eTg Φ02H(V (k) + Vg)

+H(eg)Φ
T
02(V (k) + Vg) +H(eg)H(V (k) + Vg)Φ03

≤ α0

(44)

where eg = V (k) − Vg , H(eg) = H(V (k)) − H(Vg), and 730

H(V (k) + Vg) = H(Vg) +H(V (k)). 731

Using Lemma 2, if the following inequality 732

−‖eg‖2‖Φmin‖+ 2‖Vg‖‖eg‖‖Φmin‖ ≤ α0 (45)

holds, then (44) will also hold. For the weights tracking error 733

e(k) = V (k)− Vg , from (45), we have 734

‖e(k)‖ ≤ ‖Vg‖‖Φmin‖ −
√

‖Vg‖2‖Φmin‖2 − α0‖Φmin‖
‖Φmin‖

= θ1.

Similarly, for
∫ b0

a0

γ(y, u(k))dy ≥ P1, we have 735

‖e(k)‖ ≤
√

‖Vg‖2‖Φmin‖2 + α0‖Φmin‖ − ‖Vg‖‖Φmin‖
‖Φmin‖

= θ2.

Furthermore, for the output PDF tracking errors in the defini- 736

tion region and the soft-bound region, respectively, we have 737

the following bounding 738

∫ b

a

(

√

γ(y, u(k))−
√

γg(y)

)2

dy

≤
(

‖Φ1‖+ 2‖Mmax‖‖Φ2‖+ ‖Mmax‖2‖Φ3‖
)

‖e‖2

= ‖Φ‖‖e‖2

Therefore, 739

α1 = min{‖Φ‖θ21, ‖Φ‖θ22}. (46)

C. Proof of Theorem 3 740

Select a Lyapunov-Krasovskii function as 741

Π(x(k), k) = 2

k−2
∑

i=1

[

||λMx(i)||2 − ||λh(x(i))||2
]

+ xT(k)Λ̃x(k) + xT(k − 1)Sx(k − 1)

+ ||λMx(k − 1)||2 − ||λh(x(k − 1))||2

(47)

742

∆Π(x(k), k) = Π(x(k + 1), k + 1)−Π(x(k), k)

= xT(k + 1)Λ̃x(k + 1)− xT(k)Λ̃x(k)

+ 2

2
∑

i=1

[

||λMx(i)||2 − ||λh(x(i))||2
]

+ xT(k)Sx(k)− xT(k − 1)Sx(k − 1)

= ξT(k)Ψ1ξ(k) + µ2
1||w(k)||2

(48)
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where

ξ(k) = [xT(k), xT(k− 1), hT(x(k)), hT(x(k− 1)), wT(k)]T,

and743

Ψ1 =













Q5 AT
1 Λ̃A2 AT

1 Λ̃B1 AT
1 Λ̃B2 AT

1 Λ̃E

∗ Q6 AT
2 Λ̃B1 AT

2 Λ̃B2 AT
2 Λ̃E

∗ ∗ Q7 BT
1 Λ̃B2 BT

1 Λ̃E

∗ ∗ ∗ Q8 BT
2 Λ̃B2

∗ ∗ ∗ ∗ Q9













,

in which Q5 = AT
1 Λ̃A1− Λ̃+S+λ2MTM,Q6 = AT

2 Λ̃A2−744

S + λ2MTM,Q7 = BT
1 Λ̃B1 − λ2I , Q8 = BT

2 Λ̃B2 −745

λ2I,Q9 = ETΛ̃E − µ2
1I . Using the Schur complement,746

we have Ψ1 < diag[−µ2
2T, 0, 0, 0, 0] ⇔ Ψ < 0. With the747

formulation in (48), there is748

∆Π(x(k), k) ≤ −µ2
2e

T(k)Φe(k) + µ2
1||w(k)||2.

Thus, ∆Π(x(k), k) < 0, if eT(k)Φe(k) > µ−2
2 µ2

1||w(k)||2749

holds. Therefore for any e(k), it can be verified that the PDF750

tracking error is bounded, i.e.751

eT(k)Φe(k) ≤ max{eT(0)Φe(0), µ−2
2 µ2

1||w(k)||2}

which also implies that the controlled system is stable.752

REFERENCES753

[1] K. J. Astrom, Introduction to Stochastic Control Theory. New York:754

New York Academic, 1970.755

[2] B. S. Chen and W. H. Zhang, “Stochastic control with state-dependent756

noise,” IEEE Trans. on Automatic Control, vol. 49, pp. 45–57, 2004.757

[3] M. Zyskowski, M. Sain, and R. Diersing, “Weighted least-squares,758

cost density-shaping, stochastic optimal control: A step towards total759

probabilistic control design,” IEEE Conf. on Decision and Control, 2010.760

[4] E. B. L. Andrew and X. Y. Zhou, “Stochastic optimal lqr control761

with integral quadratic constraints and indefinite control weights,” IEEE762

Trans. on Automatic Control, vol. 44, pp. 1359–1369, 1999.763

[5] L. Odhner and H. H. Asada, “Kalman filter for inhomogeneous popula-764

tion Markov chains with application to stochastic recruitment control765

of muscle actuators,” 2010 American Control Conference Marriott766

Waterfront Baltimore, MD, USA, 2010.767

[6] H. B. Ji and H. S. Xi, “Adaptive output-feedback policy for nonlinear768

stochastic systems,” IEEE Trans. on Automatic Control, vol. 51, pp.769

355–360, 2006.770

[7] D. W. Stroock, An Introduction to Markov Processes. World Publishing771

Company, 2009.772

[8] H. N. Wu and K. Y. Cai, “Model-independent robust stabilization for773

uncertain Markovian jump nonlinear systems via fuzzy control,” IEEE774

Trans Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, pp.775

509–519, 2005.776

[9] H. Y. Wu, L. Cao, and J. Wang, “Gray-box modelling and control777

of polymer molecular weight distribution using orthogonal polynomial778

neural networks,” Journal of Process Control, vol. 22, pp. 1624–1636,779

2012.780

[10] H. Yue, H. Wang, and J. Zhang, “Shaping of molecular weight distribu-781

tion by iterative learning probability density function control strategies,”782

Proc. IMechE Pt I: J. Syst. Contr. Eng., vol. 222, pp. 639–653, 2008.783

[11] H. Wang, Bounded Dynamic Stochastic Systems: Modeling and Control.784

London: Springer-Verlag, 2000.785

[12] H. Gommeren, D. Heitzmann, J. Moolenaar, and B. Scarlett, “Modelling786

and control of a jet mill plant,” Powder Tech., vol. 108, pp. 147–154,787

2000.788

[13] Z. K. Nagy and R. D. Braatz, “Advances and new directions in789

crystallization control,” Annu. Rev. Chem. Biomol. Eng., vol. 3, pp. 55–790

75, 2012.791

[14] T. Li, G. Li, and Q. Zhao, “Adaptive fault-tolerant stochastic shape792

control with application to particle distribution control,” IEEE Trans.793

Systems, Man, and Cybernetics: Systems, vol. 45, no. 12, pp. 1592–794

1604, 2015.795

[15] X. Sun, H. Yue, and H. Wang, “Modelling and control of the flame 796

temperature distribution using probability density function shaping,” 797

Trans. Inst. Measurement and Control, vol. 28, pp. 401–428, 2006. 798

[16] J. Zhou, H. Yue, J. Zhang, and H. Wang, “Iterative learning double 799

closed-loop structure for modeling and controller design of output 800

stochastic distribution control systems,” IEEE Trans. Control System 801

Technology, vol. 22, pp. 2261–2276, 2014. 802

[17] A. E. Abharian and A. H. Fadaei, “Power probability density function 803

control and performance assessment of a nuclear research reactor,” 804

Annals of Nuclear Energy, vol. 64, pp. 11–20, 2014. 805

[18] M. G. Forbes and J. F. Forbes, “Control design for first-order processes: 806

Shaping the probability density of the process state,” Journal of Process 807

Control, vol. 14, pp. 399–410, 2004. 808

[19] M. Karny and T. Kroupa, “Axiomatisation of fully probabilistic design,” 809

Information Sciences, vol. 186, pp. 105–113, 2012. 810

[20] J. Zhou and H. Wang, “Optimal tracking control of output PDF: 811

mean square root b-spline model,” Control Theory and Application (in 812

Chinese), vol. 22, pp. 369–376, 2005. 813

[21] H. Yue, J. Zhou, and H. Wang, “Minimum entropy control of b-spline 814

PDF systems with mean constraint,” Automatica, vol. 42, pp. 989–994, 815

2006. 816

[22] H. Y. Chen and H. Wang, “The system with parameter random variation 817

PDF control based on LMI,” Acta Automatica Sinica, vol. 33, pp. 1216– 818

1220, 2007. 819

[23] H. Wang and P. Afshar, “Ilc-based fixed-structure controller design for 820

output PDF shaping in stochasitic systems using LMI techniques,” IEEE 821

Trans. on Automatic Control, vol. 54, pp. 760–773, 2009. 822

[24] J. F. Zhang, H. Yue, and J. L. Zhou, “Predictive PDF control in shaping 823

of molecular weight distribution based-on a new modelling algorithm,” 824

Journal of Process Control, vol. 30, pp. 80–89, 2015. 825

[25] A. Ferramosca, D. Limon, A. Gonzlez, D. Odloak, and E. Camacho, 826

“MPC for tracking zone regions,” Journal of Process Control, vol. 20, 827

pp. 506 – 516, 2010. 828

[26] F. V. Lima and C. Georgakis, “Design of output constraints for model- 829

based non-square controllers using interval operability,” Journal of 830

Process Control, vol. 18, pp. 610 – 620, 2008. 831
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