
Arnin, J. and Kahani, D. and Lakany, H. and Conway, B. A. (2018) 

Evaluation of different signal processing methods in time and frequency 

domain for brain-computer interface applications. In: 40th International 

Conference of the IEEE Engineering in Medicine and Biology Society, 

2018-07-17 - 2018-07-21. , 

This version is available at https://strathprints.strath.ac.uk/65426/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195293524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


  

 

Abstract— Brain-computer interface (BCI) has been widely 

introduced in many medical applications. One of the main 

challenges in BCI is to run the signal processing algorithms in 

real-time which is challenging and usually comes with high 

processing unit costs. BCIs based on motor imagery task are 

introduced for severe neurological diseases especially locked-in 

patients. A common concept is to detect one’s movement 

intention and use it to control external devices such as 

wheelchair or rehabilitation devices. In real-time BCI, running 

the signal processing algorithms might not always be possible 

due to the complexity of the algorithms. Moreover, the speed of 

the affordable computational units is not usually enough for 

those applications. This study evaluated a range of feature 

extraction methods which are commonly used for such real-

time BCI applications. Electroencephalogram (EEG) and 

Electrooculogram (EOG) data available through IEEE Brain 

Initiative repository was used to investigate the performance of 

different feature extraction methods including template 

matching, statistical moments, selective bandpower, and fast 

Fourier transform (FFT) power spectrum. The support vector 

machine (SVM) was used for classification. The result indicates 

that there is not a significant difference when utilizing different 

feature extraction methods in terms of movement prediction 

although there is a vast difference in the computational time 

needed to extract these features. The results suggest that 

computational time could be considered as the primary 

parameter when choosing the feature extraction methods as 

there is no significant difference between the results when 

different features extraction methods are used.  

I. INTRODUCTION 

Brain-computer interface (BCI) is a technology with great 
potential as an assistive technology and to impact on a range 
of medical applications, including, diagnosis, treatment, and 
rehabilitation [1]. In patients with severe motor disabilities 
such as locked-in patients, BCI can play a role that enables 
those people to establish communication and environmental 
interaction without the necessity of functioning efferent 
pathways [2]. In rehabilitation, applications of BCI are also 
being used and developed to restore motor function by 
inducing activity-dependent brain plasticity and motor 
learning in addition to providing control over assistive 
devices that augment or restore movement and motor 
function lost after stroke or spinal cord injury [3]. 

In general, the standard BCI pipeline comprises of signal 
acquisition, signal preprocessing, digital signal processing 
and its application. Most of the BCI applications employ 
EEG and EOG which are non-invasive recording techniques. 
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Many pieces of research reveal the advantages of EEG 
modalities such as a communication device based on steady-
state visual evoked potential (SSVEP) [4] or mind-controlled 
wheelchair navigation using motor imagery (MI) [5]. Those 
applications can be operated offline or online (real-time) 
depending on the application. In real-time applications, there 
are significant concerns when implementing a BCI and 
include accuracy of prediction, latency, consistency, and 
flexibility. These issues also relate to design limitations 
associated with hardware specification, the complexity of an 
algorithm, and multi-domain signal processing requirements 
(time and frequency). The most critical consideration in BCI 
processing is computation time, and general computing 
hardware is not fast enough for real-time applications [6]. 
With current technology, there is a trend towards using 
hardware acceleration units in scientific computing 
applications requiring real-time solutions [7-8] and this 
approach can increase the feasibility of using sophisticated 
algorithms or multi-domain processing in high-speed BCIs.   

Regarding classification, training the classifier is 
computationally expensive, but it does not need to be run in 
real-time since an offline process can complete it. 
Consequently, the most crucial part is the real-time feature 
extraction. In this study, we evaluated the difference between 
a range of time-domain and frequency-domain feature 
extraction approaches for further execution using hardware 
acceleration. The study used an open-access dataset for 
comparing the performance of proposed feature extraction 
methods in terms of accuracy and computation time. 

II. ARCHIVE EEG DATASET 

A. Selection Criteria 

An archive EEG dataset was employed to investigate the 
performance of different feature extraction approaches. As 
many open-source EEG datasets are available via open access 
for BCI research, we applied the following selection criteria 
in choosing datasets for this study. 

Data Quality: The datasets must have sufficient 

sampling rate (generally more than 250 Hz). It should have 

good signal-to-noise ratio and follow a clear protocol. 

Usability: The datasets should have adequate numbers 

of recruited participants, and the selected data should have 

public engagement with high impact and citation. 

Familiarity: The datasets should relate to our 

laboratory’s field of knowledge and experimental expertise, 

primarily human neurophysiology and motor control. 

Compatibility: The data format of the selected dataset 

should be general and usable on multiple platforms. In 

addition, the EEG channel montage used should be 

appropriate for motor imagery recordings. 

Evaluation of Different Signal Processing Methods in Time and 

Frequency Domain for Brain-Computer Interface Applications 

J. Arnin, D. Kahani, H. Lakany and B. A. Conway  

978-1-5386-3646-6/18/$31.00 ©2018 IEEE 235



  

 

 

 

Cue   

beep

Fixation Cross PauseImagery Period

0 1 2 3 4 5 6 7 8 9 time

Left Motor

Imagination

No Action Right Motor

Imagination

Ke[`Y fZWeW Ud[fWd[S% iW eW^WUfWV fZW VSfSeWf IV from 
Brain/Neural Computer Interaction: Horizon 2020 [9]. This 
dataset related to motor imagery tasks commonly used in our 
laboratory. 

According to the dataset [9], the subjects were asked to 
randomly perform 2-class motor imagery (left and right) with 
a directional visual cue presented on a screen. The EEG and 
EOG data were collected from 9 healthy participants. There 
were five sessions each with 120 repetitions. The sampling 
frequency was 250 Hz with a dynamic range of ±250 
microvolts. Analog bandpass filtering (0.5-100 Hz) and a 
notch filter at 50 Hz were used. The recording electrodes 
were placed at C3, C4, and Cz according to the international 
10-20 system. The original authors processed the data and 
demonstrated results based on a general signal processing 
pipeline including signal pre-processing, feature extraction 
and selection, binary classification and error calculation. Fig. 
1 shows the overall protocol of motor imagery task used to 
record this dataset. 

Figure 1.  (a) Diagram of cue-based motor imagery task from the selected 
dataset [9]. Each single-trial lasted 7 seconds which the cue appeared at 3 

seconds after starting. The figure is adapted from the original publication. 

B. Data Visualization 

First, we explored the overall data in both time and 
frequency domains using the continuous wavelet transform 
(CWT) based on Morlet wavelet [10] as shown in Fig. 2. 
visualization was performed across all data recorded from all 
subjects. The results demonstrate increased 8-15 Hz activity 
occurring around the time of the movement cue. 

Figure 2.   Data visualization in time-frequency analysis of C3 and C4 
position taken from an anonymous subject. 

C. Proposed Signal Processing Chain 

Fig. 3 illustrates the overall block diagram of our signal 
processing pipeline. After exploring the dataset, artifacts 
were reduced using independent component analysis (ICA) 
which will be described in session III. The ‘artifact-corrected’ 
EEG was processed using different feature extraction 
methods. Thereafter, the classification error was calculated to 
demonstrate the performance of those features. 

Figure 3.  Proposed signal processing chain. 

III. ICA-BASED ARTIFACT ELIMINATION 

R. Leeb and et al. [9] used regression analysis for artifact 
removal in the dataset. In regression analysis, the assumption 
is that the recorded EEG has a linear relationship between the 
real EEG signal and the spatial EOG components. In this 
work, we used independent component analysis (ICA) 
technique to reduce contamination by unwanted signals as 
this yields results better than regression method [11]. Since 
the dataset provides three channels of both EEG and EOG, 
those signal were used in ICA decomposition. In this study, 
the EOG recorded at the frontal site was used in ICA to 
remove the artifacts from the recorded EEG channels. The 
result of using ICA technique is shown in Fig. 4 and 
produced an effective removal of the EOG artifact. It should 
be noted that in the original published data the results of 
artifact reduction have been observed by an expert and trials 
having artifacts were marked to report the results.  

Figure 4.  Artifact-free EEG using ICA decomposition. 

IV. FEATURE EXTRACTION 

To examine the classification success rate using different 
feature extraction methods, we used four common feature 
extraction methods all of which are widely used in BCI 
applications including template matching [12-13], statistical 
moments [14-15], selective bandpower [16-17] and fast 
Fourier transform (FFT) power spectrum [18-19]. It should 
be noted that the original work used the selective bandpower 
as a feature vector. 
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A. Template Matching 

JW_b^SfW _SfUZ[`Y [e S f[_W-domain computation method 
which measures the similarity between incoming data and an 
existing template using the dot product of two data. This can 
be explained using cross-correlation function by  

 ௫௬ሾ߬ሿݎ ൌ
ଵ

ே
σ ሾ݊ሿݔ ή ሾ݊ݕ െ ߬ሿכேିଵ
௡ୀ଴  

Where x[n] is an incoming signal and y[n] is a template. 
In this study, we calculated the template by epoching the 
EEG data around the cue point and averaging them for each 
motor imagery task. The averaged data was used as a 
template to measure the correlation. The similarity 
measurement was then used as a vector feature to train an 
SVM classifier. 

B. Statistical Moments 

Statistical moments are specific quantitative 
measurements in time domain analysis. The common form of 
the n-th order statistical moment can be described as 


ఓ೙
ఙ೙
ൌ ாሾሺ௫ିఓሻ೙ሿ

ఙ೙
 

In this study, the feature vector composed is a vector of 
two entries extracted from only the first order and second 
order moments. Adding higher order moments to the feature 
vector can improve the classification result, but it comes at 
the expense of having more training samples. Hence, it was 
not possible to use the dataset used in this study for the 
higher order. 

C. Selective Bandpower 

The time-domain average bandpower can be estimated by 
filtering the incoming EEG, squaring and averaging the 
samples over the past second as proposed in [9]. The feature 
vector was composed of this outcome. The general form of 
bandpower calculation can be defined as  

 ܤ ௦ܲ௘௟௘௖௧௜௩௘ ൌ
ଵ

ே
σ ሺݔሾ݊ሿ כ ݄ሾ݊ሿሻଶேିଵ
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The h[n] is an impulse response of the bandpass filter for 
convolution with x[n] which in this study was fixed at 7-22 
Hz according to the pervious study [9]. 

D. FFT Power Spectrum 

The FFT frequency analysis is a well-established 
technique commonly used for EEG frequency EEG analysis. 
The general Fourier transformation equation is 

 ܺሾ݁௝ఠሿ ൌ ଵ

ே
σ ሾ݊ሿ݁ି௝ఠ௡ேିଵݔ
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The feature vector element was taken from the relative 
power spectrum of the signal which can be described as 
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The bandwidth frequency f1 and f2 were also fixed to 7 
and 22 Hz, respectively to compare the outcome with the 
time-domain selective bandpower method. 

V. CLASSIFICATION 

Linear discriminant analysis (LDA) was used by R. Leeb 
and et al. [9] for dimensionality reduction before binomial 
classification that yielded the average classification error of 

25% for the offline analysis. As an alternate approach and to 
utilize of good generalization properties, and insensitivity to 
overtraining [20], this study used SVM to categorize the data. 
In relation to SVM, various kernel functions including a 
linear kernel, quadratic kernel, polynomial kernel and 
Gaussian kernel were performed to select the best result. The 
proposed features were initiated as a feature vector. In this 
study, we used the data only from C3 and C4 to create a two-
dimensional feature vector. This means that the single vector 
is the elements of the obtained outcome of the training set 
which were concatenated from all trials. The feature vector 
was processed in SVM by using data windowing over 0-4 
second following cue occurrence. The window length was set 
to 1,000 milliseconds, and the window was moved sample by 
sample in order to calculate classification errors. The 
classification was performed with 10x10 cross-validation 
technique, and the average maximum accuracy was described 
as well as its time point for comparison with the original 
work. In addition, the computation time of each feature 
operated on through MATLAB programming using a single-
core CPU (without hardware acceleration unit) was reported. 

VI. RESULT AND DISCUSSION 

After data interpretation, four different types of feature 
extraction methods were used to extract features from the 
provided dataset. The SVM kernel was selected by trial and 
error. Also, the 10x10 cross-validation was performed to 
verify the consistency of SVM classification, and then the 
average maximum accuracy was obtained. The results are 
reported regarding classification error and computation time 
in Table I and Fig. 5. There was no significant difference 
observed using different features extraction methods (p-
value>0.05). The analysis of variance revealed there was no 
best feature extraction method based on the classification 
prediction rate. It should be noted that feature extraction for 
every individual subject has to be fine-tuned for better results 
but for consistency, we considered the parameters the same 
for all the subjects. According to the original work [9], the 
average classification error is 25.0±11.7%. For the 
computation time, this study used MATLAB running on 64-
bit Window 10 operating system, with 16 GB of DDR3 
memory and Intel Core i7-6700 processors at 2.6 GHz. Note 
that the algorithms were executed on single-core processing 
unit without acceleration and optimization. 

TABLE I.  CLASSIFICATION ERROR OF FOUR DIFFERENT FEATURES 

Subject 
Classification Errora (%) 

Template S-Moment Sub-BP FFT Power 

1 27.2 36.8 31.2 32.4 

2 32.4 34.8 39.9 35.4 

3 35.2 29.3 39.2 43.3 

4 39.5 36.3 6.7 9.8 

5 20.6 28.1 37.1 21.7 

6 37.4 30.0 24.9 26.2 

7 23.5 26.2 25.5 21.9 

8 38.0 36.0 22.0 22.4 

9 39.9 40.6 26.2 31.0 

Mean 32.6±7.2 33.1±4.8 28.1±10.4 27.1±9.7 

a. There is no significant difference between groups (p-value>0.05). 
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fZW dWeg^fe iWdW dWbadfWV [` JST^W II. The average event 

duration is about 2.52±0.51 seconds after the cue. This 

outcome is close to the results reported by original 

publication [9] estimate of 2.88±0.51 seconds. 

TABLE II.  DECISION DURATION OF FOUR DIFFERENT FEATURES 

Subject 
Decision Durationa (s) 

Template S-Moment Sub-BP FFT Power 

1 2.38 1.48 2.58 2.40 

2 1.73 1.74 2.63 2.33 

3 2.50 2.97 2.46 2.62 

4 1.92 3.26 3.12 2.73 

5 2.62 2.82 3.82 2.37 

6 2.13 1.72 2.70 2.87 

7 2.59 2.83 2.47 2.36 

8 2.08 1.50 2.98 2.70 

9 2.52 3.10 2.75 3.13 

Mean 2.28±0.32 2.38±0.75 2.83±0.43 2.61±0.28 

a. There is no significant difference between groups (p-value>0.05). 

 

Figure 5.  Results of compared computation time (in microsecond) of each 

feature operating on MATLAB programming using single-core processing. 

VII. CONCLUSION 

In conclusion, we demonstrated the difference between 

time and frequency domain approaches for a two-directional 

imaginary motor movement task. Our significant findings 

reveal that using the different feature extraction methods did 

not result in a significant difference in the classification 

accuracy but only in the computation time. For example, 

FFT methods consume much more time than others without 

offering accuracy advantage. The results highlight that 

computation time should be considered as a primary 

outcome when selecting algorithms for use in real-time 

applications and also highlight the utility and advantages of 

using open-access data archives for comparative BCI 

research.  

ACKNOWLEDGMENT 

The authors would like to acknowledge funding from 
Scottish Government Health Directorates and the Royal Thai 
Government scholarship. 

REFERENCES 

[1] A. Vallabhaneni, T. Wang, and B. He, "Brain—computer interface," 

in Neural engineering: Springer, 2005, pp. 85-121. 

[2] R. Rupp, "Challenges in clinical applications of brain computer 

interfaces in individuals with spinal cord injury," Frontiers in 
neuroengineering, vol. 7, p. 38, 2014. 

[3] E. Buch et al., "Think to move: a neuromagnetic brain-computer 
interface (BCI) system for chronic stroke," Stroke, vol. 39, no. 3, pp. 

910-917, 2008. 

[4] P. Martinez, H. Bakardjian, and A. Cichocki, "Fully online 
multicommand brain-computer interface with visual neurofeedback 

using SSVEP paradigm," Computational intelligence and 

neuroscience, vol. 2007, 2007. 

[5] D. Huang et al., "Electroencephalography (EEG)-based brain–

computer interface (BCI): A 2-D virtual wheelchair control based on 
event-related desynchronization/synchronization and state control," 

IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 20, no. 3, pp. 379-388, 2012. 

[6] S. Aluru and N. Jammula, "A review of hardware acceleration for 

computational genomics," IEEE Design & Test, vol. 31, no. 1, pp. 19-

30, 2014. 

[7] N. Wang et al., "Accelerated Rendering and Fast Reconstruction of 
EEG Data in Real-Time BCI," in Proceedings of the 2015 Chinese 

Intelligent Automation Conference, 2015, pp. 61-75: Springer. 

[8] P. Dohnálek et al., "Pattern recognition in EEG cognitive signals 
accelerated by GPU," in International Joint Conference CISIS’12-

ICEUTE´ 12-SOCO´ 12 Special Sessions, 2013, pp. 477-485: 

Springer. 

[9] R. Leeb et al., "Brain–computer communication: motivation, aim, and 

impact of exploring a virtual apartment," IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, vol. 15, no. 4, pp. 

473-482, 2007. 

[10] H. Adeli, Z. Zhou, and N. Dadmehr, "Analysis of EEG records in an 
epileptic patient using wavelet transform," Journal of neuroscience 

methods, vol. 123, no. 1, pp. 69-87, 2003. 

[11] T.-P. Jung et al., "Removing electroencephalographic artifacts by 

blind source separation," Psychophysiology, vol. 37, no. 2, pp. 163-

178, 2000. 

[12] A. Aarabi et al., "Detection of EEG transients in neonates and older 

children using a system based on dynamic time-warping template 
matching and spatial dipole clustering," Neuroimage, vol. 48, no. 1, 

pp. 50-62, 2009. 

[13] H. Qu and J. Gotman, "A patient-specific algorithm for the detection 
of seizure onset in long-term EEG monitoring: possible use as a 

warning device," IEEE transactions on biomedical engineering, vol. 
44, no. 2, pp. 115-122, 1997. 

[14] S. S. Soliman and S.-Z. Hsue, "Signal classification using statistical 
moments," IEEE Transactions on Communications, vol. 40, no. 5, pp. 

908-916, 1992. 

[15] S. S. Alam and M. I. H. Bhuiyan, "Detection of seizure and epilepsy 
using higher order statistics in the EMD domain," IEEE journal of 

biomedical and health informatics, vol. 17, no. 2, pp. 312-318, 2013. 

[16] G. Pfurtscheller et al., "Mu rhythm (de) synchronization and EEG 
single-trial classification of different motor imagery tasks," 

Neuroimage, vol. 31, no. 1, pp. 153-159, 2006. 

[17] R. Palaniappan, "Brain computer interface design using band powers 

extracted during mental tasks," in Neural Engineering, 2005. 
Conference Proceedings. 2nd International IEEE EMBS Conference 

on, 2005, pp. 321-324: IEEE. 

[18] K.-E. Ko, H.-C. Yang, and K.-B. Sim, "Emotion recognition using 
EEG signals with relative power values and Bayesian network," 

International Journal of Control, Automation and Systems, vol. 7, no. 
5, p. 865, 2009. 

[19] C. Lehmann et al., "Application and comparison of classification 

algorithms for recognition of Alzheimer's disease in electrical brain 
activity (EEG)," Journal of neuroscience methods, vol. 161, no. 2, pp. 

342-350, 2007. 

[20] A. Subasi and M. I. Gursoy, "EEG signal classification using PCA, 
ICA, LDA and support vector machines," Expert Systems with 

Applications, vol. 37, no. 12, pp. 8659-8666, 2010. 

238


	MAIN MENU
	Help
	Search
	Print
	Author Index
	Program in Chronological Order

