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Insect-inspired acoustic micro-sensors
Y Zhang, A Reid and JFC Windmill

Micro-Electro Mechanical System (MEMS) microphones

inspired by the remarkable phonotactic capability of Ormia

ochracea offer the promise of microscale directional

microphones with a greatly reduced need for post-processing

of signals. Gravid O. ochracea females can locate their host

cricket’s 5 kHz mating calls to an accuracy of less than 2�

despite having a distance of approximately 500 mm between

the ears. MEMS devices base on the principles of operation of

O. ochracea’s hearing system have been well studied, however

commercial implementation has proven challenging due to the

system’s reliance on carefully tailored ratios of stiffness and

damping, which are difficult to realize in standard MEMS

fabrication processes, necessitating a trade-off between wide-

band operation and sensitivity. A survey of the variety of

strategies that have been followed to address these inherent

challenges is presented.

Address

Centre for Ultrasonic Engineering, University of Strathclyde, 204 George

Street, Glasgow, G1 1XW, United Kingdom

Corresponding author: Windmill, JFC (james.windmill@strath.ac.uk)

Current Opinion in Insect Science 2018, 30:33–38

This review comes from a themed issue on Insect bio-inspired micro

and nanotechnologies

Edited by Jérôme Casas

https://doi.org/10.1016/j.cois.2018.09.002

2214-5745/ã 2018 The Authors. Published by Elsevier Inc. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
The traditional method of sound source localization is to

build a microphone array which combines at least two

independent omnidirectional microphones [1]. Calculat-

ing the incident angle of sound waves then depends on

the separating distance (i.e. time delay) between the

microphones receiving the plane waves [2–4]. Similar

to microphone arrays, many large animals including

human beings have two ears with sufficient separation

that the nervous system is able to resolve the interaural

time difference (ITD) and interaural intensity difference

(IID) to determine the source location. The requirement

for spatial separation poses a fundamental problem for

sound localization in small animals [5] and in micro-scale

devices (i.e. Micro-Electro-Mechanic-System (MEMS)

devices) smaller than the wavelength of interest.

In the 1990’s, O. ochracea was found to have a great

capability for detecting sound source [6,7��,8]. The para-

sitic female Ormia uses auditory cues to localize the

mating call of a host Gryllus, a genus of cricket, and then

deposits its predaceous larvae on the host [9]. The

cricket’s mating call has a fundamental frequency around

5 kHz and wavelength at approximately 70 mm, com-

pared to the interaural distance of Ormia that is only

around 520 mm [10,11]. Despite the extremely small

distance that gives the original maximum ITD and IID

as approximately 1.5 ms and 1 dB [12], respectively,

experimental investigations show that it can localize

the mating call with a resolution less than 2� [13]. This

high accuracy is attributed to the mechanical coupling

structure of Ormia’s ear, as shown in Figure 1(a) and (b),

which enhances both ITD and IID by up to 40 times

greater than the original values at 5 kHz [14��]. The first

resonance is a rocking mode about the bridge centre

point, and the second is a translational mode with each

end of the bridge moving in-phase while the bridge bends

in the middle as shown in Figure 1(c). The response of the

Ormia ear at any frequency is then described by a linear

combination of these resonance modes [15��].

Ormia-inspired MEMS microphone designs can be

broadly separated into two main categories in terms of

their directivity: the first-order and the second-order. The

response of the first-order microphones is proportional to

the pressure gradient combined with the integral of

pressure across the surface [16,17] while second-order

microphones have directional responses that are propor-

tional to the difference between the gradients [18].

First order Ormia inspired microphones
First-order Ormia-inspired microphone designs include

the see-saw model [19–22] and the clamped diaphragms

model [23–27] as shown in Figure 2. See-saw models’

defining characteristic is a pivot between two unclamped

diaphragms. An early iteration of this design from Miles

et al. [19,28,29] used a polysilicon diaphragm supported

with well-distributed crossed stiffeners [30�,31,32] to

tailor the relative sensitivities of the rocking and transla-

tional modes of the device while lowering the overall

mass. As with most of the designs, amplification of direc-

tional cues occurs only in a single narrow working fre-

quency band [33–35].

The transduction method plays a key role in the sensi-

tivity and the amplification of directional cues. Three

transduction methods have been attempted by Miles

et al., paralleled-plate capacitive sensing [20,36], optical

sensing [31,37,38�], and comb-finger capacitive sensing

Available online at www.sciencedirect.com

ScienceDirect

www.sciencedirect.com Current Opinion in Insect Science 2018, 30:33–38

mailto:james.windmill@strath.ac.uk
https://doi.org/10.1016/j.cois.2018.09.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cois.2018.09.002&domain=pdf
http://www.sciencedirect.com/science/journal/aip/22145745


[17,39�]. For parallel-plate sensing, the SNR is negatively

influenced by electronic noise, and the viscous damping

caused by the air between the diaphragm and the back-

plate leads to thermal noise [40]. Optical sensing based on

a phase-sensitive diffraction grating structure can lower

noise and power requirements compared to capacitive

sensing. This method is achieved by incorporating inter-

digitated comb fingers at the ends of the diaphragm.

However, optical sensing is a comparably high-cost trans-

duction method, which is generally considered not suit-

able for commercial use. Capacitive combs, in contrast,

can be fabricated in a single layer MEMS device and

offers the benefits of extremely low noise [41��,42] at the

trade-off of electrical sensitivity. In recent years PZT

[43–45] or Aluminium Nitride [46] thin film layers have

been used in combination with cantilevers connecting to

the diaphragms to provide an alternative method of

transduction.

The method of transduction has a particular impact for

Ormia-inspired microphones due to the sensitivity of the

desired amplification of ITD to damping. High damping

ratios from capacitive back-plates and thin film damping

broaden the frequency range of the increase in directional

cues at the expense of the gain of amplification [47�],

while lower damping ratios benefit from increased sensi-

tivity but produce only a single narrow working band

[48�]. Obtaining a flat amplification of ITD or IID across a

usable frequency range, a critical element of hearing-aid

applications, may be achieved by sacrificing significant

gain in the amplification as demonstrated in two designs

from Miles et al. — one using a capacitive comb sensing

scheme [40] and the other an optical diffraction grating

[49] — which nevertheless show the same mechanical

characteristics. The resonance frequencies for these

devices places the lower, rocking mode at 735 Hz with

the higher, translational mode at 15 427 Hz. The esti-

mated damping remains low, given the absence of a back-

plate in either design, at 0.16 for the rocking mode and

0.25 for the translational mode with the result that the

devices provide a flat gain of approximately 1.5 times the

ITD. An alternative strategy was developed by Zhang

et al. [50–53,54�,55�] where multiple working frequency

bands extend the useable working range of the device.

This extends the see-saw design pattern through the use

of asymmetric diaphragms and an inner and outer dia-

phragm configuration, with each providing two frequency

bands. The design used a piezoelectric sensing system,

and produced directional responses at frequency bands

below 10 kHz. Figure 3 shows the latest published devel-

opment of the device.

Measuring amplifications in intensity difference poses

additional challenges. Since the amplitude of response

will be proportional to the local sound pressure a direct

comparison would require the use of a reference, omni-

directional microphone. This enlarges the entire package

size and brings errors caused by the offset between the

Ormia inspired microphone and the omnidirectional one.

Yu et al. circumvented this problem by taking the ratio of

amplitudes of the two diaphragms [24,56,57] and their

phase difference which were termed the mechanical

Interaural Intensity Difference (mIID) and mechanical

Interaural Phase Difference (mIPD) respectively. These

measures obviate the need for a reference microphone,

however as the motion of the diaphragm on the contra-

lateral side to the source is ideally greatly suppressed the

denominator of these equations is often near zero leading

to a high Cauchy-like noise error in the measurement of

sound angle. The devices developed by Yu et al. are

intended to directly mimic the Ormiine ear’s single
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MicroCT scanned images of Ormia ochracea: (a) The side view of

Ormia’s body. (b) The frontal face of the hearing organ. (c) A sketch of

the two main resonance modes: rocking mode and translational mode.

Figure 2
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Schematic diaphragms of see-saw and clamped diaphragms Ormia

inspired microphone models.
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frequency operation [47�]. The device has its best per-

formance at 8 kHz, which is slightly below the first reso-

nance and very similar to Ormia’s hearing organ (i.e. the

best performance of Ormia’s ear occurs at 5 kHz, however

the first resonance frequency is slightly higher than that

value, which is around 7 kHz). At 8 kHz the slope of the

mIPD versus the azimuth sound incident angle of this

device is about 1.69 deg/deg.

The microphones presented here only permit the locali-

zation of sound on one axis, either the azimuth measured

around the axis normal to the plane of the device, or the

pitch, measured around the axis normal to the line

between the two diaphragms. In any situation where

either the azimuth or the pitch cannot be assumed to

be zero there will be some ambiguity in the results, with

the directional reading of the sensor describing a parabo-

loid surface in space. The problem could be potentially

solved with an array of directional microphones [58,59];

however several teams have attempted to create sensors

which extend the principles of Ormia-inspired hearing to

two dimensions. The simplest of these consists of three

mechanically linked diaphragms in a triangle formation

around a central pivot [60�]. Comparing the phase differ-

ence between any two diaphragms will yield a set of

azimuth and pitch angles, which can then be correlated to

the set produced by another pair of diaphragms to localize

the sound source [61]. Although this sensor is capable of

resolving the ambiguity in pitch and azimuth angle it does

so by triangulation and offers little improvement over a

similarly spaced array of Ormia-inspired microphones. In

2018 Zhang et al. introduced a further new microphone

design. The design has two pairs of orthogonal

diaphragms, utilising the Ormia paradigm [62]. Each pair

has independent directionality responses, leading to the

potential for 3D sound localization. This single device

can be regarded as two individual bi-directional micro-

phones. It is also notable that this device combines both

piezoelectric and capacitive sensing. Ono et al. [63,64] and

Chen et al. [65] have proposed centrally supported gim-

bals to achieve the same goal, however, all these designs

are either on the meso-scale or are proposed models only.

Second order Ormia inspired microphones
A second-order directional microphone has better ability

to reject off-axis noise since it detects the sound location

through estimating the second spatial derivative of the

pressure gradient. The first model of second-order Ormia-

inspired MEMS microphone was designed by Liu et al.

[18,66], which joins two single Ormia-inspired first-order

polysilicon microphones built by Miles et al. mentioned

above with an S-type beam in the middle. Developing

Liu’s work, Albahri [67�] optimized the model and

replaced the S-type connection with a simple rectangular

beam and added extra mass to the sides of the rotating

plates to reduce the influence of any mismatch between

the two single microphones. Meanwhile, Huo [68] chan-

ged the two diaphragms into a structure constructed with

comb fingers, and removed the hinge. In theory, this gives

the microphone a wide bandwidth of operation as the

relative motion of the two diaphragms is not dependent

on the frequency, however the sensitivity of the second

order microphone increases with the square of the surface

area, rather than being directly proportional, leading to

significant miniaturisation challenges.

Conclusions
Biomimetic microphones, originally inspired by the

mechanical structure of O. ochracea’s hearing organ, have

higher directionality and are more suitable for micro-

fabrication sensitivity than any conventional directional

microphone array. They amplify the time delay and

intensity difference efficiently between two membranes

despite their tiny dimensions. Relying on different design

concepts, such microphones can be made more complex

in order to achieve higher mechanical sensitivity, or be

simplified to decrease difficulties in fabrication. Designs

can be divided into various groups, including first-order

see-saw model and clamped diaphragms models, and

second-order models. However, this model does require

an omnidirectional microphone to get the sound pressure

variation and bring full function to a system that requires

accurate sound incident angle definition. The clamped-

diaphragm model uses mIPD to locate sound and solve

the omnidirectional microphone problem. But the fixed

ends boundary of the diaphragm in this model generates a

reaction force and so degrades the effective force driving

vibration. The small displacement of the membranes can

only be measured using optical (fibre) techniques so far.

Despite patents relating to O. ochracea inspired
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Figure 3
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Ormia-inspired MEMS microphone with multiple working frequency

bands operation, developed by Zhang et al. [62].
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microphones now numbering in double figures and

stretching back nearly 20 years, there is still research

ongoing to solve the various issues to implementing these

microphones in commercial, real-world applications. The

growing market for miniature microphones, and need for

technical improvements, across industries including

mobile telecommunications, hearing prostheses and com-

puting, suggests that such research efforts will continue

into the future.
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