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Abstract: The optimisation of high-speed fishing boats is different from the optimisation of other 

displacement type vessels as, for high-speed fishing boats, the wave-making resistance decreases 

while the splashed resistance increases sharply. To reduce fuel consumption and operating costs in the 

current economic climate, this paper presents a fishing boat optimisation approach using a 

Computational Fluid Dynamics (CFD) technique. The RANS-VoF solver was utilised to calculate total 

resistance, sinkage and trim for a fishing boat in calm water. The Arbitrary Shape Deformation (ASD) 

technique was used to smoothly alter the geometry. A hybrid algorithm was presented to solve the 

complicated nonlinear optimisation problem. Herein, a Design of Experiments (DoE) method was 

applied to find an optimal global region and a mathematical programme was employed to determine 

an optimal global solution. Under the same displacement with the original hull, two optimisation loops 

were built with different design variables. After completion of the optimisation, two optimal hull 

forms were obtained. The optimisation results show that the optimisation loop presented in this study 

can be used to design a suitable fishing boat in the reduction of the total resistance in calm water. 

Keywords: Fishing boat; CFD; arbitrary shape deformation; ship hull form optimisation; hybrid 

algorithm 

 

1. Introduction 

 

The ship hull form optimisation process is a crucial aspect of the early stages of ship building. To 

obtain a ship with optimal hydrodynamic performance, the hull form needs to be optimized. In recent 

years, Simulation-Based Design (SBD) techniques have gained particular attention worldwide. This 

creates the potential for hull form optimisation design (Li, 2012) for fuel efficiency, which results in 

the minimization of the running cost. An SBD-based ship hull form optimisation framework includes 

three parts, as shown in Fig. 1: 

• Geometry reconstruction: a method used for altering the shape of a ship. 

• Computational Fluid Dynamics (CFD) techniques: an evaluation method for a ship’s 

hydrodynamic performance, such as total resistance, wave-making resistance, sinkage and trim. 

• Optimum techniques: a mathematical method used to obtain the optimal solution for a linear or 

non-linear space. 

 
Fig. 1. SBD based ship hull form optimisation framework 

Geometry reconstruction is a bridge between CFD techniques and optimum techniques that 

directly determines the optimisation efficiency of the hull form optimisation design. Up to now, many 
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geometry reconstruction methods have been widely used for ship hull form optimisation. For example, 

Park et al. (2011) applied the parametric modification functions for the optimisation of the 

KSUEZMAX ship. Zhang et al. (2011) utilized the Kazuo Suzuki’s hull form modification function to 

change the hull lines of a patrol boat. Zhan et al. (2012) applied a parametric morphing method to 

obtain different ships. Zhang and Zhang (2015) used the parameters of the B-Spline function as design 

variables to alter the Series 60 ship’s hull lines. All the methods above can alter the geometry with 

fewer design variables; however, the configuration space is very small. In recent years, Free Form 

Deformation (FFD), a 3-D deformation method first proposed by Sederberg and Parry (1986), has 

been used extensively to alter the original geometry in the hull form optimisation design. Chen et al. 

(2015) used the FFD method to change the bulb bow shape of a super-large container ship. Peri (2016) 

applied the FFD method to alter a container ship with nine design parameters. Subsequently, four 

examples of hull deformation were reported to demonstrate the variety of shapes potentially 

considered during the optimisation process. In addition, Wu et al. (2017) also used the FFD method to 

change the bulb bow shape of a DTMB5415 ship. Their studies showed that the FFD method is a 

practical approach for hull form deformation. Although this method provides a powerful modelling 

tool for hull form modification, it is challenging to control the shape and satisfy the given constraints 

in some cases (Yang and Huang, 2016). To overcome this problem, Yang and Huang (2006) utilised a 

NURBS-based Free Form Deformation (NFFD) method to alter the Series 60 hull. Compared with the 

classical FFD method, the NFFD adopts the non-uniform B-spline solid function with non-uniform 

divisions and variations of basis order to provide greater flexibility in deforming the 3-D control 

lattices. 

With the rapid development in computer technology, CFD-based numerical simulation 

approaches have been widely used to investigate the hydrodynamic performance of a ship in calm 

water or in waves. Ahmed (2011) used a CFX code to simulate the ship motions of a DTMB 5415 

model in calm water, integrating the standard k-ε turbulence model and a Volume of Fluid (VoF) 

method. The results obtained using the RANSE code solver agreed well with the experimental data. 

Carrica et al. (2011) presented two computations of KCS in the model scale, utilising the CFD 

Ship-Iowa software to simulate the performance of a model-scale KCS ship in calm water and in 

regular waves, by including three conditions at two different Froude numbers (Fr). Zha et al. (2011) 

employed an in-house multifunction solver (naoe-FOAM-SJTU) to study the resistance and 

wave-making performance of a high-speed catamaran sailing at different speeds in calm water using 

the RANS-VoF method. Tezdogan et al. (2016) investigated the total resistance, flow field and 

motions for a full-scale 200kDWT class large tanker in shallow water using the STAR-CCM+ 

software. They found that as water becomes shallower, heave motions decrease, whilst pitch motions 

increase at low frequencies and a slight decrease was observed in pitch responses as the water depth 

decreases at high frequencies. Saha and Miazee (2017) performed a resistance, sinkage and trim 

calculation for a container ship for speeds ranging from 8 knots to 10 knots using the SHIPFLOW 

code. 

The optimisation technique is essential in engineering design. It can help designers to obtain the 

best solution for their needs. Many optimisation algorithms have been developed and applied to solve 

different kinds of optimisation problems in the past 20 years. Generally, these optimisation approaches 

can be divided into two categories: (a) meta-heuristic methods and (b) mathematical programming 

(Garg, 2016). Meta-heuristic methods have been widely used to obtain global or near global optimal 

results, like Particle Swarm Optimisation (PSO) algorithm (Azimifar and Payan, 2016; Garg, 2016; 

Tungadio et al., 2016; Zhang et al., 2017), and Genetic Algorithm (GA) (Bagheri and Ghassemi, 2016; 

Gammon, 2011; Lowe and Steel, 2003). Although meta-heuristic methods are a good compromise 

between exploration and exploitation of the research space, they could still get trapped into a local 

solution and the convergence to a global minimum cannot be proven (Garg, 2016). Following on from 

the PSO algorithm, Li et al. (2014) developed a new IPSO algorithm. The optimisation results show 

that the IPSO algorithm has a better solution than the original PSO algorithm. Following on from the 

GA algorithm, Zhu and Zhao (2017) presented an improved GA algorithm. Their results show that the 

improved GA algorithm can effectively escape from a local optimal solution and can overcome 

premature convergence. Barroso et al. (2017) developed a PSO-GA algorithm to solve the 



optimisation of laminated composites. Many mathematical programming methods are also employed 

to solve the optimisation problem, such as Sequence Quadratic Program (SQP) method (Gill et al., 

2002; Yu and Lee, 2016) and Non-Linear Programming (NLP) method (Zhang, 2009; Zhang and 

Zhang, 2015). Serani et al. (2016) pointed out that if the research region is known a priori, local 

optimisation algorithms can also obtain an accurate solution of the local minimum. For instance, 

Attaviriyanupap et al. (2002) used the Evolutionary Program (EP) method to obtain an optimal global 

region, and utilized a SQP method to determine the optimal global solution. Zhang (2012) presented a 

hybrid optimisation method integrating the GA and NLP to optimize a Wigley ship. To improve the 

performance of mathematical programming methods, a hybrid algorithm is developed in this study, 

combining the Latin Hypercube Design (LHD) technique and Non-Linear Programming by Quadratic 

Lagrangian (NLPQL) algorithm. It is expected that this hybrid algorithm can improve the accuracy of 

optimisation. 

With an increase in ship speed, the bow of a fishing boat rises, resulting in a decrease in the 

wave-making resistance, while the splashed resistance increases sharply. Therefore, fishing boat 

optimisation is always a difficult issue for designers. For this reason, a traditional fishing boat 

geometry found in the East Java seas in Indonesia has been used in this paper as a case study. This 

study therefore aims to provide an optimisation method for a high-speed fishing boat. The novelties of 

this paper are as follows. Firstly, by combining the LHD and NLPQL algorithm, we put forward a new 

optimum technique for the evaluation of hull form optimisation, called a hybrid algorithm technique. 

Secondly, two sets of design variables are used to alter the fishing boat to study the relationship 

between the bow geometry and the total resistance. Lastly, the heave and pitch of the fishing boat are 

considered in the ship hull form optimisation in accordance with the actual navigation situation. 

This paper is organised as follows. First, the primary ship properties of a fishing boat are 

described, along with numerical modelling methods for evaluating the total resistance in Section 2 and 

Section 3. Subsequently, a hybrid algorithm and the validation of its efficiency are shown in Section 4. 

Next, a geometry regeneration method and the optimisation procedure are listed in Section 5. In 

Section 6, the verification study of the CFD model used in this study is shown, and then two hull form 

optimisation models of minimum total resistance are presented to verify the feasibility and superiority 

of our novel approach. 

 

2. Geometry and conditions 

 

A full-scale model of a fishing boat (operating in the East Java seas in Indonesia) was optimised 

within this study. Table 1 presents the geometrical properties of the fishing boat. Within the scope of 

this study, the bow region of the boat was selected for optimisation to reduce the total resistance. Fig. 

2 shows the geometry of a fishing boat with the optimisation region highlighted. 

Table 1 Geometrical properties of the fishing boat used within this study 

Property Value 

Length betw. perp., Lpp [m] 5 

Breadth at water line plane, B [m] 1.934 

Depth to 1st deck, D [m] 1.196 

Loaded draft, T [m] 0.35 

Displacement, Δ [t] 1.9 

Block coefficient, CB 0.5367 

Mid-boat section coefficient, CM 0.764 

Wetted Surface Area, Aw [m2] 10.201 

Froude number, Fr 0.59 

 



 
Fig. 2. A view of this study’s fishing boat with the optimisation region highlighted 

3. CFD model 

 
3.1 Numerical approach 

 

The continuity equation and the RANS equation were used as the governing equations in this 

work’s CFD simulations. The Realisable k-ε model was selected as a turbulence model to provide 

closure to the RANS equations. CD-Adapco (2014) pointed out that the Realisable k-ε model is 

substantially better than the standard k-ε model for many applications, and can generally be relied 

upon to give answers that are at least as accurate. This turbulence model has also been widely used in 

the simulation of ship motions and resistance (Chen et al., 2015; Yousefi et al., 2014). 

The Volume of Fluid (VoF) model (Hirt and Nichols, 1981) was applied to model and position the 

free surface in waves. In the VoF method, the Navier-Stokes and continuity equations are solved to 

simulate two or more different fluids, and then the volume function of fluid aq is calculated at each 

time. When aq=1, the computational cell is filled with fluid q, when aq=0, the computational cell has 

no fluid q, and when 0<aq<1, the computational cell is the interface including different kinds of fluid. 

Due to the disadvantages of the mathematical methods, such as numerical dissipation, numerical 

dispersion, and nonlinear effects, the free surface may be captured with poor accuracy. To solve this 

problem, the grids near the free surface in the vertical direction need to be refined. 

The all y+ wall treatment method was used in this study’s CFD simulations. According to CD 

Adapco’s definition (2014) “The all-y+ wall treatment is a hybrid treatment that attempts to emulate 
the high-y+ wall treatment for coarse meshes, and the low-y+ wall treatment for fine meshes”. 

The SIMPLE algorithm (Patankar and Spalding, 1972) was selected to couple the velocity field 

and pressure. It is a widely used numerical procedure to solve the Navier-Stokes equations. This 

algorithm needs to solve the pressure correction equation in every iteration, thereby correcting the 

flow velocities until the continuity equation is satisfied. 

The dynamic fluid body interaction (DFBI) model is employed in the CFD solver used in this 

study to model trim and sinkage of the geometry at forward speeds in calm water. It should also be 

noted that the RANS solver used calculates the excitation forces and moments acting on the hull 

surface at each time step, and the ship motion equations are solved to obtain the acceleration, velocity 

and displacement (Tezdogan et al., 2015). According to the position of the hull and the two-phase flow 

distribution of the velocity inlet, the free surface position (volume fraction) is updated in order to 

achieve the movement of grids (Wang, et al., 2014). Using this approach, the position of the hull can 

then be changed. 

 
3.2 Computational domains and boundary conditions 

 
In order to reduce cell numbers and improve the calculation efficiency for the simulation of the 

fishing boat, only the port side of the hull was selected in this study. The whole computational domain 

is shown in Fig. 3, with the boundary conditions depicted. 

The selection of the boundary conditions is critical in order to obtain more accurate results. 

Although many kinds of boundary conditions can be selected to solve a problem, selection of the most 

appropriate boundary conditions can prevent unnecessary computational costs (Date and Turnock, 

1999). A velocity inlet boundary was selected to simulate a forward ship speed in the positive 

x-direction. The negative x-direction was selected as a pressure outlet for the purpose of stopping the 

backflow and fixing the static pressure. The top and bottom boundaries were also selected as velocity 

inlets with the aim of preventing the fluid from sticking to the walls and representing deep water and 



infinite air conditions. The left and the right sides of the tank were both selected as a symmetry plane. 

The hull was set as a no-slip boundary. 

Fig. 4 displays the dimensions of the computational domain for the front view and side view. The 

inlet boundary was set as 2LPP away from the bow, and the outlet boundary was located 3.5LPP 

downstream. The length of the top, bottom and left of the hull were taken as 1.4Lpp, 2.6Lpp, 2.5Lpp, 

respectively. The positions of the boundaries from the ship geometry align with the relevant 

recommendations of International Towing Tank Conference (ITTC) (ITTC, 2014). 

 
  Fig. 3. A general view of the whole computational domain with boundary conditions labelled 

 
Fig. 4. The dimensions of the computational domain 

 

3.3 Mesh generation 

 

In this paper, the trimmed mesher, an automatic mesh model in STAR-CCM+, was employed to 

product high-quality grids within the computational domain. Fig. 5 shows the volume mesh on the 

computational domain. The mesh is refined near the free surface to capture the air-water interface. Fig. 

6 shows the cross section on the free surface. The mesh is refined near the hull in order to capture the 

Kelvin wave clearly. Fig. 7 shows the surface mesh on the hull. The mesh on the bow and bottom of 

the hull is refined in order to better capture the complex flow features. Mesh generation is performed 

utilizing the meshing facility in the software package, which uses the Cartesian cut-cell method, 

resulting in a computation mesh of around 2,200,000 cells. 



 
Fig. 5. Mesh on the computational domain 

 
Fig. 6. Mesh on the free surface 

 
Fig. 7. Surface mesh on the hull 

 

4. Optimisation problem and algorithms 

 
A general constrained optimisation problem can be defined as follows: 

Minimize  f(X) 

Subject to  u≤Xk≤v; k=1,2,…,p 

          gj(X)=0; j=1,2,…,q 

          hj(X)≥0; j= 1,2,…,r                                                 （1） 

where f is the objective function, X=[ x1, x2,…, xn]
T represents the n-dimensional vector of the design 

variables, Xk denotes a set of k-th design variable, u=[ u1, u2,…, un]
T and v=[ v1, v2,…, vn]

T are the 

minimum and maximum bounds for the n-dimensional vector of the design variables, respectively, q is 

the number of the equality constraints, and r is the number of the inequality constraints. 

 

4.1 Non-linear programming by quadratic Lagrangian (NLPQL) 

 

The gradient algorithm can find the optimal solution step by step according to the direction Sk 

and the step length ɑk. After giving an initial point X0, the algorithm will find a new point X1
 in order 

to decrease the object function value f. This step is repeated until the optimisation problem gets its 

optimal solution X*. X is updated by using: 

Xk+1
 = Xk

 +ɑkSk
                               （2） 

There are many different gradient optimisation algorithms, like Non-Linear Programming (NLP), 

Sequence Quadratic Program (SQP), Mixed-Integer Squential Quadratic Programming (MISQP). The 

NLPQL algorithm (Schittkowski, 1985) is the modified SQP algorithm for solving the nonlinear 

programming problem. The objective function is expanded by Taylor Series by linearizing the 



non-linear constraints and the next design point can be obtained by solving the quadratic programming. 

Then, a linear search is performed according to two alternative optimisation functions. In this 

algorithm, the Hessian matrix is updated by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm. The algorithm is designed to solve the constrained nonlinear programming problem by 

generating a sequence of iterates, X, whereby an approximation is minimized at each iteration (Van 

and Koch, 2010). 

 

4.2 Design of experiments (DoE) 

 

The DoE approach is a statistical method that enables appropriate data to be designed and 

analysed to extract the process characteristics for a fixed space with fewer simulation runs. Due to the 

weakness of the gradient optimisation method as explained above, the initial design point is generated 

using the DoE method. In recent years, many DoE methods have been proposed, such as Full Factorial 

Design (FFD), Orthogonal Arrays (OA) and Latin Hypercube Design (LHD). Compared with the FFD 

technique, shorter experiment times can be obtained for each factor for the LHD technique (Lai, 2012). 

ISIGHT (2014) assumed that an advantage of the LHD technique over the OA technique is that more 

points and more combinations can be studied for each factor. Therefore, the LHD technique was used 

to obtain an optimal solution in the hull form optimisation space. In the LHD algorithm, the design 

space for each factor is divided uniformly (the same number of divisions, n, for all factors). These 

levels are randomly combined to specify n points defining the matrix design (each level of a factor is 

studied only once) (ISIGHT, 2014). For a three levels of three factors problem, Fig. 8 shows the 

configuration of 9 points studied using the LHD technique. 

 
Fig. 8. Samples designed using the LHD technique (ISIGHT, 2014) 

 

4.3 A hybrid algorithm 

 

A hybrid algorithm is developed in this study to solve the non-linear mathematical optimisation 

problem, integrating a LHD technique and a NLPQL algorithm. The flow chat of this algorithm can be 

found in Fig. 9 which is also summarised as follows: 

1. A LHD algorithm is employed to design a few sample variables in an optimisation space. 

2. An evaluation method is used to calculate the objective function values using these sample 

variables. 

3. The objective function values are compared for different sample variables, and an optimal 

sample variable is obtained. 

4. The optimal sample variable is selected as the initial design variable of the NLPQL algorithm. 

5. A NLPQL algorithm is then utilised to optimise this mathematical model and find the global 

optimal solution. 



 
   Fig. 9. Flow chart of a hybrid algorithm 

 

4.4 Validation of the efficiency of the hybrid algorithm 
 

Two test functions are used to validate the efficiency of the hybrid algorithm. The first function is 

a Shubert function (f1(x)), and the second one is Schaffer function (f2(x)). These two equations are 

given in Equations (3) and (4) as follows: 
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A single NLPQL algorithm and a hybrid algorithm are employed to find the minimum values of 

these two equations, respectively. As shown in Section 4.3, the first step of the hybrid algorithm is to 

use the LHD algorithm to find some sample variables in the optimisation space. We therefore used the 

LHD algorithm to design 20 sample variables for each equation. As the LHD technique is a random 

algorithm, three sets of samples are designed, as shown from Table 2 to Table 4. The parameters x1 and 

x2 in Table 2 to Table 4 are the corresponding variables in Equations (3) and (4), respectively, obtained 

by LHD algorithm. f1(x) and f2(x) are the results calculated using Equations (3) and (4), respectively 

(see Tables, 2, 3 and 4). 

Table 5 and Table 6 show the optimisation results obtained by different algorithms. It can be 

inferred from the results that a hybrid algorithm has much better solutions than the single NLPQL 

algorithm. Fig. 10 and Fig. 11 show the evaluation history for the NLPQL algorithm for which the 

initial design variable was set as x1= x2=0. On the other hand, Fig. 12 to Fig. 17 show the evaluation 

histories for the hybrid algorithm with the initial design variables using the bold values from Table 2 

to Table 4. As can be seen from the figures, the optimal value and the evaluation history are different 

due to different initial value of the NLPQL algorithm. Therefore, it can be concluded that the initial 

value is a critical parameter to get a global optimal solution for a NLPQL algorithm. 

 

 

 



Table 2 First samples 

No. 
LHD for f1(x) LHD for f2(x) 

x1 x2 f1(x) x1 x2 f2(x) 

1 -10 8.95 0.4758 -100 5.263 0.500091 

2 -8.95 -8.95 3.419718 -89.474 -15.789 0.504920 

3 -7.89 4.74 88.8806 -78.947 100 0.500715 

4 -6.84 -6.84 35.7938 -68.421 -47.368 0.507509 

5 -5.79 1.58 -0.47231 -57.895 57.895 0.508425 

6 -4.74 5.79 0.911826 -47.368 15.789 0.524917 

7 -3.68 7.89 0.650729 -36.842 -57.895 0.510652 

8 -2.63 -0.53 -11.08 -26.316 -89.474 0.502565 

9 -1.58 -4.74 -3.95412 -15.789 68.421 0.505087 

10 -0.53 6.84 1.768221 -5.263 36.842 0.519360 

11 0.53 0.53 1.101619 5.263 -5.263 0.948887 

12 1.58 10 0.835354 15.789 -100 0.500557 

13 2.63 -2.63 3.346347 26.316 -36.842 0.483858 

14 3.68 -1.58 27.57458 36.842 -78.947 0.504314 

15 4.74 -3.68 9.652096 47.368 89.474 0.503677 

16 5.79 2.63 -2.87314 57.895 47.368 0.500357 

17 6.84 -7.89 -3.3225 68.421 26.316 0.499730 

18 7.89 3.68 2.131568 78.947 -26.316 0.496762 

19 8.95 -5.79 -3.48161 89.474 -68.421 0.502039 

20 10 -10 0.863757 100 78.947 0.500715 

Table 3 Second samples 

No. 
LHD for f1(x) LHD for f2(x) 

x1 x2 f1(x) x1 x2 f2(x) 

1 -10 -3.68 0.231251 -100 -100 0.501134 

2 -8.95 0.53 -1.94093 -89.474 -5.263 0.497625 

3 -7.89 3.68 24.16905 -78.947 47.368 0.499878 

4 -6.84 1.58 -1.49479 -68.421 -68.421 0.504656 

5 -5.79 -6.84 11.30985 -57.895 100 0.501186 

6 -4.74 -2.63 -1.062 -47.368 36.842 0.514729 

7 -3.68 8.95 1.648599 -36.842 -26.316 0.483858 

8 -2.63 2.63 3.346347 -26.316 -89.474 0.502565 

9 -1.58 -8.95 17.39071 -15.789 78.947 0.496527 

10 -0.53 -1.58 -41.254 -5.263 15.789 0.375849 

11 0.53 4.74 -11.3175 5.263 -15.789 0.375849 

12 1.58 -10 0.064546 15.789 26.316 0.613553 

13 2.63 10 4.42964 26.316 89.474 0.502565 

14 3.68 5.79 -6.35873 36.842 5.263 0.519360 

15 4.74 -5.79 -20.3839 47.368 57.895 0.500357 

16 5.79 -0.53 9.513228 57.895 -78.947 0.504447 

17 6.84 -4.74 0.169481 68.421 -57.895 0.501631 

18 7.89 -7.89 5.992185 78.947 -47.368 0.499878 

19 8.95 6.84 -0.74237 89.474 -36.842 0.501617 

20 10 7.89 2.430566 100 68.421 0.501944 

 

 

 

 

 

 



Table 4 Third samples 

No. 
LHD for f1(x) LHD for f2(x) 

x1 x2 f1(x) x1 x2 f2(x) 

1 -10 -6.84 -1.54561 -100 -89.474 0.500779 

2 -8.95 3.68 5.422279 -89.474 36.842 0.501617 

3 -7.89 4.74 88.8806 -78.947 -36.842 0.504314 

4 -6.84 8.95 -11.0187 -68.421 -100 0.501944 

5 -5.79 -1.58 -17.7777 -57.895 78.947 0.504447 

6 -4.74 5.79 0.911826 -47.368 -57.895 0.500357 

7 -3.68 -3.68 0.801263 -36.842 15.789 0.496587 

8 -2.63 1.58 0.631063 -26.316 68.421 0.499730 

9 -1.58 -8.95 17.39071 -15.789 -78.947 0.496527 

10 -0.53 0.53 4.604259 -5.263 -47.368 0.486319 

11 0.53 -7.89 -8.65144 5.263 57.895 0.520877 

12 1.58 -0.53 -1.09602 15.789 -68.421 0.505087 

13 2.63 -5.79 -2.50453 26.316 26.316 0.587896 

14 3.68 -2.63 7.406008 36.842 5.263 0.519360 

15 4.74 2.63 14.2859 47.368 -15.789 0.524917 

16 5.79 6.84 0.874131 57.895 100 0.501186 

17 6.84 -10 -0.10413 68.421 89.474 0.502039 

18 7.89 10 2.430566 78.947 -5.263 0.508033 

19 8.95 7.89 1.338875 89.474 47.368 0.503677 

20 10 -4.74 -1.4058 100 -26.316 0.499329 

Table 5 Optimal solutions by different algorithms for f1(x) 

 
Theoretical 

minimum 
NLPQL algorithm 

LHD+NLPQL 

First 

samples 

Second 

samples 

Third 

samples 

Optimal solution -186.7309 -0.00536 -48.506 -123.550 -47.248 

Table 6 Optimal solutions by different algorithms for f2(x) 

 
Theoretical 

minimum 
NLPQL algorithm 

LHD+NLPQL 

First 

samples 

Second 

samples 

Third 

samples 

Optimal solution 0.292579 0.4974 0.47395 0.37328 0.48292 

 

 
Fig. 10. Evolution history using NLPQL algorithm for f1(x) 



 
Fig. 11. Evolution history using NLPQL algorithm for f2(x) 

 
Fig. 12. Evolution history using first samples by LHD+NLPQL algorithm for f1(x) 

 
Fig. 13. Evolution history using second samples by LHD+NLPQL algorithm for f1(x) 

 
Fig. 14. Evolution history using third samples by LHD+NLPQL algorithm for f1(x) 



 
Fig. 15. Evolution history using first samples by LHD+NLPQL algorithm for f2(x) 

 
Fig. 16. Evolution history using second samples by LHD+NLPQL algorithm for f2(x) 

 
Fig. 17. Evolution history using third samples by LHD+NLPQL algorithm for f2(x) 

 

5. Optimisation strategy 

 

5.1 Geometry regeneration 
 

The ASD technique is a practical method to alter the shape of different geometries using the 

Sculptor software based on the B-spline technique. It can improve the geometric reconstruction 

efficiency with few design variables. In the optimum design, the geometry can be modified more 

freely, thus ensuring geometry smoothness. This technique therefore enables the optimisation of 

complex geometries (Sun et al., 2010). It has also been widely used in different optimisation problems 

(Lee et al., 2011; Li et al., 2016; Sun et al., 2010). 

For the fishing boat used in this study, an ASD volume is firstly built with many control points 

and connections around the hull, and then four points (a1, a2, a3, a4) and two points (b1, b2) were used 

as the design variables to alter the shape of the bow, as shown in Fig. 18. Next, the movement 

directions of these design variables are defined. Following this, the ASD volume is frozen, and the 

movement directions and the movement are changed. Finally, the new geometry is obtained. 

Following these rules, four examples of possible deformations of the fishing boat are shown in Fig. 19 

to indicate the effectiveness of the ASD algorithm in the hull deformation. 



 
Fig. 18. The ASD volume around the original hull form with two different sets of design variables 

 
Fig. 19. Four different examples of the geometry regeneration for the fishing boat 

 

5.2 Optimisation procedure 

 
To find an optimal global region of the research space, a Design of Experiment (DoE) method 

was employed to design some sampling hull forms before the optimisation in order to find an optimal 

global region. Following this, a NLPQL algorithm was used to find a global optimum value. Fig. 20 

shows an overview of the optimisation design process. The essential steps can be summarised as 

follows: 

1. Discretise the continuous research space using the LHD technique and obtain an optimal 

global region. 

2. Define the initial design variable of the NLPQL algorithm. 

3. Output a set of design variables. 

4. Change the shape of the bow using the different design variables. 

5. Build the new hull form and computational domain. 

6. Mesh the computational domain. 

7. Define the physical parameters of a new hull form, including the draft, the centre of mass, and 

the moment of inertia. 

8. Simulate ship motions and calculate the total resistance coefficient. 

9. Repeat Steps 3-8 until the termination condition is satisfied. Then output the optimal hull form. 



 
Fig. 20. Flow chart for the hull form optimisation platform developed in this study 

 

6. Optimisation 

 

6.1 Optimisation problem 

 

The optimisation objective is to find the optimal hull form with a minimum total resistance Rt 

(expressed using the total resistance coefficient Ct below) at the design speed of Fr=0.59. The draft of 

the modified hull form will be changed to maintain the same displacement as the original hull. Two 

sets of design variables, Scheme A and Scheme B, were used in this study. For the Scheme A, the bow 

was optimized by four design variables (a1, a2, a3, a4). a1, a2, a3 and a4 are moved along the y-direction, 

as shown in Fig. 18. For Scheme B, the bow geometry was changed by two design variables (b1, b2). 

b1 is moved along the x-direction, and b2 is moved along the y-direction, as shown in Fig. 18. The 

range of these design variables can be summarized as follows: 

-0.5≤a1≤0.5                                   （5） 

-0.5≤a2≤0.5                                   （6） 

-0.5≤a3≤0.5                                   （7） 

-0.5≤a4≤0.5                                   （8） 

-0.4≤b1≤0.4                                   （9） 

-1≤b2≤0.5                                    （10） 

 
6.2 Post-processing formulations 



 

As described above, the total resistance coefficient Ct is employed to express the total resistance 

Rt of a ship, and Ct can be defined as: 

SU

R
C t

t 25.0 
                              （11） 

where Rt is the total resistance of a ship, ρ is the fluid density, U is the speed of a ship, and S is the 

wetted surface area. 

 

6.3 Results and discussion 

 
6.3.1 Verification study 

 

A verification study was undertaken to estimate the discretisation errors for the current CFD 

model for the resistance simulation at design speed. It is assumed that the numerical uncertainty δSN 

consists of the grid-spacing convergence error δG, time-step convergence error δT and iterative 

convergence error δI, as shown below: 

δSN =δT + δG + δI                             （12） 

For the grid-spacing convergence error δG and time-step convergence error δT, the uncertainty is 

predicted using Roache's (1998) grid convergence index (GCI) method, which was presented by Celik 

et al. (2008). This is a very useful method to estimate the uncertainties arising from grid-spacing and 

time-step errors (Kavli et al., 2017). Firstly, the convergence ratio Rk can be obtained by: 

32

21
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k
kR




                                 （13） 

where εk21=φk2-φk1, and εG32=φk3-φk2. φk1, φk2, and φk3 represent the solutions calculated by fine, 

medium, and coarse mesh configurations. The subscript k refers to the k-th input parameter (i.e. 

grid-size or time-step) (Stern et al., 2006). 

The convergence conditions are summarized as follows: (I) If 0<RG<1, the result is monotonic 

convergence; (Ⅱ) If Rk<0 and |Rk|<1, the result is oscillatory convergence; (Ⅲ) If Rk>1, the result is 

monotonic divergence; (Ⅳ) If Rk<0 and |Rk|>1, the result is oscillatory divergence. Stern et al. (2006) 

noted that the error and the uncertainty could not be assessed if the result is the condition (Ⅲ) or 

condition (Ⅳ). 

The order-of-accuracy Pk is calculated by the generalized Richardson extrapolation method: 

k

kk
k
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)/ln( 2132 
                             （14） 

where rk is the constant refinement ratio. 

The extrapolated values can be calculated from Celik et al. (2008): 
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The approximate relative error ea
21 and extrapolated relative error eext

21 can then be calculated as 

(Celik et al., 2008): 
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Finally, the fine-grid convergence index is predicted by: 
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A constant refinement ratio of √2 was chosen to assess the convergence of the grid-spacing and 

time-step as used by many researchers recently (e.g. Owen et al. (2018), Sezen et al. (2018), Demirel 

et al. (2017), Mizzi et al. (2017)). Table 7 shows the final mesh numbers for each mesh configuration. 

Table 7 Mesh configurations of the current CFD model for this mesh convergence study 

Mesh configurations Cell numbers 

Coarse 690525 

Medium 1264198 

Fine 2188115 

 

For the iterative convergence error δI, the value is assessed using the method of Zhang et al. 

(2008), which results in the 0.305% Ct iterative error for the fine mesh. 

Then grid-spacing and time-step convergence studies were carried out by using the method of 

Celik et al. (2008) as described earlier, and the verification parameters of the total resistance 

coefficient are presented in Table 8. As can be seen from Table 8, the total resistance coefficient results 

tend to monotonic convergence as both of the convergence ratio R are greater than 0 and less than 1. 

The numerical uncertainties in the fine mesh solution for grid-spacing and time-step convergence tests 

are predicted as 1.5418% and 0.0090965%, respectively. It can be pointed out that the grid-spacing is 

more sensitive than the time-step. Fig. 21 shows the Wall Y+ values on the ship hull at design speed. 

Table 8 Grid-spacing and time-space convergence studies for the total resistance coefficient Ct 

Items 
Grid convergence 

(with monotonic convergence) 

Time-step convergence 

(with monotonic convergence) 

r √2 √2 

φ1 0.027426 0.027426 

φ2 0.027788 0.027446 

φ3 0.028537 0.02767 

R 0.48318 0.09009 

p 2.0988 6.945 

φ2ext
21 0.027088 0.027424 

ea
21 1.3193% 0.0735% 

eext
21 1.2488% 0.0072777% 

GCIfine
21 1.5418% 0.0090965% 

 

 
Fig. 21. The Wall Y+ values on the ship hull 

 

6.3.2 Selection of the sample hull forms 

 

First of all, the 20 sets of sample variables were obtained using the LHD algorithm, as shown in 



Table 9 (a1, a2, a3 and a4) and Table 10 (b1 and b2). Following this, the CFD model presented above 

was used to calculate the total resistance coefficients for 20 hulls at design speed. Table 9 and Table 10 

also show the total resistance coefficients of 20 hulls with corresponding sample variables and drafts 

designed. Bold values in the tables signify the optimal sample variable for each scheme. Following 

this, the optimal sample variable No.3 for Scheme A and No.20 for Scheme B were selected as the 

initial design variable of the NLPQL algorithm, and the optimisation results and discussion were 

presented in Section 6.3.3. 

Table 9 Values obtained using the LHD technique for Scheme A 

No. a1 a2 a3 a4 Draft (m) Ct 

1 -0.5 0.5 -0.447 0.289 0.351185 0.027212 

2 -0.447 0.447 -0.184 -0.237 0.35719 0.027256 

3 -0.395 -0.079 -0.342 -0.184 0.36136 0.026896 

4 -0.342 0.237 0.132 0.447 0.34023 0.02826 

5 -0.289 0.395 0.447 0.395 0.33558 0.028432 

6 -0.237 0.132 0.026 0.237 0.345705 0.02758 

7 -0.184 0.289 -0.289 -0.395 0.36138 0.028024 

8 -0.132 -0.132 0.395 -0.132 0.34785 0.027436 

9 -0.079 -0.5 0.237 0.132 0.34702 0.027488 

10 -0.026 -0.395 -0.237 -0.342 0.3625 0.027052 

11 0.026 -0.342 0.184 0.184 0.3456 0.028116 

12 0.079 -0.447 -0.079 -0.447 0.36175 0.027396 

13 0.132 0.026 -0.132 0.5 0.3416 0.027788 

14 0.184 -0.289 -0.5 0.342 0.352 0.027308 

15 0.237 -0.184 0.079 -0.079 0.35021 0.027708 

16 0.289 -0.237 -0.026 0.026 0.3497 0.027568 

17 0.342 0.079 0.342 -0.289 0.3476 0.028076 

18 0.395 0.184 0.289 0.079 0.34165 0.028496 

19 0.447 -0.026 0.5 -0.026 0.34137 0.02746 

20 0.5 0.342 -0.395 -0.5 0.36153 0.027292 

 

 

 

 

 

 

 

 

 

 

 



Table 10 Values obtained using the LHD technique for Scheme B 

No. b1 b2 Draft (m) Ct 

1 -0.4 0.263 0.34713 0.029508 

2 -0.358 0.421 0.34416 0.028812 

3 -0.316 -0.842 0.36855 0.027872 

4 -0.274 -0.053 0.3523 0.028508 

5 -0.232 0.026 0.3505 0.028588 

6 -0.189 -0.921 0.3697 0.02748 

7 -0.147 -0.211 0.3546 0.027968 

8 -0.105 0.342 0.3442 0.02872 

9 -0.063 0.5 0.3415 0.0289 

10 -0.021 -0.132 0.3524 0.0275 

11 0.021 0.105 0.3478 0.027492 

12 0.063 -0.289 0.3552 0.027068 

13 0.105 0.184 0.3458 0.02754 

14 0.147 -0.605 0.3613 0.026736 

15 0.189 -0.368 0.3561 0.026692 

16 0.232 -1 0.3696 0.026256 

17 0.274 -0.763 0.3641 0.026248 

18 0.316 -0.447 0.3568 0.026416 

19 0.358 -0.526 0.3586 0.025984 

20 0.4 -0.684 0.3617 0.025868 

 

6.3.3 Analysis between original and optimal hull forms 

 

The optimisation framework was carried out on an Intel Core i5-5200U CPU @2.2 GHz, and the 

CFD runs in this paper were performed using the ARCHIE-WeST High Performance Computer 

(http://www.archie-west.ac.uk). Each generation was computed for approximately 400 CPU hours. 

With a supercomputer, each simulation can be completed in a couple of days. After the optimisation, 

two optimal hull forms were obtained using different design variables, and the optimum results can be 

found in Table 11. 

Table 11 The optimisation results for each method at the design speed 

 New draft Resistance reduction % 
opt

org

Sinkage

Sinkage
 

opt

org

Trim

Trim
 

Scheme A 0.3676 3.89 1.0162 1.2537 

Scheme B 0.3617 5.70 1.0067 1.0924 

 

As can be seen from Table 11, the optimisation loop achieves a total resistance reduction of 

3.89% and 5.70% at the design speed using Scheme A and Scheme B, respectively. The trim is the 

main factor influencing the total resistance of the fishing boat, since it significantly changes the 

underwater shape of the boat in calm water. Compared to the original hull form, the sinkage and trim 

of the optimal hull form was reduced by 1.59% and 20.24% for Scheme A, and was decreased by 

0.66% and 8.45% for Scheme B. It can be concluded that the sinkage and trim of the optimal hull can 

also improve a ship’s stability and safety, and this optimisation loop is a promising method to design 

new hull forms for reducing not only the total resistance but also the sinkage and trim. 

Fig. 22 shows the evolution history of the two schemes, where each point in the figure represents 

the total resistance coefficients of the different hull forms obtained through the NLPQL algorithm. As 

can be seen from the figure, the first total resistance coefficient is 0.026896 obtained from Table 9 and 

is 0.025868 from Table 10, respectively. The optimal solution is obtained at 10 iterations for Scheme 

A, and the best result appears after 3 iterations for Scheme B. The optimal solutions are listed in Table 

http://www.archie-west.ac.uk/
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(a) Scheme A                              (b) Scheme B 

Fig. 22. Evolution history for two optimisations (Scheme A and Scheme B) 

Table 12 The optimal solutions obtained using the hybrid algorithm for the two optimisations 

employed 

Scheme A Scheme B 

a1 a2 a3 a4 b1 b2 

-0.5 0.49999 -0.5 -0.499 0.399 -0.684 

Since the optimisation was only carried out at design speed, further calculations were performed 

to predict the total resistance coefficients at different Fr values to calculate the drag reduction for the 

optimal hulls. Table 13 shows the comparison of the total resistance coefficients between the original 

and the optimal hull forms obtained through the optimisation using Schemes A and B, individually. 

When comparing the efficiency of the schemes employed in the optimisation process, it is clear from 

Table 13 that Scheme B gives a larger reduction in total resistance for each Froude number than 

Scheme A. The reduction in the total resistance of the optimized hull form using Scheme B is more 

pronounced for lower Froude numbers. Another interesting result which can be drawn from Table 13 

is that Scheme A gives the largest percentage reduction (3.89%) at the design speed. It should however 

be noted that for Froude number 0.4, Scheme A gives an increase in the total resistance of the 

optimized hull compared to the original hull, rather than an expected reduction. For this reason, it can 

be concluded that Scheme A may not be appropriate to be used for optimisation for lower Froude 

number ranges. 

Fig. 23 presents the body-plans for the original and optimal hulls. The bow contour line of the 

optimal hull form was not changed much for Scheme A, while it changes more significantly for 

Scheme B due to the change in design variable b1. It can be interpreted from Fig. 23 that a suitable 

bow contour line is more beneficial to reduce the total resistance for a fishing boat, as also shown in 

Table 13. 

Table 13 A comparison of the total resistance coefficients for the original and optimal hulls 

Fr 
Original hull Optimal hull for Scheme A Optimal hull for Scheme B 

Ct Ct Reduction (%) Ct Reduction (%) 

0.4 0.016272 0.01798 -10.50 0.015112 7.13 
0.5 0.022388 0.022112 1.23 0.020816 7.02 

0.59 0.027426 0.026359 3.89 0.025862 5.70 

0.6 0.02687 0.02623 2.38 0.025364 5.60 

0.7 0.02136 0.020964 1.85 0.020596 3.58 

Note: Bold values in the table signify the optimisation results at design speed. 



 
(a) Scheme A 

 
(b) Scheme B 

Fig. 23. A comparison of the geometry for the original hull and the optimal hulls 

Fig. 24 and Fig. 25 present a comparison of the wave patterns and wall shear stress on the hull 

surface for the original and optimal hull forms, respectively. As can be seen from Fig. 24, the bow 

waves of the optimized hull forms are reduced compared with the original hull, and the shoulder 

waves and stern waves are also reduced or cancelled for the optimal hull forms. All of these physical 

phenomena illustrate why the total resistance of the optimal hull forms has been reduced. The wall 

shear stress distribution of the bow section undergoes a significant change for the optimal hull forms, 

especially near the bow contour line, as shown in Fig. 25. 

 
(a) Scheme A 



 
(b) Scheme B 

Fig. 24. Comparison of the wave patterns 

 
Fig. 25. Comparison of the wall shear stress on the hull surface 

 

7. Conclusions and future work 

 

By changing the shape of the bow of a fishing boat, a practical ship hull form optimisation 

framework was presented in this study for reducing the total resistance in calm water at the design 

speed (Fr=0.59), using a hybrid algorithm. 

The Simulation Based Design optimisation approach comprises of three main parts: a flow solver 

for evaluating the objective function, an optimisation algorithm for changing the design variables, and 

a geometry modification method for changing the model. For the purpose of illustration, firstly, a 3-D 

numerical tank was built to predict the total resistance, sinkage and trim of a fishing boat in calm 

water using the RANS-VoF solver. The numerical modelling, time step selection, mesh generation, 

and boundary conditions were all presented above. To estimate the discretisation errors of the CFD 

model used in this study, a verification study was undertaken. The results show that grid-spacing and 



time-space convergence studies for the total resistance coefficient tend to monotonic convergence. 

Next, a hybrid algorithm was developed, and its detail was presented including the LHD technique 

and NLPQL algorithm. Following this, a geometry regeneration method was listed to alter the shape 

of the bow with four and two design variables, respectively. Then, four examples of possible 

deformations of the fishing boat were shown to illustrate the practicability of the ASD technique. It 

was demonstrated that a new fishing boat geometry can be obtained using the ASD technique in less 

than one minute with few variables, improving the optimisation efficiency. 

The optimisation framework in this study was then carried out for a single velocity with a single 

objective. After the completion of the optimisation, two optimal hulls were obtained. Then, the total 

resistance, sinkage, trim, and flow field were compared for the original hull and the optimal hulls. The 

optimisation loop achieved a total resistance reduction of 3.89% and 5.70% for Scheme A and Scheme 

B, respectively. It can be concluded that a suitable bow contour line is more beneficial to reduce the 

total resistance for a fishing boat. The bow waves, shoulder waves, stern waves and the wall shear 

stress on the hull surface of the optimized hull forms were reduced or cancelled compared with the 

original hull. The sinkage and trim of the optimal hull form were reduced by 1.59% and 20.24% for 

Scheme A, and they were decreased by 0.66% and 8.45% for Scheme B. This indicates that the trim is 

more sensitive than the sinkage for new hull forms. The optimisation results show that the 

optimisation framework developed in this paper can be used to optimise the fishing boat, which can 

also provide technical support and a theoretical basis for designing green ships. 

As the performance of the fishing boat in waves is different from its behaviour in calm water, further 

studies will focus on the ship hull form design optimisation in waves. A total resistance of a fishing 

boat in waves will be used as the objective function, and an optimal ship hull form will be obtained to 

meet the actual navigation condition. 
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