

He, Xiangyu and Xie, Enyuan and Islim, Mohamed Sufyan and Purwita, Ardimas and McKendry, Jonathan J. D. and Gu, Erdan and Haas, Harald and Dawson, Martin D. (2018) Deep UV micro-LED arrays for optical communications. In: International Conference on UV LED Technologies & Applications Conference (ICULTA-2018), 2018-04-22 - 2018-04-25, MELIÃ Hotel Berlin. ,

This version is available at https://strathprints.strath.ac.uk/65306/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (<u>https://strathprints.strath.ac.uk/</u>) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

Deep UV micro-LED arrays for optical communications

<u>Xiangyu He</u>,¹ Enyuan Xie,¹ Mohamed Sufyan Islim, ² Ardimas Purwita, ² Jonathan J. D. McKendry, ¹ Erdan Gu,^{1*} Harald Haas, ² Martin D. Dawson¹

¹Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, G1 1RD, UK

and

²Li–Fi R&D Centre, the University of Edinburgh, Institute for Digital Communications, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK

*Contact email: erdan.gu@strath.ac.uk

The Institute of Photonics is a member of the Scottish Universities Physics Alliance

Copyright Institute of Photonics 2014

Content

- Optical communications based on the UV band
- GaN-based µLED array
- Design, fabrication and performance of the UV-C µLED array
- Free-space optical communication based on the UV-C µLED array
- Summary and future work

Optical communication based on UV band

UV band based optical communication system

- Advantages
 - Ultraviolet radiation absorbed by the ozone layer in Earth's stratosphere¹
 - High-security communication link in the upper atmosphere
 - Data transmission with low solar background noise for outdoor communication
 - Strongly scattering in the air caused by abundant molecules and aerosols
 - Non-line-of-sight short-range optical communication
- Disadvantages
 - Quite low data transmission rate compared with visible light communication
 - Low modulation speed of conventional deep UV light source

Need to develop new deep UV light sources with high data transmission performance

¹Zhengyuan, Xu., Ultraviolet Communications. Topics in Optical Communications, 2008.

GaN-based µLED array

GaN-based micro-LED (μ LED) array with element size less than 100 μ m

- Advantages
 - Higher operation current & power densities
 - Excellent thermal properties
 - Heat dissipation through high surface-tovolume ratio
 - ➢ Higher modulation bandwidth over 600 MHz¹
 - o Small resistance-capacitance constant
 - High operation current density leading to the short carrier lifetime

Micro-stripes

Matrix-addressable

¹Islim, M.S., et al., Towards 10 Gb/s OFDM-based visible light communication using a GaN violet micro-LED. Photonics Research, 2017.

²S. Rajbhandari et al., "A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications", Semicond. Sci. Technol., 32, 023001 (2017).

- Excellent performance for visible light communications²:
 - Over 7 Gb/s OFDM visible light communication achieved by using a single µLED

Individually-addressable via CMOS driver arrays

Design, fabrication and performance of the UV-C µLED array

GaN based UV-C LED wafer

Typical deep UV LED wafer structure¹

Design of 15-segment array

- Flip-chip configuration
- Emission area of each pixel is roughly equal to a circular pixel with a diameter of 26 µm

¹Zetian, Mi., et al., III-Nitride Semiconductor Optoelectronics. Elsevier Science & Technology, 2017.

Design, fabrication and performance of the UV-C **µLED** array

µLED element etching

etching

Mesa and bonding pad N-contact and n-electrode deposition

SiO₂ growth for isolation layer & Metal deposition for p-electrodes

- Pd as p-type contact and reflecting ٠ mirror
- Ti/Au as metal track and n-type contact ٠
- **Two ICP etching steps to further reduce** ٠ the capacitance of µLED array

- Over 3.4 kA/cm² DC operation current density for a single µLED element (20 mA)
- Over 34 W/cm² optical power density for a single μ LED element (196 μ W)
- Over 400 MHz electrical to electrical modulation bandwidth for a single μLED element at 1.8 kA/cm²
- Bandwidth performance is limited by the APD detector used

Free-space optical communication based on the UV-C µLED array

Modulation scheme used for optical communication demonstration

Transmitting binary bit sequences (eg. 101100010110...), usually combined into multi-bit *symbols*

Free-space optical communication based on the UV-C µLED array

Experiment set-up for optical communication

- Waveform Generator: Keysight 81180B
- AMP: ZHL-6A-S+
- Bias-T: SHF BT45-D
- APD detector: APD430A(/M)
- Oscilloscope: MS 07104B

- DC bias of OOK: 8 mA
- DC bias of PAM-4 and OFDM: 10 mA
- Peak to peak voltage of OOK: 2V
- Peak to peak voltage of PAM-4 and OFDM: 7.11 V
- 400 MHz bandwidth used in OOK
- 500 MHz bandwidth used in PAM-4 and OFDM

Free-space optical communication based on the UV-C μLED array

OOK @ 800 Mbps

- Source of distortion: the additive noise, attenuation in the channel, and inter-symbol interference
- Adaptive equalizer: based on recursive least squares updating algorithm is used to mitigate the distortion
- 800 Mbps data rate is achieved at minimum BER using OOK modulation scheme

- 1.1 Gbps data rate is achieved at the forward error correction level using OFDM
- 1.4 Gbps data rate is achieved at the forward error correction level using PAM-4
- The data transmission performance of the UV µLED element is limited by the APD detector

Summary and future work

- The data rate achieved is more than 10 times higher than previously published work
- Longer data transmission distance when using a single UV-C LED element as a light source
- Measured µLED element in this work without heatsink
- New design to improve the optical power
- Apply high bandwidth photodetector

Comparison of UV communication system 1

Light source	Modulation Scheme	Photo Detector	Transmission Power	Channel Length	Data Rate
265 nm mercury-xenon lamp	PPM	PMT	25W	1.6 km	1.2 Mbps
253 nm mercury-argon lamp	PPM	PMT	5W	0.5 km	10 kbps
253 nm low pressure mercury lamp	FSK	PMT		6 m	1.2 kbps
265 nm LED arrays	OOK/PPM	PMT	43 mW	10 m	2.4 kbps
294 nm LED	OFDM	APD	190 µW	8 cm	71 Mbps
262 nm µLED	PAM-4/OFDM	APD	196 µW	30 cm	>1 Gbps

- **PPM:** pulse-position modulation
- **PMT:** photomultiplier tube

• **FSK:** Frequency-shift keying

¹Xiaobin, Sun., et al., 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. Optical express, 2017.

INSTITUTE OF PHOTONICS **University of**

Strathclyde

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/K00042X/1 "**Ultra-parallel Visible Light Communications**"

IGHT

COMMUNICATIONS

up-vlc.photonics.ac.uk

