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Abstract: Band selection is an important data dimensionality reduction tool in hyperspectral images (HSIs). To identify the 

most informative subset band from the hundreds of highly corrected bands in HSIs, a novel hyperspectral band selection 

method using a crossover based gravitational search algorithm (CGSA) is presented in this paper. In this method, the 

discriminative capability of each band subset is evaluated by a combined optimization criterion, which is constructed based 

on the overall classification accuracy and the size of the band subset. As the evolution of the criterion, the subset is 

updated using the V-shaped transfer function based CGSA. Ultimately, the band subset with the best fitness value is 

selected. Experiments on two public hyperspectral datasets, i.e. the Indian Pines dataset and the Pavia University dataset, 

have been conducted to test the performance of the proposed method. Comparing experimental results against the basic 

GSA and the PSOGSA (hybrid PSO and GSA) revealed that all of the three GSA variants can considerably reduce the band 

dimensionality of HSIs without damaging their classification accuracy. Moreover, the CGSA shows superiority on both the 

effectiveness and efficiency compared to the other two GSA variants. 

 

1. Introduction 

Hyperspectral remote sensors can synchronously 

record hundreds of narrow spectral bands from the same 

scene. The obtained spectral data can characterise the 

properties of different materials and potentially be helpful 

for the analysis of different objects in the scene. However, 

due to many of the spectral bands are highly related, the 

hyperspectral images (HSIs) are always of high degree of 

information redundancy and requires a lot of storage space 

[1]. Although too few spectral bands are hard to produce 

acceptable accuracy, the serious information redundancy in 

HSIs also wrecks the data analysis accuracy, and causes the 

well-known Curse of Dimensionality or Hughes 

Phenomenon [2-3]. Consequently, extracting the most 

informative data from the original spectral bands and 

thereby reducing the information redundancy has become an 

essential problem for the analysis and application of HSIs 

[4].  

Feature extraction is a typical kind of technique for 

mitigating the data dimensionality reduction problem [5-6]. 

Many of the feature extraction algorithm are constructed 

based on the geometric and affine transformations, such as 

Principal Component Analysis (PCA) [7], Maximum-Noise 

Fraction transformation (MNF) [8], Independent Component 

Analysis (ICA) [9], and wavelet-based transforms [10]. 

Although these aforementioned methods have been widely 

utilized in the data compression of HSIs, they may lead to 

physically non-interpretable results since they always realize 

the compression purpose by changing the original physical 

meaning of the original data [11].  

In contrast, band selection methods select the most 

informative band subset from the original spectral bands 

based on statistical analysis and optimization criteria [12], 

which can keeps the original physical meaning of each 

sleeted band. That is to say, band selection can preserve 

useful information in a more complete way and reduce the 

data dimension of HSIs as well. 

Exhaustive algorithm is the most basic method for 

selecting subset of bands on the base of the statistical 

analysis and optimization criteria. In this method, each kind 

of band combination needs to be verified and then the most 

suitable subset can be obtained. That is, if a HSIs has D 

spectral bands, the exhaustive algorithm will have to test 2D 

times band combination to search for the most informative 

subset bands. If the D is a large number, exhaustive 

algorithm becomes impracticable. Thereby, many nature-

inspired algorithms (NAs) have been introduced to reduce 

the computational time of band selection in recent years. For 

example, classical NAs including Genetic Algorithm (GA) 

[13], Particle Swarm Optimization (PSO) [1, 14], and Ant 

Colonization Optimization (ACO) [15] etc. have been 

adapted to the area of band selection for HSIs.  

Gravitational Search Algorithm (GSA) is a recently 

proposed NA inspired by the law of Newton’s gravity and 
mass interactions [17]. Owing to its simple concept and 

superior performance, GSA has attracted much attention 

from researchers in different application areas [17-19]. 

Various experimental results have demonstrated the high 

computational efficiency and the competitive convergence 

performance over many other NAs [17, 20-21]. Thanks to 

these advantages, GSA has attracted increasing interest in 

the field of engineering optimization, such as parameter 
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identification [22], data clustering [23], image classification 

[24], and thresholding [25].  

Also, these aforementioned advantages and 

successful application of GSA make it a promising choice 

for the feature/band selection problems. For example, in 

[26], the optimization behaviours of GSA are combined 

together with the speed of Optimum-Path Forest (OPF) 

classifier to provide a fast and accurate framework for 

feature selection. In [27], an improved version of the binary 

GSA is proposed and used as a tool to select the best subset 

of features with the goal of improving classification 

accuracy. In [28], GSA is utilized to perform feature subset 

selection for intrusion detection system. In [29], a GSA 

based automatic unsupervised feature selection method 

which requires no prior knowledge of the data to be 

classified is developed. The chaotic maps based GSA also 

has been applied to the band selection of airborne 

hyperspectral image [30].  

Nevertheless, due to the fact that GSA cannot 

maintain and utilize the global best position achieved until 

now (Gb) in the search process, the basic GSA is inclined to 

confront weak exploitation when handling complex 

problems [31-32]. In this paper, to alleviate the 

aforementioned problem, a crossover based GSA (CGSA) is 

proposed and extended to recognize the most informative 

band subset for HSIs. In the proposed method, a Gb based 

crossover is randomly inserted to GSA based on a crossover 

probability. Therefore, the CGSA can randomly inherit 

some promising search directions from Gb and largely 

enhance its exploitation ability. When extending CGSA to 

band selection, we first code the position of each particle in 

CGSA within a binary space. Each particle represents a 

candidate band subset.  Subsequently, each candidate subset 

is evaluated based on a combined optimization criterion 

constructed by the overall classification accuracy and the 

size of the candidate subset. Finally, the band subset with 

the smallest fitness values, i.e. the subset with less bands 

and more discriminative spectral information is obtained.  

 The remainder of this paper is organized as follows. 

The general processing of band selection and the basic GSA 

is briefly described in Section 2. Section 3 introduces the 

details of the proposed CGSA-based band selection method. 

In Section 4, the experimental data, comparison results, and 

analysis are presented. At last, Section 5 provides a 

conclusion for this work.   

2. Band selection and basic GSA 

 

2.1. Band selection based on NAs 
 

In the band selection methods based on NAs, the 

problem of band selection is modelled as an optimization 

problem in a D-dimensional space, where D stands for the 

number of spectral channels. In such a case, each binary 

coded candidate solution is associated with a subset of bands 

in the D-dimensional space. The candidate solutions are then 

updated and optimized following the optimization of NAs. 

The main frameworks of NAs based band selection methods 

include four main steps: initial subset generation, subset 

evaluation, search strategy for subset update, and stopping 

criteria. The initialization and stopping are two common 

processes in NAs while the other two steps perform 

important role for the effectiveness of the band selection 

method. Although search strategies of different NAs are 

various, two key and general issues included in subset 

evaluation and search strategy are the optimization criterion 

for subset evaluation and the transfer function for mapping a 

continuous search space to a discrete search space. 

 
2.1.1 Optimization criterion: The optimization criterion is 

used as the fitness function to evaluate the quality of the 

selected bands. For the supervised band selection, the most 

widely applied optimization criterion is the maximum of 

classification overall accuracy (OA). For a candidate 

solution, the corresponding OA is calculated by: 

    頚畦 噺 デ 寵日日灘迩日転迭デ デ 寵日乳灘迩日転迭灘迩乳転迭 抜 などど   (1) 

where Nc is the number of classes, Cii is the number of 

pixels correctly assigned to class i, Cij is the number of 

pixels assigned to class j, which belongs to class i. 

Indeed, for each candidate solution, we need to train 

and test a classifier to compute the OA. A candidate solution 

with a higher OA are always considers as a more 

informative subset with higher separability. 

 

2.1.2 Transfer functions: Most of the NAs are proposed 

originally for solving the continuous search space other than 

the discrete search space. Thus for solving the band 

selection problem, a transfer function to construct the binary 

version of a NA and preserve the concepts of the search 

process is very important. The capability of the transfer 

function is to map velocity values of each candidate solution 

to probability values and force particles to move in a binary 

space [33]. Two of the main families of transfer functions 

are S-shaped and V-shaped transfer functions [34], as shown 

in Eq. (2) and Eq. (3), respectively. The equations and 

figures of four S-shaped and four V-shaped transfer 

functions are given in Fig. 1.  

菌衿衿芹
衿衿緊鯨な┺ 劇岫検岻 噺 怠怠袋勅貼鉄熱 ┸鯨に┺ 劇岫検岻 噺 怠怠袋勅貼熱 ┸鯨ぬ┺ 劇岫検岻 噺 怠怠袋勅貼熱鉄 ┸鯨ね┺ 劇岫検岻 噺 怠怠袋勅貼熱典 ┸

            (2) 

 

菌衿衿芹
衿衿緊撃な┺ 劇岫検岻 噺 嵳erf岫ヂ訂態 検岻嵳┸撃に┺ 劇岫検岻 噺 】tanh岫検岻】┸撃ぬ┺ 劇岫検岻 噺 鞭 槻紐怠袋槻鉄鞭┸撃ね┺ 劇岫検岻 噺 嵳態訂 arctan岫訂態 検岻嵳 ┻

            (3) 

where y is the value of a velocity vector’s element in a 

dimension, T(y) is the  corresponding probability calculated 

based on the transfer functions as shown in Eq. (2)-Eq. (3). 

As shown in Fig. 1, when the value of velocity 

vector’s elements bigger than 0, although the shapes of the 

curves are different, both the S-shaped and V-shaped transfer 

functions assign an increased probability of position vector’s 

elements change (from 0 to 1 or vice versa) as the value of 

velocity increased. When the value of velocity vector’s 

elements are smaller than 0, the S-shaped transfer functions 

assign a decreased probability of position vector’ elements 

change as the value of velocity increased as shown in Fig. 
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1(a). In contrast, the V-shaped transfer functions assign an 

increased probability of position vector’ elements change as 

the value of velocity increased as illustrated in Fig. 1(b). In 

[34], the properties and effectiveness of the two families of 

transfer functions have been investigated. It is demonstrated 

that the V-shaped transfer functions, especially the V4 

functions performed much better than the S-shaped transfer 

functions in binary PSO algorithms. 

 

 
(a)                                          (b) 

Fig. 1 The S-shaped and V-shaped families of transfer 

functions. (a) S-shaped transfer function (b) V-shaped 

transfer functions. 
 

2.2. Basic GSA 
 

In the processing of GSA, each particle 散沈 噺岷捲沈怠┸ 捲沈態 ┸ ┼ ┸ 捲沈帖峅  (i={1, 2,…, NP}) is defined as a mass 

object moving through the D-dimensional search space with 

a velocity  惨沈 噺 岷懸沈怠┸ 懸沈態┸ ┼ ┸ 懸沈帖 . NP denotes the size of the 

population. The velocity of each particle is initialized to 

zeros and the update relies on the gravitational forces 

exerted by its neighbours following the law of gravity [17]. 

According to the law of gravity, the gravitational force 

between two particles is directly proportional to their masses 

and inversely proportional to their distance. Therefore, we 

can follow that with the gravitational force, the lighter mass 

will be attracted and moves towards the heavier ones. For a 

population with NP particles in GSA, all the particles will 

move towards those particles that have heavier masses, and 

ultimately realize the convergence of all the particles [17].  

Due to the mass of particle performing a very 

important role in the processing of GSA, the masses of 

particles are calculated from their fitness values as follows: 券兼血件建沈痛 噺 血件建沈痛 伐 拳剣堅嫌建痛決結嫌建痛 伐 拳剣堅嫌建痛 岫ね岻 警欠嫌嫌沈痛 噺 券兼血件建沈痛デ 券兼血件建珍痛朝珍退怠 岫の岻 
where t is the current iteration, 血件建沈痛  is the fitness value of 

the particle i at current time, 警欠嫌嫌沈痛  represents the mass of 

particle i, 拳剣堅嫌建痛  and 決結嫌建痛  denotes the worst and best 

fitness values of a population in the current time. For a 

maximization problem, 拳剣堅嫌建痛 and 決結嫌建痛 are defined by: 拳剣堅嫌建痛 噺 min珍樺岶怠┸┼┸朝岼 血件建珍痛 岫は岻 決結嫌建痛 噺 max珍樺岶怠┸┼┸朝岼 血件建珍痛 岫ば岻 
For a minimum problem, the definition of 拳剣堅嫌建痛 and 決結嫌建痛 
is the other way round. 

For the gravitational force, the force acting on the 

particle i from the particle j in each dimension d at the t-th 

iteration is calculated follows 繋沈鳥┸珍鳥痛 噺 罫痛警欠嫌嫌沈痛 抜警欠嫌嫌珍痛迎沈珍痛 髪 綱 盤捲珍鳥痛 伐 捲沈鳥痛 匪岫ぱ岻 

where 警欠嫌嫌沈痛  and 警欠嫌嫌珍痛  are the masses of the particles i 

and j in the current iteration, 迎沈珍痛  is the Euclidian distance 

between the particles i and j in iteration t; İ is a small 

positive constant, which is defined as 10^-6 in this paper,  捲沈鳥痛  and 捲珍鳥痛  represents the position of the i-th and j-th 

particles in the d-th dimension in iteration t, Gt is a 

decreasing gravitational constant for controlling the search 

accuracy, which is defined as 罫痛 噺 罫待 抜 exp 磐伐糠 抜 建劇陳銚掴卑岫ひ岻 
where G0 is the initial value of gravitational constant,  is a 

decrease coefficient, t is the current iteration, and Tmax is the 

maximum number of iterations. In the basic GSA, the G0  

and  is set to 20 and 100, respectively.  

Generally, in the iteration t, the total gravitational 

force acts on the particle i in the d-th dimension, 繋沈鳥痛 , should 

be the sum of all the gravitational forces exerted from other 

N-1 particles. In the basic GSA, to promote the balance 

between exploration and exploitation as well as give a 

stochastic characteristic to GSA, the 繋沈鳥痛  is defined as the 

randomly weighted sum of the forces exerted from Kbest 

particles as given below: 繋沈鳥痛 噺布 堅欠券穴珍 ゲ 繋沈鳥┸珍鳥痛朝牒珍樺懲党刀棟盗┸珍貯沈 岫など岻 
where jrand  represents a random number between interval 

[0,1], Kbest is an archive that stores the particles ranked in the 

first K position after fitness sorting in each iteration, the 

value of K is initialized as NP in the beginning and linearly 

decreased with time down to one. Obviously, with the Kbest 

model, each particle attracted by less and less particles in the 

iterations. That is, the exploration fades out while the 

exploitation fades in as time goes by. Finally, all the 

particles tend to refine the local area around the global best 

particle. This operation plays a crucial role in the balance of 

exploration and exploitation in basic GSA. 

Following the obtained gravitational force and the 

law of motion, the acceleration of the particle i in the d-th 

dimension at iteration t, 欠沈鳥痛 , can be obtained by 欠沈鳥痛 噺 繋沈鳥痛警欠嫌嫌沈痛 岫なな岻 
 Therefore, based on the obtained acceleration, the 

velocity and the position of the particle i in iteration t can be 

updated as follows: 懸沈鳥痛袋怠 噺 堅欠券穴沈 抜 懸沈鳥痛 髪 欠沈鳥痛 岫なに岻 捲沈鳥痛袋怠 噺 捲沈鳥痛 髪 懸沈鳥痛袋怠岫なぬ岻 
where 堅欠券穴沈 is a uniform random variable in the interval [0, 

1].  

3. CGSA-based band selection 

 

3.1. The proposed CGSA 
 

In CGSA, a Gb guided crossover operator is 

introduced to promote the exploitation ability of the basic 

GSA by: 捲沈鳥痛袋怠 噺 罫決鳥痛 髪 堅欠券穴 ゲ 岫捲沈鳥痛袋怠 伐 喧決珍鳥痛 岻岫なね岻 
where 罫決鳥痛  denotes the d-th dimension of the global best 

position of the population achieved until now ( 札産 噺岷訣決怠┸ 訣決態┸ ┼ ┸ 訣決帖峅 ), 喧決珍鳥痛  is the d-th dimension of the 

personal best position of the particle j (randomly selected 
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from the NP particles) achieved until now ( 皿産珍 噺岷喧決珍怠 ┸ 喧決珍態┸ ┼ ┸ 喧決珍帖峅 ), and rand is a uniform random 

variable in the interval [0, 1]. Obviously, the promising 

information from the both the Gb and Pbj are all combined 

into the new position of the particle to perform a more 

refined exploitation around the promising areas.  

In the evolution process, after calculating the velocity 

of each particle, CGSA executes the proposed crossover 

operation to constitute a new trial solution. The new position 

update equations in CGSA are formulated as follows: 崕捲沈鳥痛袋怠 噺 捲沈鳥痛 髪 懸沈鳥痛袋怠┸件血堅欠券穴 隼 喧頂 ┸捲沈鳥痛袋怠 噺 罫決鳥痛 髪 堅欠券穴 ゲ 盤捲沈鳥痛 伐 喧決珍鳥痛 匪┸頚建月結堅拳件嫌結┻ 岫なの岻 
where pc is the crossover rate which controls the probability 

of inheriting from the Gb. For a healthy search process, the 

optimization algorithm should emphasize on the exploration 

in the earlier search stages while paying more attention to 

the exploitation in the latter search stages. Therefore, the 

value of pc is adaptively adjusted along with the iteration 

following: 喧頂 噺 な 伐 岾建 劇陳銚掴斑 峇岫なは岻 
With the adaptively adjusted pc, particles gains increased 

probability to learn from the Gb with evolution of the 

population. The flowchart of the proposed CGSA is given in 

Fig. 2. 

 

Fig. 2 Flowchart of CGSA. 

 

3.2. CGSA based band selection 
 

To adapt CGSA to the problem of hyperspectral band 

selection, some modifications involve population 

initialization and subset generation should be done. 

Accordingly, the CGSA based hyperspectral band selection 

includes a four step routine: (1) population initialization and 

band mapping, (2) subset evaluation based on supervised 

classification, (3) subset update based on CGSA, and (4) 

stopping criteria. Detailed description of each step is 

presented in the followings subsections 3.2.1-3.2.4. 

 
3.2.1 Population initialization and band mapping: For a 

HSIs with D bands, we need to initialize a population with 

NP candidate band subsets first. The value in each 

dimension is randomly set to 0 or 1. That is, each particle 散沈 噺 岷捲沈怠 ┸ 捲沈態┸ ┼ ┸ 捲沈帖峅  stands for a candidate band subset 

with D dimension. For each particle, if the value of 捲沈珍  
(j={1,2,…,D}) is 0, the j-th band of the original HSIs is 

abandoned. Otherwise, if the value of 捲沈珍  is 1, the j-th band 

of the original HSIs is selected. Obviously, the population 

initialization process is also a band mapping step for the 

HSIs. An illustration of the band mapping is given in Fig. 3. 

 

Fig. 3  Illustration of the band mapping. 

 

3.2.2 Subset evaluation based on supervised 
classification: The evaluation of band subset, i.e. the fitness 

evaluation of each particle, relies on the objective function 

or optimization criterion. Because the goal of band selection 

is to identify the most informative bands from the original 

bands of HSIs, a better band subset should contribute as 

much as possible to the classification accuracy while 

containing as few bands as possible. Accordingly, an 

objective function that combines the overall classification 

accuracy of the Support Vector Machine (SVM) classifier 

and number of bands is utilized in this paper follows 血件建岫散沈岻 噺 OA岫散沈岻 伐 ù 抜 経長経 岫なば岻 
where 頚畦岫散沈岻 is the overall classification accuracy, ù is a 

weight factor for balancing the classification accuracy and 

the size of the i-th band subset. Note that the value of Db is 

the sum of each dimension of the particle 散件, i.e. the number 

of selected bands.  

From the objective function we can conclude that a 

larger ù  will make the band selection method emphasize 

more on the dimensionality reduction while a smaller ù 

makes the band selection method concentrate more on the 

classification accuracy. In this paper, the parameter ù  is 

experimentally set to 0.6.  

 

3.2.3 Subset update based on CGSA: After obtaining 

the fitness of each candidate solution, the velocity of them 

can be updated following Eqs. (4)-(16). Then we need to 

update the position of each particle based on the transfer 

functions. Following the introduction in Section 2.2.2, the 

V-shaped transfer functions V2 is adapted in this paper. That 

is, the velocity of a particle can be associated to the 

probability of changing its state as 
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捲沈鳥痛袋怠 噺 崕捲沈鳥痛袋怠┸件血ッ捲沈鳥痛袋怠 伴 堅欠券穴┸潔剣兼喧健結兼結券建岫捲沈鳥痛 岻┸頚建月結堅拳件嫌結┻拳月結堅結ッ捲沈鳥痛袋怠 噺 】建欠券月岫懸沈鳥痛袋怠岻】岫なぱ岻 
where 潔剣兼喧健結兼結券建岫捲沈鳥痛 岻  denote the complement of the 

original binary value of 捲沈鳥痛 , i.e., if the original value of 捲沈鳥痛  

is 0 the 潔剣兼喧健結兼結券建岫捲沈鳥痛 岻 is set to 1, vice versa. 

 

3.2.4 Stopping criteria: Following the process of CGSA, 

the population keeps iterative evolution and the band subset 

gradually optimizes until a predesigned stopping criterion is 

reached. Typical stopping criteria include maximum number 

of iterations (Tmax), maximum fitness evaluations times, and 

so on. In this study, the Tmax is chosen as the stopping 

criterion. Finally, when the algorithm reaches the maximum 

number of iterations, the particle that possesses the 

minimum fitness values is outputted as the optimal band 

subset.  

4. Experiment results and discussions 

To validate the proposed CGSA for hyperspectral 

band selection, the binary GSA and Binary PSOGSA 

(hybrid PSO and GSA) are utilized to perform compared 

band selection on two famous hyperspectral remote sensing 

image, i.e. the “Indian Pines” and “Pavia University”. Both 
of the HSIs can be obtained from [35]. 

 

4.1. Data Description 
 

4.1.1 Indian Pines. The Indian Pines is built by the 

Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 

sensor in North-western Indiana. The AVIRIS has 224 

bands with wavelength range from 400nm to 500nm. Due to 

the fact that the values of 4 spectral bands of the AVIRIS 

are 0 and 20 spectral bands of the sensor are easily affected 

by the water absorption band, these 24 spectral bands have 

been removed. Accordingly, the tested Indian Pines image 

in this paper contains only 200 bands. The pseudo-colour 

image composed by bands 27 (R), 50 (G) and 127 (B) with 

145×145 pixels is shown in Fig. 4 (a). The corresponding 

ground truth reference image that contains 16 different 

classes is shown in Fig. 4(b). As Fig. 4(b) illustrates the fact 

that Indian Pines dataset is very complex and not all of the 

pixels belong to the 16 classes, many pixels not related to 

any class were divided into the background with dark blue 

colour. The number of samples utilized in this paper is given 

in Table 1. 

 

    
             (a)                                         (b)  

Fig. 4 Indian Pines scene. (a) Original image  (b) sample 

image of Indian Pines 

 
4.1.2 Pavia University. The Pavia University dataset is 

acquired by the Reflective Optics System Imaging 

Spectrometer (ROSIS) sensor during a flight campaign over 

Pavia, northern Italy. Pavia University scene is 610*340 

pixels with a number of spectral bands 103. The geometric 

resolution is 1.3 meters. The ground truths differentiate 9 

classes. The pseudo-colour image composed by bands 97 

(R), 28 (G) and 5 (B) is shown in Fig. 5(a). The 

corresponding ground truth reference image that contains 9 

different classes is shown in Fig. 5(b). As Fig. 5(b) 

illustrated, due to the fact that Pavia University dataset is 

very complex and not all of the pixels belong to the 9 

classes, many pixels not related to any class were divided 

into the background with dark blue colour. The number of 

samples utilized in this paper is given in Table 2. 

 

Table 1 Samples of Indian Pines. 

Number Class GT Trainning Validation Test 

1 Alfalfa 54 8 7 39 

2 Corn-notill 1434 25 25 1384 

3 Corn-mintill 834 25 25 784 

4 Corn 234 25 25 184 

5 Grass-pasture 497 25 25 447 

6 Grass-trees 747 25 25 697 

7 Grass-pasture-mowed 26 8 7 11 

8 Hay-windrowed 489 25 25 439 

9 Oats 20 8 7 5 

10 Soybean-notill 968 25 25 918 

11 Soybean-mintill 2468 25 25 2418 

12 Soybean-clean 614 25 25 564 

13 Wheat 212 25 25 162 

14 Woods 1294 25 25 1244 

15 Buildings-Grass-Trees-Drives 380 25 25 330 

16 Stone-Steel-Towers 95 25 25 45 
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Table 2 Samples of Pavia University. 

Number Class GT Training  Validation  Test 

1 Asphalt 6631 331 331 5969 

2 Meadows 18649 932 932 16785 

3 Gravel 2099 104 104 1891 

4 Trees 3064 153 153 2758 

5 Painted metal sheets 1345 67 67 1211 

6 Bare Soil 5029 251 251 4527 

7 Bitumen 1330 66 66 1198 

8 Self-Blocking Bricks 3682 184 184 3314 

9 Shadows 947 47 47 853 

 

 
(a)                                 (b) 

Fig. 5 Pavia University scene. (a) Original image (b) 

sample image 

 

4.2. Comparison results 
 
4.2.1 Parameter Settings: To perform fair experiments, 

all the basic GSA, PSOGSA, and CGSA based band 

selection methods utilize the same objective function shown 

in Eq. (15). In addition, the initial gravitational constant G0, 

the decrease coefficient ゎ, the population size (NP), and the 

maximum number of iterations (Tmax) of the basic GSA, 

PSOGSA, and CGSA were set to 20, 100, 10, and 10, 

respectively. Moreover, to decrease the influence of 

randomicity, all the three compared algorithms perform 30 

independent runs on each of the datasets. 

 

4.2.2 Experimental results and analysis: The 

performance of GSA, PSOGSA, and CGSA are compared 

based on five measures including CPU processing time for 

selecting optimal subset (STCPU), the number of bands in the 

optimal subset (Nsel), CPU processing time for image 

classification based on the optimal subset (CTCPU), the 

overall  classification accuracy (OA) and the Kappa 

Coefficient (Kappa). For the two tested public datasets, the 

average values of the five measures and the corresponding 

error bar figures produced by the three compared algorithms 

are reported in Table 3 and Figs. 5-6. Moreover, the CPU 

processing time for image classification based on the 

optimal subset (CTCPU), the overall classification accuracy 

(OA) and the Kappa Coefficient (Kappa) of SVM classifier 

using all the hyperspectral bands are also reported in Table 3. 

The best results in each row are bolded.  
 

 
Fig. 6 Statistical analysis of the 5 measures using error bar 

in Indian Pines dataset. 

 

From Table 3, we can conclude that all of the three 

GSA variants based band selection methods can effectively 

reduce the dimension and improve the classification 

accuracy of the HSIs on both the Indian Pines and Pavia 

University datasets. For example, for the Indian Pines image, 

Table 3 The results of hyperspectral band selection. 

Dataset method STCPU(s) Nsel CTCPU(s) OA(%) Kappa 

Indian Pines 

all bands -- -- 45.961 73.392 70.022 

GSA 1.106 97 24.308 75.167 71.934 

PSOGSA 0.972 89 21.948 75.408 72.251 

CGSA 0.957 87 21.678 75.620 72.461 

Pavia University 

all bands -- -- 333.88 92.703 90.145 

GSA 26.116 57 195.264 92.705 90.154 

PSOGSA 18.717 56 194.916 92.729 90.190 

CGSA 19.663 54 192.644 92.744 90.205 
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the overall  classification accuracy (OA) has been increased 

from 73.392% to 75.167%, 75.408%, and 75.620% whilst 

the size of the optimal band subset has been reduced from 

200 to 97, 89, and 87 after the band selection operation 

based on the basic GSA, PSOGSA, and CGSA, respectively. 

Moreover, because of the fact that the size of the bands were 

largely reduced, these GSA based methods have 

considerably reduced the CPU times for image classification 

(CTCPU). In addition,  compared to the basic GSA and 

PSOGSA based methods, the CGSA based method produced 

the highest overall classification accuracy and obtained a 

band subset with the least bands. The mean values of each 

measure shown in Fig. 6 and Fig. 7 also confirmed the 

superiority of the proposed CGSA. This may come from the 

utilization the Gb guided crossover operation which can 

promote the exploitation ability of the basic GSA. 
 

 
Fig. 7 Statistical analysis of the 5 measures using error bar 

in Pavia University dataset. 

5. Conclusion 

In this paper, a crossover based GSA (CGSA) is 

developed to construct a novel band selection method for 

HSIs. In the proposed CGSA, the global best experience of 

the whole population is maintained and utilized to guide the 

evolution of the CGSA and thereby promote the exploitation 

ability of the basic GSA. When extending CGSA for band  

selection, the optimization of band subset is performed 

based on an objective function constructed based on the 

overall classification accuracy of the SVM classifier and the 

size of the band subset. While the generation and 

optimization of the band subset mainly rely on the utilization 

of a V-shaped transfer function based CGSA. At last, the 

particle with the best fitness value is regarded as the optimal 

band subset. We conducted experiments with the Indian 

Pines and Pavia University datasets and the obtained band 

selection results were compared with that of the basic GSA 

and PSOGSA. The experimental results confirmed that all of 

the three GSA variants based band selection methods can 

efficiently identify the most informative spectral band subset 

with high classification accuracy and considerably reduce 

the band dimensionality of HSIs as well. Moreover, the 

CGSA based method displays obvious superiority compared 

to the basic GSA and PSOGSA based methods. 
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