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Abstract—Large-scale optimization has become a significant yet
challengingareainevolutionarycomputation.Tosolvethisproblem,
this paper proposes a novel segment-based predominant learning
swarm optimizer (SPLSO) swarm optimizer through letting sev-
eral predominant particles guide the learning of a particle. First,
a segment-based learning strategy is proposed to randomly divide
the whole dimensions into segments. During update, variables in
different segments are evolved by learning from different exemplars
while theones inthesamesegmentareevolvedbythesameexemplar.
Second, to accelerate search speed and enhance search diversity, a
predominant learning strategy is also proposed, which lets several
predominant particles guide the update of a particle with each pre-
dominant particle responsible for one segment of dimensions. By
combining these two learning strategies together, SPLSO evolves all
dimensions simultaneously and possesses competitive exploration
and exploitation abilities. Extensive experiments are conducted on
two large-scale benchmark function sets to investigate the influ-
ence of each algorithmic component and comparisons with several
state-of-the-art meta-heuristic algorithms dealing with large-scale
problems demonstrate the competitive efficiency and effectiveness
of the proposed optimizer. Further the scalability of the optimizer
to solve problems with dimensionality up to 2000 is also verified.

Index Terms—Global numerical optimization, large-scale opti-
mization, particle swarm optimization (PSO), segment-based
predominant learning swarm optimizer (SPLSO).
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I. INTRODUCTION

E
VOLUTIONARY optimization has witnessed great suc-

cess in many optimization problems [1]–[6] and has

been applied to many real-world applications [7]–[12] in

recent years. Owing to its easiness of understanding and

implementation, a lot of attention has been devoted to

evolutionary algorithm (EA) researches and subsequently

many different EAs have been developed, such as parti-

cle swarm optimization (PSO) algorithms [13]–[21], dif-

ferential evolution (DE) algorithms [22], [23], ant colony

optimization (ACO) algorithms [24], [25], estimation of dis-

tribution algorithms [26], [27], firefly algorithms [5], [28],

etc. In particular, since PSO was first developed by

Eberhart and Kennedy [17], [18], an ocean of PSO variants

have been proposed, such as clustering-based PSO [29], scat-

ter learning PSO [30], adaptive PSO [13], [31], comprehensive

learning PSO (CLPSO) [32], and bare bone PSO [14], [15].

Although traditional EAs have shown their excellent abil-

ities and feasibilities in low-dimensional space (less than

100-D), their performance would deteriorate dramatically

when it comes to high-dimensional space [33], which is

usually called “the curse of dimensionality.” Such inferior

performance can be attributed to the drastic and exponential

increase of the search space with the growing dimension-

ality, forming large and massive local regions that easily

cause the search process to stagnate into local optima and

result in premature convergence for traditional EAs [33], [34].

Therefore, to tackle large-scale problems (more than 500-D),

new evolution or learning strategies need to come up for EAs

to escape from being trapped at local optima.

In recent years, works on large-scale optimization problems

mainly followed two approaches.

1) Proposing cooperative coevolution (CC) strategies,

which mainly concentrate on decomposing dimensions

into groups and evolve each dimension group separately.

2) Proposing new learning strategies for traditional EAs

evolving all dimensions together, which have great

power in enhancing population diversity.

CC-based algorithms adopt the divide-and-conquer strat-

egy to decompose high-dimensional problems into smaller

subproblems. Since Potter [35] proposed such a promis-

ing CC framework, researchers have developed many

variants by utilizing different EAs (CCEAs) for large-

scale optimization, such as cooperative coevolutionary

genetic algorithm [36]–[38], cooperative coevolutionary

PSO (CCPSO) [16], [33], and cooperative coevolutionary

2168-2267 c© 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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DE (DECC) [39]–[43]. Currently, the research of CCEAs

mainly focuses on proposing a good decomposition strat-

egy, which aims to group independent variables into different

groups and simultaneously group interdependent variables into

the same group. So far, there are four kinds of decompo-

sition strategies [41]: 1) random grouping [40], [42], [43],

2) perturbation grouping [44], [45], 3) interaction adaptation

grouping [41], [46], [47], 4) model building grouping [48].

Even though CCEAs are promising for large-scale problems,

they encounter three limitations.

1) CCEAs usually need a considerable number of fitness

evaluations to obtain satisfactory solutions due to evolv-

ing each subproblem separately, especially when the

number of dimension groups is large.

2) A good decomposer has to detect dependency among

variables by using a certain number of fitness evalua-

tions [41], [45], at the sacrifice of fitness evaluations

used for evolving.

3) When the fitness landscape of the problem becomes

more and more complicated, e.g., the dynamic variable

dependency in piecewise functions, the current dimen-

sion grouping strategies embedded in CCEAs would

lose their efficiency in detecting the dependency among

variables.

The above limitations restrict the wide application of CCEAs

when faced with limited resources, such as the limited number

of fitness evaluations.

To relieve the above dilemma in CCEAs, from another

aspect, researchers attempt to develop new learning strategies

for traditional EAs to enhance the diversity, which contribute

to promoting the chances of escaping from local optima for the

population. Such new learning strategies are usually embedded

in the update of particles, which is in the form of learn-

ing from potential particles. Along this way, [49]–[54] show

their feasibility and efficiency. CMA-ES [49] equips the evo-

lution strategy (ES) with self-adaptive mutation parameters

through computing a covariance matrix and correlated step

sizes, which takes O(D2) (D is the dimension size), while sep-

CMA-ES [50] is a simple modification of CMA-ES, which

reduces the update of the whole covariance matrix to the

update of its diagonal components. Recently, a multiswarm

PSO based on feedback evolution (FBE) [54] and a com-

petitive swarm optimizer (CSO) [53] were brought up with

competitive learning strategies based on pairwise competition

between particles, which will be detailed in the next section.

Though these proposed new learning strategies have shown

feasibility on large-scale optimization, early-stagnation is still

a main challenge for EAs. To prevent from being trapped in

local optima, specific diversity enhancement strategies have to

be designed to further improve search diversity.

In order to circumvent the dilemmas that CCEAs [16], [35],

[41], [42], [45] and traditional EAs [50], [53], [54] are con-

fronted with, this paper intends to take advantage of these

two kinds of approaches and develop a novel segment-based

predominant learning (SPL) swarm optimizer (SPLSO). More

specifically, This paper contains the following components.

1) Segment-Based Learning (SL): Inspired from the facts

that exemplars made up by combining dimensions from

different exemplars would lead to potentially better

directions in orthogonal learning PSO (OLPSO) [55]

and that learning from different exemplars can greatly

enhance the diversity in CLPSO [32], an SL strat-

egy is proposed to learn segments of potentially useful

information from different exemplars. First, SL ran-

domly divides dimensions into segments. Then, for each

segment of a particle, SL lets one exemplar guide

the update of this part. Together, SL allows several

exemplars to simultaneously guide the learning of one

particle. Through this, on one hand the potentially ben-

eficial evolutionary information embedded in different

exemplars may be gathered and learned by particles;

on the other hand, the potentially useful information

in different dimensions of an exemplar may be pre-

served and gathered together. In this way, SL performs

a new way of coevolution for different dimension

segments.

2) SPL: Inspired by the competitive learning strategy in

CSO [53], this paper further couples SL with a predom-

inant learning strategy (PL), leading to a novel learning

strategy called “SPL.” SPL divides particles into rela-

tively good ones and poor ones. Then each poor particle

performs SL to learn from different good ones. That

is, each dimension segment of this particle is updated

by randomly selecting a relatively good particle as its

exemplar. In this way, SPL not only potentially intro-

duces high diversity as all predominant particles can

potentially become exemplars, but also enables an effec-

tive interaction among different dimension segments of

predominant particles, which may contribute to a fast

convergence speed.

To verify the proposed SPLSO, a series of experiments

are conducted on widely used CEC’2010 and CEC’2013

large-scale benchmark functions. The experimental results in

comparison to state-of-the-art algorithms coping with large-

scale optimization demonstrate the competitive efficiency and

effectiveness of SPLSO. In addition, the comparison results

between SPLSO and CSO [53] on 20 CEC’2010 prob-

lems with 2000-D further substantiate the good scalability of

SPLSO to higher dimensionality.

The remainder of this paper is organized as follows.

Section II introduces the classical PSO and its variants in deal-

ing with large-scale optimization. Then, SPLSO is stated in

detail in Section III. In Section IV, experiments are conducted

to verify the effectiveness of SPLSO in comparison with five

state-of-the-art algorithms. At last, Section V concludes this

paper.

II. RELATED WORK

Without loss of generality, a D-dimensional minimization

problem considered in this paper can be formulated as

min f (x), x ∈ RD (1)

where D is the dimension size. In this paper, the function value

is considered as the fitness value of a particle.
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A. PSO

PSO [17], [18] simulates the swarm behaviors of social ani-

mals such as bird flocking, and is modeled on an abstract

framework of “collective intelligence.” Usually, particles in a

swarm represent points in the D-dimensional search space and

two attributes, namely position and velocity, are assigned to

each particle. Suppose the position and velocity of the swarm

are denoted as X and V, with the ith particle identified as

Xi and Vi, respectively, and then the update of these two

attributes are

vd
i ← wvd

i + c1r1

(

pbestdi − xd
i

)

+ c2r2

(

gbestd − xd
i

)

(2)

xd
i ← xd

i + vd
i (3)

where Xi = [x1
i , . . . , xd

i , . . . , xD
i ] is the position of the ith par-

ticle, and Vi = [v1
i , . . . , vd

i , . . . , vD
i ] is its velocity, D is the

dimension size, pbesti = [pbest1i , . . . , pbestdi , . . . , pbestDi ] is

the personal best position of the ith particle, and gbest =

[gbest1, . . . , gbestd, . . . , gbestD] is the global best position of

the whole swarm. Among parameters, c1 and c2 are two accel-

eration coefficients [17], r1 and r2 are uniformly randomized

within [0, 1], and w is termed as the inertia weight [56].

Kennedy and Eberhart [18] referred to the second and the

third part in the right of (2) as the cognitive component and

the social component, respectively.

An outstanding characteristic of PSO is the fast conver-

gent behavior and inherent adaptability. Theoretical analysis

of PSO [57] has shown that particles in a swarm can keep a

balance between exploration and exploitation. However, due

to the strong influence of the global best position gbest on

the convergence speed [33], premature convergence remains

a major issue in PSO. Thus, some researchers proposed to

utilize the neighbor best position [17], [57], [58] to replace

the global best position in updating the velocity of each

particle.

Further, some researchers even put forward strategies to

construct new exemplars to lead the learning direction. Along

this line, two influential representatives are OLPSO [55] and

CLPSO [32]. OLPSO constructs a new exemplar by combining

dimensions from the personal best position and the neigh-

bor best position of each particle via orthogonal experimental

design (OED). As for the construction of the new exemplar

in CLPSO, with respect to each dimension of the exemplar,

two personal best positions are first randomly selected and the

value of the dimension from the better one fills in the corre-

sponding dimension of the new exemplar. Thus, the velocity

update in CLPSO is formulated as

vd
i ← wvd

i + crd
i

(

pbestdfi(d)
− xd

i

)

(4)

where fi = [fi(1), . . . , fi(d), . . . , fi(D)] defines a series of pbest

of different particles that the ith particle should follow, rd
i

is randomly generated within [0, 1], and w and c are the

inertia weight and the acceleration coefficient as in (2), respec-

tively. Both OLPSO and CLPSO show great efficiency in

low-dimensional space; however, they are not suitable for

large-scale problems because, on one hand OLPSO needs

a lot of fitness evaluations in OED to seek the poten-

tially useful combination of dimensions, which is impractical

for large-scale problems; on the other hand, CLPSO con-

verges considerably slowly owing to the construction strategy

that each dimension of the new exemplar corresponds to

a randomly selected personal best position. Nevertheless,

the way to learn from different exemplars behind these

two optimizers inspires us to propose the SL strategy in

this paper.

B. PSO Variants for Large-Scale Optimization

When it comes to high-dimensional space (larger than

500-D), the classical PSO [17], [18] and most of its vari-

ants [13], [31], [32], [55] will lose their effectiveness due to the

drastic and exponential enlargement of the search space when

the dimensionality grows. That massive local optima exist in

the high-dimensional space is another challenge, leading to

easily being trapped into local areas for EAs [53].

As for the first approach to large-scale optimization, some

works have been done to combine CC framework [35] with

the classical PSO and its representative variants, resulting

in CCPSO. CCPSO-SK [33] randomly divides the whole

dimensions into K groups with each group containing D/K

dimensions. Then for each dimension group, the classical

PSO is applied to optimize the subspace, while dimensions

in the other groups are fixed to the corresponding part of the

global best solution gbest. Through this cooperation among

dimension groups, CCPSO-SK is promising to solve large-

scale optimization. In CCPSO-HK [33], the classical PSO and

CCPSO-SK are used in an alternating manner, with CCPSO-SK

executed for one iteration, followed by the classical PSO in the

next generation. While in CCPSO2, Li and Yao [16] designed

a decomposer pool consisting of different group sizes, and

the algorithm will randomly select a group size from the pool

every time gbest is not improved. In addition, the offspring

of each parent for each dimension group is randomly sampled

around the personal best position or the neighbor best position

according to the Cauchy [59] or Gaussian distributions [14].

Currently, the research of CCEAs including

CCPSO [16], [33] mainly focuses on proposing good

decomposers to divide dimensions into groups, which is the

key of the CC framework. So far, CC with variable interaction

learning [45] and differential grouping (DG) [41] are the

most representative ones, which can potentially detect the

dependency among variables. While CCEAs are promising

for solving high-dimensional problems, they pay huge cost

in fitness evaluations owing to optimizing each subcompo-

nent individually, especially when the number of groups is

large.

To relieve the above situation, from another perspective,

Cheng et al. [53], [54] proposed a competitive learning strat-

egy to enhance diversity. First, they proposed a multiswarm

evolutionary framework based on a feedback mechanism

(FBE) [54], where two particles randomly chosen from two

populations compete with each other and then the loser

is updated using a convergence strategy, while the winner

is updated using a mutation strategy. Further, they pro-

posed a CSO [53], where two particles randomly selected

in a single population compete with each other and then
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(a) (b) (c)

Fig. 1. Visual framework of SPLSO containing three parts. (a) SL. (b) PL.
(c) Particle competition.

only the loser is updated, while the winner directly enters

the next generation. The update process of the loser is

formulated as

vd
l ← r1vd

l + r2

(

xd
w − xd

l

)

+ φr3

(

xd − xd
l

)

(5)

xd
l ← xd

l + vd
l (6)

where Vl = [v1
l , . . . , vd

l , . . . , vD
l ] is the velocity of the loser,

Xl = [x1
l , . . . , xd

l , . . . , xD
l ] and Xw = [x1

w, . . . , xd
w, . . . , xD

w]

are the positions of the loser and the winner, respectively,

x = [x1, . . . , xd, . . . , xD] is the mean position of the current

population, r1–r3 are three uniformly random variables rang-

ing within [0, 1], and φ is a parameter controlling the influence

of x. In this formula, the second part of (5) enforces the loser

move toward the winner, possibly resulting in a tendency to

approach to the global optima, while the third part may poten-

tially make the particle dragged away from the local area.

Such randomized pairwise competition can greatly enhance

the diversity of the population, which is very beneficial for

large-scale optimization.

However, we find that during one competition, the loser

learns deterministically only from the winning counterpart. As

a consequence, the learning ability of the loser is restricted.

Such an observation, along with considerations elaborated

in Section II-A, motivates us to propose the SPL swarm

optimizer (SPLSO).

III. SEGMENT-BASED PREDOMINANT

LEARNING SWARM OPTIMIZER

SPLSO intends to gather the potentially useful evolution-

ary information, which is concealed in different exemplars, to

guide the learning of each particle, so that both diversity and

convergence can be promoted to address large-scale optimiza-

tion problems. The whole framework of SPLSO is shown in

Fig. 1. First, an SL method displayed in Fig. 1(a) is introduced

in SPLSO, which draws lessons from two representative PSO

variants (OLPSO [55] and CLPSO [32]). Second, to get a fast

convergence speed, a PL strategy, as shown in Fig. 1(b) accom-

panies SL, resulting in an SPL strategy. In addition, to deal

with the difficulty in determining the optimal number of seg-

ments in SPL, a segment number pool consisting of different

numbers of segments is designed. It is noticed that this paper

contributes to the second approach to large-scale optimization.

The detailed techniques adopted in SPLSO are presented as

follows.

A. Segment-Based Learning

From the excellent performance of OLPSO [55] and

CLPSO [32] in low-dimensional space, we find that learning

from different exemplars through combining dimensions can

potentially offer good directions for particles. However, origi-

nally both OLPSO and CLPSO are not suitable for large-scale

optimization, because, for one thing, they all learn informa-

tion for each dimension separately; for another, OLPSO costs

a lot of fitness evaluations to seek the best combination of

dimensions, while CLPSO proceeds to the global optima very

slowly. Such observation affords the inspiration for the SL

method we are proposing.

As illustrated in Fig. 1(a), SL first divides all dimensions of

one particle into m disjoint segments with each segment con-

taining D/m dimensions,1 i.e., G = {G1, . . . , Gj, . . . , Gm},

where Gj is the jth dimension segment containing a set

of variables. Then, the position Xi = [x1
i , . . . , xd

i , . . . , xD
i ]

of the ith particle is accordingly divided into m subvectors

X
G1
i , . . . , X

Gj

i , . . . , X
Gm

i , where X
Gj

i is a vector of variables

from Xi that belong to the jth segment. Likewise, the veloc-

ity Vi = [v1
i , . . . , vd

i , . . . , vD
i ] is divided into m subvectors

V
G1
i , V

G2
i , . . . , V

Gm

i , as well. Subsequently, during the update

of velocity and position in SPLSO, SL can be characterized

by the following three rules.

1) For the dimensions in segment Gj of the ith parti-

cle, the particle’s corresponding velocity subvector V
Gj

i

and position subvector X
Gj

i are updated as a whole by

learning from the same exemplar.

2) For different dimension segments, different exemplars

can be used to update different velocity and position

subvectors.

3) During one generation, though the number of segments

is fixed, the random segmentation on dimensions is exe-

cuted for each particle to be updated, which means that

the components of each counterpart segment are differ-

ent for different particles, namely the segment Gj of the

ith particle may be different from that of the kth particle.

Compared with traditional learning strategies in PSO vari-

ants, especially in OLPSO [55] and CLPSO [32], SL can

potentially increase the probability of preserving the useful

information embedded in one exemplar together according

to rule 1. Rule 2 allows particles to learn from differ-

ent exemplars, which can potentially collect useful evolution

information existing in different exemplars as indicated in

OLPSO [55] and CLPSO [32]. Such learning behavior may

promote the diversity to some extent. As for rule 3, it is an

auxiliary to rules 1 and 2, because for different exemplars,

the segments of potentially useful information may be differ-

ent. On one hand, it can enhance the probability to preserve

the potentially beneficial information in different exemplars

together; on the other hand, such behavior may improve the

diversity to some extent.

1If D%m �= 0, we just add the rest D%m into the last segment.



2900 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 9, SEPTEMBER 2017

Remark: Using the above three rules, SL also enforces

a special kind of coevolution among the dimension seg-

ments, which differs from the CC framework significantly.

It should be noted that although both SL and CCEAs need

to divide the dimensions into disjoint parts, they work in

very different ways. CCEAs consider each dimension group

as a separated subproblem and evolve each subproblem indi-

vidually. Thus, interdependent variables should be gathered

into the same group while independent variables should be

put into different groups according to variable dependency.

However, SL mainly aims to let each relatively poor particle

learn a segment of potentially useful information from dif-

ferent predominant exemplars, so that the useful evolutionary

information in different exemplars can potentially be gathered

and learned by particles. Thus, this strategy is to increase

the probability of gathering the potentially useful informa-

tion in different predominant exemplars together, but not to

increase the probability of putting interdependent variables

into the same group as in CCEAs. In high-dimensional prob-

lems, it is likely that in SL, a segment of variables from

one predominant exemplar containing beneficial evolutionary

information includes interdependent and independent variables

simultaneously. Obviously, this is totally different from or even

violates the aim of the decomposers in CCEAs. Thus, it is

likely that the decomposition methods in CCEAs are not suit-

able for the proposed SL. In addition, instead of treating each

segment as a subproblem and evolving each group individually

in CCEAs, SL treats all dimensions as a whole and evolves

them simultaneously.

In a word, the difference both in dividing dimensions into

segments and in evolving variables between SL and CCEAs

makes SPLSO very different from CCEAs. Since currently,

no effective indicator exists to measure the usefulness of one

dimension of an exemplar, we just adopt random segmentation

in this paper to divide the dimensions of each particle into m

segments. Through this random recombination, on one hand,

the potentially useful information in different dimensions of an

exemplar may be simultaneously gathered; on the other hand,

the potentially useful information in different exemplars may

be gathered together with a probability.

B. Segment-Based Predominant Learning

Following SL, a crucial issue is how to select different

exemplars for different dimension segments. To solve this

issue, we further put forward the PL strategy to cooperate

with SL, leading to SPL.

In general, diversity enhancement is accompanied with

slow convergence, which is another concern for traditional

EAs [13], [14], [30], [53]. In nature, it is common that a

particle follows the experience from those which are better

than itself. Enlightened by such an idea, we propose the PL

strategy.

First, the whole swarm is organized into pairs randomly and

the particles in each pair are compared with each other. When

making pairwise comparisons between particles, usually one

particle is dominated by the other. Therefore, two separated

sets, the relatively good particles RG and the relatively poor

ones RP, are generated with the better one entering RG while

the worse one belonging to RP as shown in Fig. 1(b) and (c).

Generally speaking, particles in RG usually hold more poten-

tially useful information. Therefore, particles in RP should

update their positions through utilizing beneficial information

from particles in RG as much as possible. This is the main

idea of PL.

Combining SL and PL together, SPL tries to make one poor

particle learn segments of useful information from different

good particles, which can be formulated as follows:

V
Gi

RPj
← r1V

Gi

RPj
+ r2

(

X
Gi

RGg(j,i)
− X

Gi

RPj

)

+ φr3

(

x̂Gi − X
Gi

RPj

)

(7)

X
Gi

RPj
← X

Gi

RPj
+ V

Gi

RPj
(8)

where RPj denotes the jth relatively poor particle in RP, G =

{G1, . . . , Gi, . . . , Gm} is the dimension segments with totally

m segments, g( j, i) indicates the index of the relatively good

particle in RG that the jth relatively poor particle will learn

from for the segment Gi, x̂ is the weighted mean position of

the whole population, r1–r3 are three random variables ranging

within [0, 1], and φ is the controlling parameter in charge of

the influence of x̂.

The first part in the right of (7) is similar to the inertia

term in PSO (2), which is mainly responsible for the sta-

bility of the search process. The second part can also be

called the cognitive component like in PSO. Instead of learning

from pbest, SPLSO learns from all potentially good parti-

cles through dimension segments. This part offers the chances

of providing particles with better directions, which may con-

tribute to fast convergence. As for the third part, we can also

name it as the social component as in PSO. This part takes the

responsibility to drag the particles away from local optimum

areas. Instead of using mean position x in CSO [53], SPLSO

shares the social knowledge through the weighted mean posi-

tion of the whole swarm x̂ = [x̂1, . . . , x̂d, . . . , x̂D], which is

defined as

x̂d =

NP
∑

i=1

fit(Xi)
∑NP

j=1 fit
(

Xj

)

xd
i (9)

where NP is the population size, and fit(·) is the fitness

function, defined as the function to be optimized in this paper.

For simplicity, the fitness values of particles are utilized to

determine the weight of each particle. To deal with problems

with negative fitness values, we adjust (9) as follows:

x̂d =

NP
∑

i=1

fit(Xi) + |fitmin| + η
∑NP

j=1

(

fit
(

Xj

)

+ |fitmin| + η
)

xd
i (10)

where fitmin is the minimum fitness value of the swarm and η

is a small positive value used to avoid a zero denominator.

In (9) or (10), x̂ puts more emphasis on inferior particles,

which may be beneficial for dragging particles away from local

optimum areas. In fact, this weighted mean position x̂ is func-

tioned on the third part in the right of (7), namely the social

component, which is mainly for the promotion of search diver-

sity. On one hand, the diversity of a swarm generally relies
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on inferior particles, which possess more powerful exploration

ability than superior ones. On the other hand, in large-scale

problems, usually, many local optima exist. Thus, superior par-

ticles may easily fall into local areas, leading to premature

convergence. However, this situation can be alleviated and the

chances of escaping from local traps can be enhanced through

putting more weight on inferior particles. In Section IV-B2, the

influence of x̂ will be investigated through comparing against

x and the experimental result favors x̂.

Note that SPL only operates on particles in RP, indicating

that only half of the swarm is updated in each generation.

Though (7) has characterized SPL, some detailed techniques

have to be mentioned here.

1) During each generation, the relatively good particle set

RG and the relatively poor particle set RP are gen-

erated through random pairwise comparison with RG

associated with the better ones and RP related to the

worse ones.

2) During the update of poor particles, for each segment

Gi of the jth poor particle XRPj , a random good parti-

cle XRGrand
is selected from RG, and then we compare

the fitness of this randomized good particle fit(XRGrand
)

with that of the poor particle’s corresponding dominator

fit(XRGRPj
). If fit(XRGrand

) < fit(XRGRPj
), we will update

the poor particle using the randomized good particle

XRGrand
in (7), otherwise, we will use its corresponding

dominator XRGRPj
to update this particle.

3) For each poor particle in RP, the random segmentation

on dimensions is conducted, resulting in m segments

G = {G1, . . . , Gi, . . . , Gm}. Note that for different poor

particles, the partition may be different, but the number

of segments is the same.

First, the random pairwise comparison is adopted in tech-

nique 1 because such randomness can allow some poor

particles to survive, which may contribute to the promotion

of diversity. However, this also may result in that some rel-

atively good particles in RG may be dominated by some

relatively poor ones in RP. Thus, not all relatively good par-

ticles are valuable for the relatively poor ones. Generally

speaking, the better the learned particle is for one poor par-

ticle, the faster this poor particle may approach to the global

optimum area.

Thus, to accelerate the learning speed of poor particles, in

technique 2, we only allow poor particles to learn from those

predominant ones that can dominate their dominators that win

in the corresponding pairwise comparisons. To reduce the pos-

sibility that this learning strategy may lead to falling into local

optima, we take advantage of two methods to enhance the

diversity.

1) The good particle learned by one poor particle is

randomly chosen from RG as in technique 2).

2) In technique 3), for each poor particle, the random

dimension segmentation is conducted along with SPL,

namely rule 3 in SL.

The whole framework of SPL is displayed in Fig. 2. Overall,

SPL can potentially bring the following advantages to SPLSO.

1) SPL can allow poor particles to learn useful informa-

tion comprehensively, and potentially gather the useful

Fig. 2. Framework of SPL.

evolutionary information concealed in one predominant

exemplar together.

2) SPL may accelerate the learning speed for poor particles

through PL, leading to fast convergence.

3) With SL allowing poor particles to learn several seg-

ments of information from different good ones, SPL may

also enhance the diversity of the swarm to some extent.

Remark: Since this paper is mainly inspired from CSO [53]

and CLPSO [32], in this part, we elucidate the main differ-

ences between the proposed SPL and the learning strategies

in these two PSO variants.

1) Comparison Between SPLSO and CSO: Specifically,

compared with the competitive learning strategy in CSO [53]

displayed in (5) and (6), the proposed SPL formulated

as (7) and (8) differs from it mainly in two aspects.

1) Distinguishing from CSO, where only one particle is

selected as the exemplar to guide the learning of a

particle, the developed SL first randomly partitions

each particle into several segments and then allows

different particles to guide the learning of different seg-

ments of a particle. In other words, several particles

can simultaneously guide the learning of one parti-

cle. Through SL, on one hand, the potentially useful

information embedded in different exemplars may be

gathered together; on the other hand, the potentially use-

ful information embedded in different dimensions of an

exemplar may be preserved and gathered together. This

random recombination may provide promising direc-

tions to guide particles to find promising areas fast and

provide chances for particles to escape from local areas.

2) Differing from CSO, where each loser can only learn

from its corresponding winner, the proposed PL uti-

lizes pairwise competition to partition the whole swarm



2902 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 9, SEPTEMBER 2017

into two separate sets: a) the relatively good particle set

RG and b) the relatively poor particle set RP. Then,

each particle in RP is updated by SL where the exem-

plars guiding the learning of this particle are randomly

selected from RG. The cooperation between SL and PL

leads to SPL, which may afford potential to grasp the

useful information embedded in different predominant

particles in RG.

2) Comparison Between SPLSO and CLPSO: Comparing

SPL (7) with the comprehensive learning strategy (4) in

CLPSO [32], we can observe three main differences.

1) Instead of using particles’ personal best positions

(pbest) to guide the learning of particles in CLPSO, in

SPL, each particle is guided by the predominant parti-

cles in the current swarm. Since particles are generally

updated in each generation and the predominant ones

are usually not the same during two consecutive gen-

erations, the diversity of the swarm can be enhanced

through letting particles learn from predominant ones in

the swarm.

2) Instead of constructing the exemplar of one particle

dimension by dimension through selecting from different

pbests, SPL constructs the exemplar of one particle in

RP segment by segment through selecting from differ-

ent predominant particles. Through this, the potentially

useful information embedded in several dimensions of a

predominant particle can be preserved together to guide

the learning of particles.

3) Different from CLPSO which updates the whole swarm

in each generation, SPL utilizes the pairwise competition

to partition the swarm into two sets: RP and RG and

only the particles in RP are updated through learning

from particles in RG in each generation. In other words,

only half of the swarm are updated in each generation.

Through this, the potentially promising particles can be

preserved and protected from being weakened.

In particular, in Section IV-B1, the benefit of the proposed

SPL is verified by the experiments in comparison with CSO

and CLPSO.

C. Dynamically Determining the Number of Segments

Observing SPLSO, we can see that only two parameters

are introduced, namely the number of segments m and the

control parameter φ. With respect to φ, we leave it to be fine-

tuned in the experiments like in CSO [53]. For the segment

number m in the dimension segmenting technique, we can

see that a small m leads to a large number of elements in

each segment but a small number of different exemplars that

a particle learns from because the learning of each segment

of one particle is guided by one exemplar. Such a number

may be beneficial for gathering the potentially useful infor-

mation in different dimensions of an exemplar together, but

not beneficial for gathering potentially information in different

exemplars due to the small number of selected exemplars. On

the contrary, a large m results in a small number of elements in

each segment but a large number of different exemplars that

one particle learns from. This may be beneficial for gather-

ing the potentially information in different exemplars, but not

beneficial for gathering the potentially information in differ-

ent dimensions of one exemplar. Thus, a proper m is needed.

However, such a number is usually hard to set, because the

prior knowledge about how many useful dimensions exist in

one selected exemplar is not known. In addition, for different

exemplars, the proper m may be different. Let alone that the

proper m for different problems is different.

Borrowing ideas from [16] and [43], we design a segment

number pool denoted as S = {s1, . . . , st} containing t dif-

ferent segment numbers, to aid SPLSO alleviate the above

concerns. Then, at each generation, SPLSO will probabilisti-

cally select a number from S. When updating particles in RP,

m is fixed to be the selected number. At the end of the gener-

ation, the relative performance improvement of the proposed

optimizer using this segment number is recorded to update the

probability. With this mechanism, SPLSO may self-adaptively

select a proper segment number despite of different features of

different problems and different evolution stages for a single

problem.

Therefore, in order to compute the probability of differ-

ent segment numbers in S, we define a relative performance

improvement list Rs = {r1, . . . , rt}, where ri ∈ Rs is associ-

ated with si ∈ S. At the initialization stage, each ri ∈ Rs is set

to 1, and then, ri is updated as in [43]

ri =

∣

∣F − F̃
∣

∣

|F|
(11)

where F is the global best fitness of the last generation, while

F̃ is the global best fitness of the current generation.

Then the probability of si ∈ S is computed as in [43]

pi =
e7ri

∑t
j=1 e7rj

. (12)

On the basis of Ps = {p1, . . . , pt}, we conduct roulette wheel

selection to select a segment number m at each generation.

Observing (11) and (12), we can notice that: 1) the value of

each ri is within [0, 1], because (11) calculates the relative

performance improvement using the global best fitness values

between two consecutive generations and 2) if the global best

fitness value differs a lot between two consecutive generations,

ri is close to 1. This indicates that the selected segment number

in this generation is very appropriate and thus should have a

high probability to be selected in next generation, which can be

implied by the probability computed in (12). On the contrary,

when the global best fitness value differs little between two

consecutive generations, ri is close to 0. This indicates that the

selection of the segment number in this generation is not so

advisable and thus the probability of this selection should be

small, which can also be implied by the probability computed

in (12). Therefore, through this, SPLSO can potentially make

an appropriate choice of m for different problems or for a

single problem at different stages.

As for our algorithm, when the number of segments is fixed

and keeps unchanged, we call it as SPLSO; when it uses a
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Fig. 3. Framework of DSPLSO.

dynamic segment number, we call as DSPLSO. The perfor-

mance of both versions are compared in Section IV-B3 and

the comparison results favor DSPLSO.

D. Overall Optimizer and Complexity Analysis

The overall procedure of the proposed DSPLSO is exhib-

ited in Fig. 3. The execution process of DSPLSO during each

generation can be described as follows.

Step 1: First, the whole swarm is randomly organized into

pairs and pairwise comparison is executed in each

pair to generate the relatively poor particle set RP

and the relatively good particle set RG.

Step 2: Then, the roulette wheel selection is conducted to

select a segment number from the pool S.

Step 3: Subsequently, SPL is executed for each relatively

poor particle in RP as shown in Fig. 2.

Step 4: After each generation, gbest is updated and the

probabilities Ps of all segment numbers in the pool

are recalculated according to (12).

Step 5: If the termination condition is met, the whole pro-

cedure exits; otherwise, goes to step 1 to continue.

1) Complexity Analysis: As for the computational complex-

ity, during one generation, from the above steps, we can see

that O(NP) is needed to shuffle the swarm and generate RP

and RG in step 1, where NP is the swarm size. Step 2 takes

constant time and step 3 needs O(NP ∗ D) to update RP with

O(NP ∗ D/2) to segment the dimensions of NP/2 particles to

be updated and another O(NP∗D/2) to update these particles.

To update the probability set Ps in step 4, O(t) is needed with

t being the size of segment number set S, which is a con-

stant and much smaller than NP. To sum up, the complexity

of DSPLSO is O(NP ∗ D + NP + t). Compared with the tradi-

tional PSO with complexity O(NP ∗ D), DSPLSO only needs

O(NP + t) extra in each generation, where the population size

NP and the pool size t are constants far smaller than NP ∗ D.

Therefore, DSPLSO remains efficient in time complexity.

IV. EXPERIMENTS

To verify the efficiency and effectiveness of DSPLSO,

a series of experiments are conducted on CEC’2010 [60]

and CEC’2013 [61] large-scale benchmark problems. The

CEC’2013 benchmark set (containing 15 functions) is the

extension of the CEC’2010 set (consisting of 20 functions).

The functions from the CEC’2013 set are more complicated

and harder to optimize because of introducing a number of

new features, such as imbalance between subcomponents and

overlapping functions. The main characteristics of these two

function sets are summarized in Tables SI and SII in the sup-

plemental material, respectively. For details of these functions,

readers can refer to [60] and [61].

In this section, we first empirically investigate the influence

of two key parameters in DSPLSO, namely, the popula-

tion size NP and the control parameter φ in (7). Then, we

will observe the importance of the weighted mean position

x̂ and the dynamic segment number selection strategy in

Sections IV-B2 and IV-B3, respectively. Subsequently, we will

make a wide comparison between DSPLSO and other state-

of-the-art algorithms dealing with large-scale optimization in

Section IV-C. At last, in Section IV-D, we will observe the

scalability of DSPLSO on higher dimensional problems in

comparison with CSO [53].

In addition, unless otherwise stated, the maximum number

of fitness evaluations is set to 3 × 106 so that we can make

comparisons between DSPLSO and other algorithms which

are benchmarked against the same test suite, by citing the

results reported in the corresponding papers. Mean value and

standard deviation (Std) of results from 30 independent runs

are used to evaluate the performance of different algorithms.

Besides, in the comparisons between two different algorithms,

two-tailed t-tests are performed at a significance level of α =

0.05, at which the critical t value with 30 samples is 2.064.

Additionally, it is worth mentioning that all algorithms are

conducted on a PC with 4 Intel Core i5-3470 3.20 GHz CPU,

4 GB memory and Ubuntu 12.04 LTS 64-bit operating system.

To save space, some detailed results are not included here but

attached to the supplemental material.

A. Parameter Settings

Except for the swarm size NP, which all EAs are sensitive

to, there are only two key parameters in DSPLSO: 1) the seg-

ment number pool S and 2) the control parameter φ in (7). S

is designed mainly because for different problems, the optimal

number of segments may be different and even for a single

problem, this number may be different at different evolution

stages. So, to well adapt to different problems, the number

in S should have a large range. In this paper, enlightened

by the settings of the decomposer pool in CCPSO2 [16] and

MLCC [43], we set S = {1, 10, 20, 50, 100, 250}, with a wide

range of segment numbers. Users or readers can also use other

sets, but there seems no significant difference according to our

preliminary experiments if we keep S in a wide range.



2904 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 9, SEPTEMBER 2017

Thus, there remains only one parameter introduced newly

in DSPLSO that needs to be fine-tuned, namely φ in (7). A

large φ can improve the influence of weighted mean posi-

tion x̂, possibly leading to a good ability to escape from

local optima, but this may also lead to slow convergence.

Conversely, a small φ may contribute to fast convergence,

but it may result in premature convergence easily. So, φ

should be tuned. As for the common parameter NP for all

EAs, a small swarm size may maintain fast convergence, but

cannot afford enough diversity, resulting in premature conver-

gence. In contrast, although a large swarm size can increase

the diversity of the swarm, it may slow down the conver-

gence speed. Thus, a tradeoff between the diversity and the

convergence speed should be obtained through selecting a

proper NP.

Consequently, to obtain empirical insight into NP and φ,

experiments are conducted on DSPLSO with NP varying from

100 to 600 and φ varying from 0 to 0.4 on six CEC’2010

benchmark functions: fully separable and unimodal f1, fully

separable and multimodal f3, partially separable and uni-

modal f7, and partially separable and multimodal f6, f11, and

f16. Among these functions, more multimodal functions are

selected because they are more difficult to optimize than uni-

modal functions, resulting in that EAs are more sensitive to

parameters on these functions.

Table SIII in the supplemental material exhibits the results

with the best ones highlighted for different population sizes

along with the corresponding best φ. From this table, we can

draw three conclusions.

1) With φ fixed to be a nonzero value, a large NP is

preferred. This is because a large NP can afford enough

diversity to drag the swarm out of the local areas.

However, comparing the results in column “φ = 0.1,”

we can see that when NP exceeds 500, the performance

of DSPLSO degrades. This may be caused by the slow

convergence resulted from the excessive diversity.

2) With NP fixed and larger than 200, φ �= 0 is preferred,

indicating the importance of the social learning part

in (7). However, when φ is larger than 0.1, the perfor-

mance of DSPLSO deteriorates dramatically, especially

when φ > 0.2. This is because the social learning part is

over emphasized due to the larger φ, which may result

in that particles are dragged far away from the current

promising area and the convergence is slowed down.

Thus, a large φ is not preferred.

3) When NP takes a fixed value within [300, 500], the

proper φ remains unchanged at 0.1.

Based on the above observation, in the following exper-

iments related to 1000-D problems, NP = 500 along with

φ = 0.1 is adopted for fair comparison with CSO [53],

which shares some similarities with DSPLSO, like evolving

all dimensions together, and for which the optimal population

size is 500 as well.

B. Observations of DSPLSO

1) Usefulness of the Proposed SPL: In this part, we aim

to verify the usefulness of the developed SPL. Specifically,

we first develop two special cases of the developed SPLSO:

1) SPLSO-1 and 2) SPLSO-1000. The former is the SPLSO

with only one segment, which indicates that the whole dimen-

sions are considered as a segment and only one predominant

particle in RG is selected to guide the learning of particles

in RP in (7). The latter is the SPLSO with 1000 segments,

which indicates that each dimension is a separate segment for

1000-D problems and SPL would select one predominant par-

ticle in RG for the update of each dimension of particles in

RP as shown in (7). Then, we can verify the usefulness of

SPL through two comparisons.

1) The comparison between SPLSO-1 and CSO, which can

verify the usefulness of SPL under the condition that the

whole dimensions of one particle are guided by only one

exemplar.

2) The comparison between SPLSO-1000 and CLPSO,

which can verify the usefulness of SPL under the con-

dition that each dimension of a particle is updated by

one exemplar.

Then, we conduct experiments on the twenty 1000-D

CEC’2010 functions. To make fair comparisons, the swarm

size is set the same (500) for all compared algorithms. Fig. S1

in the supplemental material shows the comparison results.

From this figure, we can see the following.

1) Compared with CSO, SPLSO-1 performs much better on

almost all functions, except for five functions, namely

f5, where SPLSO-1 is a little inferior to CSO, and

f13, f15, f18, and f20, where SPLSO-1 and CSO perform

very similarly.

2) Compared with CLPSO, SPLSO-1000 are much supe-

rior on almost all function as well, except for f10 where

SPLSO-1000 is worse than CLPSO.

3) Further, we also can observe that both SPLSO-1 and

SPLSO-1000 are much better than CSO and CLPSO on

more than 13 functions.

The above experimental results demonstrate that under two

extreme conditions, namely considering the whole dimensions

as one segment and considering each dimension as a segment,

SPLSO is much better than both CSO and CLPSO, verifying

the great usefulness of SPL. Compared with the competitive

learning strategy in CSO and the comprehensive learning in

CLPSO, SPL mainly benefits from the developed PL, where

the whole swarm is partitioned into two separate sets RP and

RG and each particle in RG can potentially be the exem-

plar to guide the learning of the particles in RP. These help

the swarm in SPLSO maintain high diversity, so that local

traps can be avoided, leading to the promising performance

of SPLSO.

2) Influence of the Weighted Mean Position: To substanti-

ate the usefulness of weighted mean position x̂ of the swarm

as proposed in (7), first, we use the mean position x to sub-

stitute x̂ in (7), leading to a version of DSPLSO, denoted

as DSPLSO-x. To have a better view on the comparison,

the original DSPLSO using x̂ is represented as DSPLSO-x̂.

Subsequently, these two versions of DSPLSO are compared

on six functions used in Section IV-A. Fig. S2 in the supple-

mental material shows the comparison results with the number

of fitness evaluations varying from 5 × 105 to 5 × 106.
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From this figure, we can see that at the early stage, x̂

and x have the same effect; but in the late stage, especially

when the best solution of the swarm is close to the global or

local optima, the solutions obtained by DSPLSO-x̂ are much

better than those obtained by DSPLSO-x, especially on mul-

timodal functions as shown in Fig. S2(b), (c), (e), and (f) in

the supplemental material. This is mainly because instead of

treating all particles equally in x, more emphasis is put on

inferior particles in x̂, which potentially enhances the force

to drag the swarm to escape from the local areas. Since this

weighted mean position operated on the third part in (7) is

mainly for promoting the diversity of the swarm, DSPLSO-x̂

and DSPLSO-x may perform similarly on unimodal func-

tions, such as f7 [shown in Fig. S2(d) in the supplemental

material], because of the consistence that all particles in the

swarm converge to the same direction in the unimodal func-

tions. However, DSPLSO-x̂ performs better on multimodal

functions.

Overall, we can see that the weighted mean position x̂ is

promising for DSPLSO in promoting the exploration ability

of the swarm, leading to superior performance to x.

3) Influence of the Dynamic Segment Number: To investi-

gate the effectiveness of the dynamic segment number selec-

tion strategy in DSPLSO, first, we denote SPLSO with fixed

segment number m as “SPLSO-m,” e.g., SPLSO with only one

segment can be expressed as “SPLSO-1,” which indicates that

the whole dimensions are considered a segment and only one

predominant exemplar in RG is selected to guide the learning

of each particle in RP. Then we make comparisons between

“SPLSO-m” with m ∈ S and DSPLSO on f1, f2, f5, f8, f13,

and f18 from the CEC’2010 benchmark set. Fig. S3 in the

supplemental material displays the comparison results.

From this figure, it can be found that: 1) on unimodal func-

tion f1, SPLSO-1 performs slightly better with respect to the

convergence speed, but performs very similarly to other ver-

sions of SPLSO, such as DSPLSO and SPLSO with other

fixed numbers of segments, in regard to the solution quality.

However, when it comes to multimodal functions, like f2, f5,

f8, f13, and f18, SPLSO-1 performs worse than other versions

of SPLSO. This is because, for complicated multimodal prob-

lems, cooperated with PL, the developed SL can introduce

higher diversity owing to letting particles in RP learn from

several predominant particles in RG and 2) the optimal num-

ber of segments is different for different functions, such as for

f5, the number is 100, while for f13, it is 20. Employing this

strategy, DSPLSO can make a good compromise for different

functions, which is indicated by that DSPLSO performs very

close to or the same as the SPLSO with the optimal segment

number. Additionally, the dynamic segment number strategy

relieves DSPLSO from the sensitivity to m, liberating users

from the tedious effort of fine-tuning m for different problems.

Thus, it is beneficial for SPLSO to adopt the dynamic

segment number strategy.

C. Comparisons With State-of-the-Art Methods

To better demonstrate the efficiency of DSPLSO, we

chose five state-of-the-art and representative algorithms for

comparison. Two of them are PSO variants proposed

TABLE I
PARAMETER SETTINGS OF THE COMPARED

ALGORITHMS FOR 1000-D PROBLEMS

recently: CSO [53] focusing on the second approach to

large-scale optimization as DSPLSO and CCPSO2 [16] con-

centrating on the first approach, and the other three are DE

variants based on the CC framework [35]: 1) DECC-DG [41];

2) DECC-G [42]; and 3) MLCC [43], which contribute to

the first approach to large-scale optimization with different

decomposers.

Furthermore, the parameters in each algorithm are set as

recommended in the corresponding papers for fair compar-

isons, which is shown in Table I. For MLCC and DECC-G,

we directly use the reported results in the Special Session

on Large-Scale Global Optimization at CEC’20102 for the

CEC’2010 benchmark set, while for the CEC’2013 benchmark

set, owing to the missing of reported results of MLCC in the

CEC’2013 Special Session, we have to only report the results

of DECC-G.3 For CSO, CCPSO2, and DECC-DG, because

they were developed in recent two years and have shown their

superiority to other methods, we put more emphasis on the

comparisons between these three methods and DSPLSO.

Tables II and III present the comparison results among dif-

ferent algorithms on problems with 1000-D in the CEC’2010

set and the CEC’2013 set, respectively. The highlighted t

values mean that DSPLSO is significantly better than the

corresponding compared algorithms judged by t values. In

addition, in the last two columns of Table II and in the last

column of Table III, we use the highlighted N/As to indicate

DSPLSO is much better than MLCC or DECC-G judged by

the mean values instead of t values, owing to the absence

of the detailed results of MLCC and DECC-G in the corre-

sponding special sessions. When using mean values as the

comparison standard, if the order of magnitude of mean value

of DSPLSO is lower than that of MLCC or DECC-G, we think

DSPLSO is significantly better; if the magnitude of mean value

of DSPLSO is higher, we think DSPLSO is worse; otherwise,

we consider DSPLSO is equivalent to MLCC or DECC-G.

Furthermore, we use w/t/l in the last row of both tables to

give the number of wins, ties and losses when DSPLSO com-

pares against the counterpart methods. When compared with

MLCC and DECC-G, w/t/l are counted by comparing the

mean values of DSPLSO with those of MLCC or DECC-G

according to the above mentioned standard.

From these two tables, undoubtedly, we can conclude that

DSPLSO outperforms the recent algorithms: CSO (21/35),

CCPSO2 (23/35), and DECC-DG (21/35) on most of the func-

tions. As for MLCC, DSPLSO displays its superiority on eight

functions, and only loses its advantage on two functions on the

2http://nical.ustc.edu.cn/cec10ss.php
3http://goanna.cs.rmit.edu.au/∼xiaodong/cec13-lsgo/competition/lsgo2013-

decc-g.html
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TABLE II
COMPARISON RESULTS BETWEEN DSPLSO AND THE COMPARED

ALGORITHMS ON 20 CEC’2010 BENCHMARK FUNCTIONS WITH

1000-D. THE MEAN VALUE AND STANDARD DEVIATION ALONG

WITH TWO TAILED t-TEST AT SIGNIFICANCE LEVEL OF α = 0.05
WITH RESPECT TO FUNCTION VALUES ARE REPORTED OVER 30

INDEPENDENT RUNS. THE BOLDED t VALUES MEAN THAT

DSPLSO IS SIGNIFICANTLY BETTER THAN THE

CORRESPONDING ALGORITHM

CEC’2010 benchmark set. As for DECC-G, DSPLSO domi-

nates on 21 functions among all 35 functions. Additionally,

we notice that for f1 from both CEC’2010 set and CEC’2013

set, though the t-test value between DSPLSO and DECC-DG

is smaller than the critical value 2.064, DSPLSO still per-

forms significantly better than DECC-DG in terms of mean

value and standard deviation. Taking a closer observation, we

can see that DSPLSO is better than the CC-based algorithms

(CCPSO2, DECC-DG, MLCC, and DECC-G). Compared

with CSO, though both algorithms concentrate on the sec-

ond approach to large-scale optimization, DSPLSO exhibits

its advantages over CSO. The good performance of DSPLSO

in comparison with these methods benefits from the pro-

posed SPL strategy. On one hand, SPL allows poor particles

to learn segments of potentially useful evolution information

TABLE III
COMPARISON RESULTS BETWEEN DSPLSO AND THE COMPARED

ALGORITHMS ON 15 CEC’2013 BENCHMARK FUNCTIONS WITH

1000-D. THE MEAN VALUE AND STANDARD DEVIATION ALONG

WITH TWO TAILED t-TEST AT SIGNIFICANCE LEVEL OF α = 0.05
WITH RESPECT TO FUNCTION VALUES ARE REPORTED OVER 30

INDEPENDENT RUNS. THE BOLDED t VALUES MEAN THAT

DSPLSO IS SIGNIFICANTLY BETTER THAN THE

CORRESPONDING ALGORITHM

from different predominant exemplars, resulting in promising

enhancement in both diversity (resulted from learning from

different exemplars) and convergence (benefited from learning

from predominant exemplars). On the other hand, the random

segmentation embedded in SL and performed on each rela-

tively poor particle along with the random competition affords

potential diversity enhancement. All these together provide

strength for DSPLSO to compete with other methods.

Then, we further conduct experiments on both CEC’2010

and CEC’2013 benchmark sets to compare the convergence

behavior of different methods with the number of fitness eval-

uations varying from 5 × 105 to 5 × 106. Figs. S4 and S5 in

the supplemental material show the results on 20 CEC’2010

functions and 15 CEC’2013 functions, respectively. In addi-

tion, it should be noticed that in Fig. S4 in the supplemental

material, the results of DECC-DG are absent on f1–f3 and f5
and f6 when the number of fitness evaluations is fewer than

1.5×106 and 1×106, respectively. This is because DECC-DG

costs more than 1 × 106 on f1–f3 and 5 × 105 on f5 and f6
fitness evaluations to partition dimensions into groups.
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TABLE IV
COMPARISON RESULTS BETWEEN DSPLSO AND CSO ON 20 CEC’2010 BENCHMARK FUNCTIONS WITH 2000-D. THE MEAN VALUE AND

STANDARD DEVIATION ALONG WITH TWO TAILED t-TEST AT SIGNIFICANCE LEVEL OF α = 0.05 WITH RESPECT TO FUNCTION VALUES

ARE REPORTED OVER 30 INDEPENDENT RUNS. THE BOLDED t VALUES MEAN THAT SPLSO IS SIGNIFICANTLY BETTER THAN CSO

From Fig. S4 in the supplemental material, we can see

that DSPLSO defeats all the three algorithms on seven func-

tions ( f1, f3, f4, f6, f7, f11, and f14) in terms of the quality of

solutions and on f13, f18, and f20, though DSPLSO achieves

the same best results as CSO, it converges faster. Separately,

from the perspective of the quality of solutions, DSPLSO

shows its superiority to CCPSO2 [16] on 14 functions, dom-

inates CSO [53] on 15 functions, and beats DECC-DG [41]

on 12 functions, respectively.

From Fig. S5 in the supplemental material, we can find

that DSPLSO defeats all the three methods on three func-

tions (f1, f4, and f8) and on f5, f7, and f12, both DSPLSO

and CSO achieve the best results. In detail, DSPLSO defeats

CSO on six functions, dominates CCPSO2 on nine functions,

and beats DECC-DG on ten functions, respectively. Besides,

DSPLSO performs similarly to CSO, CCPSO2 and DECC-DG

on 5(f3, f5–f7, f12), 1(f11), and 1(f6) functions, respectively.

Comprehensively, on one hand, DSPLSO can find compet-

itive or even better solutions than other methods, e.g., shown

in Figs. S4(a), (c), and (f) and S5(a) and (d) in the supple-

mentary material; on the other hand, DSPLSO can possess

a competitive or even faster convergence speed, e.g., shown

in Figs. S4(c), (m), (r), and (t) and S5(a) and (l) in the sup-

plemental material. All these can be potentially attributed to

the proposed SPL, which allows particles to learn from dif-

ferent predominant exemplars, enlarging the learning ability

of particles. This learning strategy not only brings bene-

fits in enhancing diversity for the swarm, leading to good

exploration ability, but also potentially promotes the exploita-

tion ability, probably resulting in fast convergence and good

solutions.

Overall, the experimental results in Tables II and III and

the convergence plots in Figs. S4 and S5 in the supplemen-

tal material, demonstrate the efficiency and effectiveness of

DSPLSO in dealing with large-scale optimization.

D. Scalability to Higher Dimensionality

To further evaluate the scalability of DSPLSO to higher

dimensionality, we conduct experiments on DSPLSO for opti-

mizing 2000-D problems by modifying the dimension size in

the CEC’2010 function generators to 2000.

First, we take a look at the parameter settings of NP and

φ on 2000-D problems with the segment number set S the

same as the one used for 1000-D problems. Table SIV in

the supplemental material, presents the experimental results

of DSPLSO with NP varying from 200 to 1000 and φ rang-

ing from 0.1 to 0.35 on the six functions that are also used

for observing the influence of NP and φ on 1000-D problems

in Table SIII in the supplemental material, From this table,

similar conclusions can be drawn.

1) With NP fixed, a proper φ is needed. When NP is smaller

than 600, φ = 0.1 is preferred; when NP is medium,

such as within [600, 800], φ = 0.15 is preferred; and

when NP is large, such as 1000, φ = 0.2 is preferred.

This indicates that when NP becomes large, φ should

also choose a properly large value as well.

2) With φ fixed, a large NP is preferred. Comparing the

results of DSPLSO with different NP and the corre-

sponding best φ, we can find that a large NP is needed,

such as 1000, to afford enough diversity for the opti-

mizer to locate the global optima. Above all, we find

that NP = 1000 and φ = 0.2 is the most proper setting

for DSPLSO on 2000-D problems.

Then, the comparison between DSPLSO and CSO [53] is

conducted. Here, only CSO is selected to make a compari-

son because that not only is it the state-of-the-art, but also it

belongs to the same approach to large-scale optimization as

DSPLSO, which evolves all dimensions together. In addition,

NP = 1000 and φ = 0.15 is adopted for CSO as recommended

in [53]. In this series of experiments, the maximum number

of fitness evaluations is set to 5 × 106.

Table IV exhibits the comparison results with highlighted

t values indicating DSPLSO is significantly better than CSO.

From this table, we can see that DSPLSO significantly outper-

forms CSO on almost all functions, except for f5 and f20 on

which DSPLSO performs worse than CSO and f13 on which

DSPLSO and CSO achieve similar performance.

Further, to compare the convergence behaviors of DSPLSO

and CSO on 2000-D problems, we conduct experiments on

these problems with the number of fitness evaluations varying

from 1 × 106 to 1 × 107. Fig. S6 in the supplemental material

shows the comparison results.

From Fig. S6 in the supplemental material, we can see that

DSPLSO is much better than CSO either in terms of the qual-

ity of solutions or from the perspective of the convergence

speed on almost all functions, except for f5, f13, and f20 where

DSPLSO is a little inferior to CSO. Particularly, we can find

that DSPLSO converges considerably faster than CSO with

better solutions on f1, f3, f6, f10, f11, f15, and f16.
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The above verified superiority of DSPLSO over CSO mainly

benefits from two aspects.

1) Compared with CSO, where the loser is limited to

only learn from its corresponding winner, the relatively

poor particles in RP in DSPLSO possess better learn-

ing ability, due to learning from different predominant

exemplars, which is driven by PL.

2) Instead of updating all dimensions using only one exem-

plar (the corresponding winner for a loser) in CSO,

DSPLSO divides the dimensions of each particle to

be updated into several segments, and then evolves the

dimensions in each segment together by learning from

a randomly selected predominant exemplar, which is

driven by SL. For different dimension segments, the

exemplars may be different. This learning strategy has

the potential to gather the useful information in differ-

ent exemplars together. The cooperation between SL and

PL leads to SPL, which can afford promising exploration

and exploitation abilities.

All in all, this series of experiments demonstrate the good

scalability of DSPLSO to higher dimensionality.

V. CONCLUSION

This paper has proposed a novel SPLSO. To self-adaptively

determine the appropriate number of segments for dif-

ferent problems, borrowing ideas from MLCC [43] and

CCPSO2 [16], we designed a segment number pool to dynam-

ically select a proper segment number, leading to DSPLSO.

This new optimizer allows the relatively poor particles to

learn from different good particles through the SPL. The SPL

strategy may contribute to fast convergence and high diver-

sity to some extent, which are verified by the experiments on

two widely used large-scale problem sets—the CEC’2010 and

CEC’2013 benchmark function sets. The comparison results

between DSPLSO and different state-of-the-art algorithms

demonstrate the competitive feasibility and efficiency of the

new optimizer. Additionally, the experimental results on 2000-

D problems further substantiate the competitive scalability of

DSPLSO to higher dimensionality.

Though DSPLSO has shown its ability in dealing with large-

scale optimization, at times it still falls into local optima. For

instance, the results on f5, f8, f9, and f14 shown in Table II and

on f4, f8, f11, and f13 shown in Table III are far away from the

global optima. This is unfortunately a common drawback for

other optimization algorithms as well. Our future research is

to investigate how to mitigate the trapping at local optima and

further enhance the performance of DSPLSO.
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