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Abstract: The characterization of surface topographic features on a component is typically quantified

using two-dimensional roughness descriptors which are captured by off-line desktop instruments.

Ideally any measurement system should be integrated into the manufacturing process to provide

in-situ measurement and real-time feedback. A non-contact in-situ surface topography measuring

system is proposed in this paper. The proposed system utilizes a laser confocal sensor in both lateral

and vertical scanning modes to measure the height of the target features. The roughness parameters

are calculated in the developed data processing software according to ISO 4287. To reduce the

inherent disadvantage of confocal microscopy, e.g., scattering noise at steep angles and background

noise from specular reflection from the optical elements, the developed system has been calibrated

and a linear correction factor has been applied in this study. A particular challenge identified for

this work is the in-situ measurement of features generated by a robotized surface finishing system.

The proposed system was integrated onto a robotic arm with the measuring distance and angle

adjusted during measurement based on a CAD model of the component in question. Experimental

data confirms the capability of this system to measure the surface roughness within the Ra range of

0.2–7 µm (bandwidth λc/λs of 300), with a relative accuracy of 5%.

Keywords: surface roughness; non-contact; in-situ measurement; error correction

1. Introduction

Surface topography measurements play an important role in product quality assessment

for manufacturing process evaluation. Surface roughness, calculated from surface topographic

information, is widely used for surface characterization. In most applications, compared to contour

measurements, surface topography measurements require higher resolution and accuracy [1,2], and

the process typically relies on laboratory equipment. This makes an in-situ surface topography

measurement and roughness analysis [3,4] very challenging as it has to meet the compactness and

robustness requirements, especially in a relatively harsh manufacturing environment.

The conventional approach to measuring the surface topography is to drag a physical stylus

across the surface in a raster motion in order to capture the surface height deviations [5]. Contact

measurement is limited to a relatively low measurement speed (<1 mm/s) in order to avoid the stylus

jumping [6], data is captured at discrete intervals along the surface. Non-contact systems based on

optical techniques, such as confocal microscopy [6,7], focus variation microscopy [8] and coherence
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scanning interferometry [9,10], are commercially available for high accuracy measurements. These

optical systems are able to achieve lateral resolution of around 0.5 µm and vertical resolution down

to sub-nanometer range [11]. However, due to the complex alignment procedures and limitation of

the measurement space, most optical profilers come in desktop form, which make them impractical

for in-situ measurement. Chromatic confocal sensors [12,13], which are based on the reflected light

spectrum, are also applicable for high-accuracy dimensional measurement. Its highest spatial resolution

of 5 µm [14], however, limits its application for surface roughness measurement. Recently, a surface

topography measurement system was proposed using a chromatic confocal sensor [15]. However, no

experimental data was provided for smooth surfaces with Ra less than 1 µm. Taking in consideration

the resolution, system robustness and spot size, single-point confocal technology could provide a

potential solution for in-situ surface roughness measurement [16].

In this paper, we propose a non-contact in-situ surface topography measuring system and the

paper is organized as follows: Section 2 compares stylus-based and confocal-based methods for surface

roughness measurement. Section 3 presents the proposed system configuration and validation for

surface roughness measurement. Section 4 analyses the experimental work and measurement data.

Conclusions and proposed future work are presented in the final section.

2. Stylus and Confocal Methods for Surface Profile Measurement

In this study, the surface profile measurement using the proposed confocal microscopy-based

system will be benchmarked against a high resolution stylus profilometer using a phase grating

interferometer (PGI) transducer. This section discusses both the systems in brief.

2.1. Stylus Profilometry

Conventionally, the stylus profilometer serves as a standard method for surface roughness

measurement [17,18]. The stylus tip physically senses the sample surface and traverses across the

surface at a constant speed with a static measuring force of 0.75 mN according to ISO 3274 [5].

The vertical displacement of the stylus due to the surface profile is then converted to either a digital

signal by an optical sensing transducer, or an analog signal by a linear variable differential transformer

(LVDT) and subsequently digitized [19]. The signal is then processed and analyzed to generate the

surface profile.

In this study, a commercial stylus profilometer that utilizes a phase grating interferometer (PGI)

transducer [20] capable of achieving sub-nanometer vertical resolution, is used as a benchmark. In the

system, a laser beam is directed onto a convex diffraction grating at normal incidence and generates

two first order diffraction beams. The vertical movement of the stylus arm on the pivot is converted

to a rotation of the diffraction grating and generate a frequency shift of the diffracted beams. Finally,

the position of the stylus can be calculated from the phase of the interference signal generated by

superimposing the diffracted beams [17,21,22].

2.2. Confocal Microscopy

Figure 1 illustrates the typical optical structure of a single-point confocal system. Most reflected

light will pass through the pinhole only when the target point is on the focal plane. In the range of

confocal system’s Depth of Field (DOF), the reflected light intensity detected by the photodiode forms

a Depth Response Curve (DRC). The peak point of the DRC detected by the photodiode indicates

the focus plane of the target point on the measured surface [23,24]. With a high-resolution encoder of

the confocal system, the height of the target point on the surface can be measured. Thus through the

recording of the heights, a surface profile can be obtained and roughness derived [25,26].

Apart from the pinhole scanning technique, some confocal microscopes use the slit scanning

method. The slit scanning method has an advantage of increasing the signal intensity and speed,

but its vertical resolution is significantly deteriorated by the lateral cross-talk [13]. Another critical

consideration for surface measurement is the lateral resolution. Compared to white light, as a point
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light source, laser can achieve a smaller spot size. In addition, laser has more concentrated power than

that of the white light. This allows higher light intensity levels at the focal point [27].

  

(a) (b) 

ΐ
ΐ

Figure 1. Structure of single-point confocal system. (a) Target point is on focus; (b) Target point is out

of focus.

With respect to the above consideration of vertical and lateral resolution, in this study a

single-point laser confocal sensor, Keyence LT-9010M (KEYENCE, Osaka, Japan), is employed for

developing an in-situ roughness measurement system. The sensor utilizes a red semiconductor laser

with a wavelength of 655 nm. The laser beam spot diameter is 2 µm and the vertical resolution of the

laser confocal sensor is 0.1 µm. In addition to the basic optical system, the laser confocal sensor has

two embedded scanning mechanisms, which determine a vertical measurement range of 0.6 mm and a

lateral scanning length of 1.1 mm.

Figure 2 shows the working principle of the laser confocal sensor. By vertical scanning of the

objective lens using a tuning fork, the detector will receive the highest light intensity when the target

surface is located at the focal distance. The internal sensor attached to the tuning fork determines the

target height by measuring the position of the turning fork. The embedded lateral scanner helps to

achieve a measuring length of 1.1 mm by using a high accuracy oscillating mechanism. A 2D surface

profile, in the form of (X, Z) data points, is sent to the control station via serial communication and then

processed in real-time by an algorithm to compute the surface roughness. The sampling frequency of

the laser confocal sensor is able to achieve 1.5 kHz, which is suitable for surface profile measurement.

ΐ
ΐ

 
(a) (b) 

Figure 2. Working principle of the laser confocal sensor. (a) Vertical scanning mechanism; (b) Lateral

scanning mechanism.
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2.3. Comparison of Stylus and Laser Confocal Measurement Methods

Contact surface measurement using a stylus has been the standard method employed by academia

and industry for over 70 years. The stylus profilometer can achieve a vertical resolution down to

0.1 nm using a phase grating interferometer (PGI) transducer or linear variable differential transformer

(LVDT). The spatial resolution is limited by the stylus tip size and shape, which can be as small as

0.1 µm [11]. However, the main drawback of the stylus measurement method is attributed to the

damage to the measured surface due to the applied contact force [17]. In addition, the stylus tip

and the PGI transducer are often too sensitive to be used in a manufacturing environment for in-situ

measurement [18].

To overcome the disadvantages of the stylus method, the laser confocal technique is considered to

be a potential alternative for non-contact and non-destructive surface measurement. The laser confocal

sensor used in this experimental study is integrated with vertical and lateral scanning mechanisms.

This technique solves the problem of the autofocus systems which need to move the scanning unit in

every sectioning step [28]. Compared to typical stylus measurement speed of 1 mm/s, the measurement

speed of the developed laser confocal system can reach up to 3 mm/s, which allows in-situ surface

roughness measurement.

3. System Configuration and Validation

3.1. Surface Roughness Calculation

In general, any surface profile comprises of roughness, waviness and form features. Roughness

is an irregularity as a result of any production processes such as tearing, cutting and surface fatigue.

Waviness is a periodic texture, usually caused by vibration, chatter or machine deflections. Form often

results from inaccuracies of the machine elements such as elastic deformations, linear guide errors and

long-term thermal effects.

In order to obtain the roughness profile, the surface form needs to be separated from the surface

profile. To eliminate the surface form from the measurement result, best-fit least-squares methods

are recommended in ISO 4287 [25]. A second order polynomial fitting method using least squares

algorithm was introduced for illustration purpose. The surface roughness standards set (FLEXBAR

SKU-16008, Flexbar, Islandia, NY, USA) used in this study are machined by grinding, turning and

milling processes. The form errors introduced by these machining processes are relatively simple, such

as lines and curvatures, which make a second order polynomial fitting suitable for form error removal.

To separate short wave components such as micro-fracture marks and a waviness profile from

the roughness profile, a Gaussian profile filter has been introduced following ISO 16610-21 [29]. The

Gaussian profile filter is a phase correct filter that does not result in phase shift and asymmetrical

profile distortion [30]. The weighting function for the Gaussian profile filter is given by Equation (1):

s(x) =
1

α × λ
× exp

[

−π

(

x

α × λ

)2
]

(1)

where x is the distance from the center of the weighting function; α equals to
√

ln 2/π to provide

50% transmission characteristic of the Gaussian profile filter at the cut-off wavelength λ. The long

cut-off wavelength λc is determined based on ISO 4288 [31] to separate the waviness profile. The short

cut-off wavelength λs defines the intersection between roughness and even shorter wave components.

The cut-off wavelength ratio λc/λs should be determined based on ISO 3274 [5]. The primary surface

profile ZP(x) can be obtained by applying short wavelength filter of λs.

The waviness profile ZW(x) is the discrete convolution of the primary profile ZP(x) and weighting

function s(x) given by Equation (2):
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ZW(x) =
x+Lcλc

∑
i=x−Lcλc

ZP(i)s(x − i) (2)

where, Lc is the truncation constant of the weighting function. For general use following ISO

16610-21 [29], Lc equals to 0.5 and results in a 0.76% implementation error.

The roughness profile ZR(x) is the deduction between the leveled surface profile ZL(x) and the

waviness profile ZW(x) given by Equation (3):

ZR(x) = ZL(x)− ZW(x) (3)

In this study, the surface roughness parameter used to validate the developed surface

measurement system is the arithmetical mean roughness (Ra), the most widely used surface texture

parameter. The definition of Ra parameter following ISO 4287 [32] is expressed by Equation (4):

Ra =
1

n

n

∑
i=1

|ZR(i)| (4)

The surface roughness calculation algorithm presented in Equations (1)–(4) is implemented in the

developed data processing software for in-situ surface roughness measurement.

3.2. Internal Scanning Performance of the Laser Confocal Sensor

In this study, a precision roughness reference specimen (Mitutoyo 178-602, Mitutoyo Corporation,

Kawasaki-shi, Japan) with calibrated Ra value of 2.97 µm is used to verify the measurement capability

of the laser confocal sensor (LCS). The surface pattern of this reference specimen has a harmonic form

and the surface profile measured from the LCS is illustrated in Figure 3. This reference specimen was

measured five times on the same spot using the LCS and the Ra values listed in Table 1 give a mean

value of 3.07 ± 0.05 µm (mean ± 1 std. dev). The measurement results show a good correlation with

the stated Ra value and demonstrate the feasibility of surface roughness measurement using the LCS.

傑眺岫捲岻 傑挑岫捲岻傑調岫捲岻 傑眺岫捲岻 噺 傑挑岫捲岻 伐 傑調岫捲岻

迎欠 噺 な券 布】傑眺岫件岻】津
沈退怠

ΐ

ΐ

  

ΐ

ΐ

Figure 3. Precision roughness reference specimen and its measured surface profile.

Table 1. Ra values of the precision roughness reference specimen.

1 2 3 4 5 Mean Std. Dev.

Ra (µm) 3.11 3.03 3.01 3.14 3.08 3.07 0.05

3.3. Extended Measurement Range and Profile Data Stitching Algorithm

The measurement length achieved by the embedded scanner was 1.1 mm, which can only cover

one cut-off length of 0.8 mm when the surface Ra value is in the range of 0.1–2 µm (following

ISO 4288 [31]). However, measurement of five cut-off lengths is the default recommendation according

to ISO 4288. In order to expand the lateral measuring range and improve the vertical positioning

accuracy of the laser confocal sensor (LCS), a compact XZ-configured 2-axis motorized linear stage
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(New Focus 9066-XY-PP-M, Newport Corporation, Irvine, CA, USA) is integrated to improve the

lateral scanning range. The XZ-configured linear stage has a travel range of 12.7 mm and a minimum

incremental motion of 30 nm in both X and Z axis. By accessing the Dynamic Link Library (DLL) in

the driver of the XZ-configured linear stage, the in-house developed software is able to set the speed,

acceleration and PID control parameters of the linear stage.

The Z-axis linear stage carries the LCS and moves to its working distance of 6 mm from the

sample surface. The LCS performs a local scan of 1.1 mm length to measure the surface profile and

outputs the surface profile data to the developed data processing software. Then, the X-axis linear

stage moves a distance equal to 80 percent of the local scan length in order to overlap 20 percent of the

two adjacent surface profiles.

Due to the misalignment between the LCS scanning axis and linear stage movement axis, jump

errors were observed at the overlapping surface profile. To reduce this misalignment error, a data

stitching algorithm was introduced, which was based on the iterative least-square method. Figure 4

shows the model of n-times of surface profile data stitching, where f (x) and D represent the entire

profile to be measured and its length, fi(x) and L represent part of the whole profile to be measured

and its length in each measurement, 0.2 L represents a 20 percent overlapping length between two

adjacent surface profiles. Several publications [33–35] report that a 20 percent overlapping surface will

give a good trade-off between having good stitching accuracy and obtaining large measurement range

with minimum data sets.

Assuming that the local surface roughness information is consistent in the overlapping area of

the two adjacent surface profiles, the mismatch is only caused by slope and offset differences during

measurement. The error propagation of the stitching algorithm has been analyzed in [36–38] and

was shown that the stitching error was in the tens of nanometer level for a range longer than 50 mm

stitched length.

 

ッ血沈岫捲岻 血沈貸怠岫捲岻 血沈岫捲岻欠沈 決沈
ッ血沈岫捲岻 噺 	 血沈貸怠岫捲岻 伐 血沈岫捲岻			┹ 	捲 樺 岷	ど┻ぱ件詣┸ ど┻ぱ件詣 髪 ど┻に詣峅ッ血沈岫捲岻 噺 	 欠沈捲	 髪	決沈			┹ 	捲 樺 岷	ど┻ぱ件詣┸ ど┻ぱ件詣 髪 ど┻に詣峅血沈嫗岫捲岻

血怠嫗岫捲岻 噺 	 血怠岫捲岻 髪 欠怠捲 髪 決怠			┹ 		捲 樺 岷	ど┻ぱ詣┸ な┻ぱ詣峅血態嫗岫捲岻 噺 	 血態岫捲岻 髪 欠態捲 髪	決態 髪 欠怠捲 髪 決怠			┹ 		捲 樺 岷	な┻は詣┸ に┻は詣峅

Figure 4. Model of n-times of profile data stitching.

In Equation (5), ∆ fi(x) denotes the difference between fi−1(x) and fi(x) within the overlapping

section. In Equation (6), ai and bi represent the slope and offset coefficients in the least-square linear

regression equation, respectively:

∆ fi(x) = fi−1(x)− fi(x); x ∈ [ 0.8iL, 0.8iL + 0.2L] (5)
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∆ fi(x) = aix + bi; x ∈ [ 0.8iL, 0.8iL + 0.2L] (6)

In this nth iterative stitching algorithm, f
′
i (x) corresponds to the shifted profile in the ith iteration

derived in Equation (7):

f ′1(x) = f1(x) + a1x + b1; x ∈ [ 0.8L, 1.8L]

f ′2(x) = f2(x) + a2x + b2 + a1x + b1; x ∈ [ 1.6L, 2.6L]

f ′n(x) = fn(x) +
n

∑
i=1

(aix + bi); x ∈ [ 0.8nL, 0.8nL + L]

(7)

By adding both sides of Equation (7), the whole stitched surface profile f (x) can be written as

shown in Equation (8):

f (x) = f0(x) +
n

∑
i=1

f ′i (x) (8)

With the integration of the XZ-configured linear stage and data stitching algorithm, the proposed

system could achieve a surface profile measurement up to 12.7 mm in length. The laboratory set-up of

the proposed system and the precision roughness reference specimen are shown in Figure 5a. To verify

the extended data stitching algorithm, the precision roughness reference specimen was measured

using the proposed laser confocal system and the Talysurf PGI 800 stylus profilometer (AMETEK Inc.,

Berwyn, PA, USA) separately. The measured surface profiles are plotted in Figure 5b. As can be seen

from this figure, a good match between the laser confocal profile and the stylus profile was observed.

血津嫗岫捲岻 噺 	 血津岫捲岻 髪 布岫欠沈捲 髪	決沈津
沈退怠 岻		┹ 		捲 樺 岷	ど┻ぱ券詣┸ ど┻ぱ券詣 髪 詣峅

血岫捲岻
血岫捲岻 噺 	 血待岫捲岻 髪 布 血沈嫗岫津

沈退怠 捲岻

ΐ
ΐ

 

(a) 

(b) 

Figure 5. Cont.
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(c) 

ΐ

ΐ
ΐ

Figure 5. (a) Laboratory set-up; (b) Extended surface profiles of the precision roughness reference

specimen; (c) Enlarged partial profiles of the precision roughness reference specimen.

To compare the discrepancies between the two profiles in Figure 5b, the enlarged partial surface

profiles are plotted in Figure 5c. It can be observed that the laser confocal profile has higher

peak-to-valley amplitudes compared to that from the stylus profile. It also indicates noise-like spikes

at the profile peaks and valleys. In addition, the laser confocal profile is not as symmetric as that from

the stylus profile, which is mainly attributed to the light scattering effect at the steep slope section in

the surface profile. These observations are consistent with the results from previous studies [11,39,40],

which showed that the area of high curvature at surface peaks and valleys may produce severe

measurement distortions and noises.

The Mean Squared Error (MSE) of the five overlapping sections in the stitched laser confocal profile

are presented in Table 2. The stitching error in the form of MSE is 0.024 ± 0.010 µm (mean ± std. dev).

The stitching error is still acceptable referring to the sample’s Ra value of 3 µm.

Table 2. Stitching errors of the laser confocal profile.

1 2 3 4 5 Mean Std. Dev.

MSE (µm) 0.034 0.023 0.022 0.027 0.016 0.024 0.010

3.4. Step Height Measurement

Step heights of six depth measurement standards (type A1) were measured following the

guidelines in ISO 5436-1 [41]. Five measurements have been distributed evenly over each depth

measurement standard.

Table 3 summarizes the calculated step heights of six depth measurement standards measured

by Talysurf PGI 800 stylus profilometer and the proposed laser confocal system. It can be observed

that although all measurement results are in good correlation, the confocal measurement results

have slightly higher values compared to the stylus measurement results. This may be due to the

measurement distortions [11] and noises at the high curvature surface area which is explained in

Section 3.3.

Table 3. Measurement results of the depth measurement standards.

Instrument

Nominal Value (µm)
5 10 15 20 25 30

Stylus (µm) 5.09 ± 0.02 9.95 ± 0.01 15.10 ± 0.02 19.98 ± 0.01 24.62 ± 0.05 29.99 ± 0.01
Confocal (µm) 5.24 ± 0.04 10.12 ± 0.05 15.21 ± 0.04 20.15 ± 0.11 24.78 ± 0.07 30.22 ± 0.05
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3.5. In-Situ Measurement Procedure

The proposed system is also integrated with a 3-stage motion control to minimize vibration

caused by the positioning system or scanning mechanism. For in-situ measurement, the motion

system, which could be a robot or other motion stages, may cause notable vibration. Lateral scanning

is also another source of vibration, which is an important consideration for conventional off-line

measurement systems. In this research work, in order to minimize the vibration, the proposed system

only actuates the embedded scanning mechanism simultaneously with data collection. The robot arm

is used only for approaching and alignment operations, roughly adjusting the measuring distance

and angle.

In this process the measurement system is positioned based on the CAD model of the component.

The Z-axis linear stage is used to precisely move the laser confocal sensor (LCS) to its working distance

of 6 mm from the work piece surface. The X-axis linear stage is used to shift the LCS for every

0.88 mm interval. When placement of the LCS is completed, the motion function of the robot arm and

XZ-configured linear stage will be disabled.

In every positioning interval, surface scanning of 1.1 mm is done by the embedded lateral scanner

in the LCS. During the surface data collection, the embedded lateral scanner, where the vibration is

negligible, is the only moving unit. Upon the completion of the measurement procedure, the profile

data in every interval will be stitched together using the developed algorithm described in Section 3.3.

The motion control algorithm for in-situ surface roughness measurement can be summarized as shown

in the flowchart in Figure 6.

 

ΐ

Figure 6. Three-stage movement strategy for surface measurement.

4. Experimental Work

It has been discussed in Section 3.1 that following ISO 4288 [28], surface roughness can be

calculated based on the surface profile collected by the developed laser confocal measuring system.

In order to determine the accuracy of the proposed confocal system, the Talysurf PGI 800 stylus

profilometer is used as a reference. A series of roughness standard data from several samples

representing different machining processes with nominal Ra value in a range of 0.2–6.3 µm were

used for calibration purpose. The error curve of the proposed system and error compensation are

presented in this section.

4.1. Experimental Setup and Roughness Measurement

The experimental setup in a robot cell is illustrated in Figure 7. The developed laser confocal

measuring system is integrated with an industrial robot (ABB IRB 2400, ABB Group, Zurich,

Switzerland) for roughly positioning and alignment. This industrial robot provides a payload of

12 kg and position repeatability of 0.05 mm.
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ΐ

Figure 7. Experimental system setup.

The Talysurf PGI 800 stylus profilometer shown in Figure 8 is used as a reference instrument.

The stylus profilometer is a high accuracy instrument and widely used as a standard instrument for

surface roughness measurement. It employs a phase grating interferometer to trace the diamond tip

stylus that is in contact to the target surface to achieve nanometer resolution.

The roughness standard samples have been repeatedly measured five times using both Talysurf

PGI 800 and the proposed laser confocal measuring system. By comparing the averaged roughness

measurement results, the accuracy and measuring range of the proposed laser confocal system

is assessed.

 

ΐ

ΐ

ΐ

ΐ

Figure 8. Schematic of Talysurf PGI 800 during measurement of roughness standard samples.

4.2. Data Analysis

Table 4 shows the roughness standard samples measurement results of the stylus profilometer

Taylor Hobson PGI 800 and the proposed laser confocal measuring system. As a major contributor

to the overall measurement uncertainty of the stylus profilometer, the repeatability, expressed as

two standard deviations from five repeats, is also stated for each measurement. Other factors,

such cut-off wavelength and stylus tip radius may have nanometer-level contribution to the overall

uncertainty [42–44]. The measurement errors of the laser confocal system in Table 4 are plotted as the

error curve in Figure 9.

For very smooth surfaces with Ra values less than 0.4 µm, the laser confocal system shows

unpredictable errors, due to two typical inherent disadvantages of confocal technology namely the

spot size limit and the background noise. The laser spot size limits the lateral resolution of the proposed

measuring system which cannot resolve surface feature less than 1 µm. The background noise of the



Sensors 2018, 18, 2657 11 of 15

laser confocal sensor is mainly caused by laser power saturation, stray light and scattering effect at

sharp edges [45].
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Figure 9. Error curve of different machining surface.

In Figure 9, unique markers represent the different data of grinding, milling and turning

for reference. Unfortunately, in practical measurement, machining patterns and Key Performance

Indicators (KPIs) are sometimes unknown. In this study, therefore, a combined linear function was

provided for error correction.

Table 4. Ra of different surfaces measured using laser confocal system and stylus profilometer.

Machining
Stylus Profilometer Measured

Ra (µm) (Reference)
Laser Confocal System Measured

Ra (µm) (To Be Evaluated)
Error (µm)

Grinding

0.20 ± 0.01 0.22 0.02
0.36 ± 0.01 0.38 0.02
0.83 ± 0.01 0.88 0.05
1.55 ± 0.02 1.63 0.08
3.20 ± 0.04 3.33 0.13

Milling

0.40 ± 0.00 0.41 0.01
0.58 ± 0.01 0.59 0.01
1.40 ± 0.00 1.46 0.06
3.00 ± 0.02 3.16 0.16
4.06 ± 0.03 4.19 0.13
6.91 ± 0.02 7.17 0.26

Turning

0.26 ± 0.01 0.27 0.01
0.54 ± 0.01 0.55 0.01
1.52 ± 0.02 1.57 0.05
2.70 ± 0.02 2.85 0.15
3.25 ± 0.04 3.39 0.14
6.35 ± 0.02 6.63 0.28

Accommodating a fixed intercept value will cause a notable relative error when the Ra value is

very small. In this case, a zero-pass linear function y = 0.041x is forced to fit the measurement errors,

as shown in Figure 9. The coefficient of determination R2 value, as usual, indicates how well the

data points agree with the fitted line. The high R2 value of 0.9459 suggests that the data set can be

regressed linearly.
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As observed in Figure 9, the measurement error increases linearly with increasing roughness Ra.

This might be caused by two factors. Firstly, rough surfaces usually have sharper edges, defects and

other small surface imperfections than smooth surfaces. These surface features can scatter the laser

light away from the sensor objective and can lead to larger errors and more non-measured data points.

Secondly, the stylus tip acts as a mechanical filter to reduce the peak-to-valley distance in surface

profile (see Figure 10). This mechanical filter has more significant effect on the surface with higher

roughness due to more small and narrow surface features.

ΐ

Figure 10. Actual and measured profiles using stylus method [46].

After linear correction, the residual relative errors can be calculated as the results shown in

Figure 11. It can be seen that most of measurement relative errors can be controlled within 5%,

regardless of the machining process. It is also shown that for small Ra values, the relative error

is comparatively large, which means random errors contributed by spot size and noises are more

influential for smooth surfaces. In this study, therefore, 0.2 µm has been observed to be the lower limit

of the measurable Ra values due to the inherent limitations of laser confocal sensor.
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Figure 11. Residual relative errors after linear error compensation.

5. Conclusions and Future Work

In this paper, a non-contact and in-situ surface topography measurement system has been

developed using laser confocal technology. The objective of this study is to explore roughness

measurement technology which can be used in the manufacturing environment instead of the
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traditional desktop measurement in laboratories. A laser confocal sensor has been integrated with a

precision 2-axis linear stage and robot arm. Experimental data shows that the proposed system is able

to measure surfaces with Ra from 0.2–7 µm, which covers a common range of milling, turning and

grinding. In this range with linear error compensation, measurement relative errors can be controlled

within 5%. From the above sections, the proposed laser confocal measuring system features the

following attributes:

(1) High accuracy down to 0.2 µm Ra for roughness measurement, validated by a high-accuracy

stylus profilometer,

(2) Non-contact measurement that prevent possible contamination and damage to sample surface,

(3) Compact design that can be integrated with a robot or other motion system for

in-situ measurement,

(4) 3-Stage motion control that is able to minimize the vibration caused by robot and positioning

motion mechanisms, and

(5) Low-cost design compared to the desktop system which consists of stylus or optical profilometer.

Based on the current measurement results and conclusion, we will focus on the following areas in

the future work:

(1) Fabricate more roughness specimens with Ra in the range of 3–6 µm and validate the linear

correction factor.

(2) Measure more roughness parameters such as Rz and Rdq which are more sensitive to profile

peaks and valleys.

(3) Systematically investigate the optical noise and measurement error from the laser confocal sensor

when measuring surface peaks and valleys.

(4) Systematically evaluate the uncertainty and repeatability of the proposed measuring system.
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