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Abstract  
 

Caligus rogercresseyi is a host-dependent parasite that affects rainbow trout and Atlantic salmon in 
Chile. Numbers of sea lice on fish increase over time at relatively predictable rates in a closed system 
where the environment is conducive to the parasite’s survival and fish are not undergoing treatment. 
We developed a tool for the salmon industry in Chile that predicts the abundance of adult sea lice over 
time on farms that are relatively isolated.   

We used data on sea louse abundance collected through the weekly SalmonChile INTESAL sea lice 
monitoring program to create series of weekly lice counts between lice treatment events on isolated 
farms. We defined isolated farms as those that had no known neighbors within 10 seaway km and no 
more than two neighbors within 20 seaway km. We defined the time between sea lice treatments as 
starting the week immediately post treatment and ending the week before a subsequent treatment. Our 
final dataset of isolated farms consisted of 65 series from 32 farms, from 2009 to 2015. 

Given an observed abundance at time t=0, we built a model that predicted 8 consecutive weekly sea 
louse abundance levels, based on the preceding week’s lice prediction. We calibrated the parameters in 
our model on a randomly selected subset of training data, choosing the parameter combinations that 
minimized the absolute difference between the predicted and observed sea louse abundance values. 

We validated the parameters on the remaining, unseen, subset of data. We encoded our model and 
made it available as a Web-accessible applet for producers. 

We determined a threshold, based on the upper 97.5% predictive interval, as a guideline for producers 

using the tool. We hypothesize that if farms exceed this threshold, especially if the sea lice levels are 

above this threshold 2 and 4 weeks into the model predictions, the sea louse population on the farm is 

likely influenced by sources other than lice within the farm. 
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Highlights  

 We developed a tool that predicts the abundance of adult sea lice over an 8-week period on 

isolated Chilean salmon farms with starting sea lice levels below 1.55 adult lice per fish. 

 Our tool may be useful for farms that are primarily infected by sea lice from their own fish   

 On isolated farms our tool may be helpful for determining the timing of sea lice treatments  

 

1. Introduction  
 

The sea louse Caligus rogercresseyi is a parasite that affects farmed salmonids in Chile. It’s life cycle, 

from egg to mature adult, is temperature dependent and, at 100 C, takes 4 to 5 weeks to complete 

(González and  Carvajal,  2003; Bravo, 2010). Management of this parasite is complex. There are several 

treatments used to control sea lice in Chile, but the majority are administered as baths, and these only 

affect the life stages of lice on fish. The residual effect of bath treatments is minimal, so fish can become 

re-infected shortly after a treatment event. Further, the juvenile non-mobile life stages are not 

consistently killed by bath treatment applications (Arriagada et al. 2014). The consequence of the 

inability to treat all life stages effectively with bath treatments means that management of this parasite 

is difficult and requires continuous monitoring to anticipate the next wave of infection.   

 
Based on the life cycle of sea lice (González and Carvajal, 2003), the number of adult sea lice on fish at 

time t can be predicted by the number of adult lice at time t-1 that remain on the fish, plus any new 

adult lice that have developed from the juvenile population at t-1. The juvenile lice (non-motile chalimus 

life stage) at t-1 originate from adult lice at t-x, where x is likely 3 to 4 weeks, depending on water 

temperature (Bravo, 2010). Within a farm, especially if there is predominantly only ambient sources of 

sea lice (i.e. the fish within the farm), the adult louse abundance from one week to the next is strongly 

correlated.  

The ability to predict sea louse abundance from one week to the next would be useful for producers for 

a number of reasons. First, it would permit them to plan sea lice treatments more effectively. Second, it 

may also enable producers to estimate the overall number of sea lice treatments that a farm may need 

during a production cycle. Third, if a producer’s fish are consistently above the level expected from its 

own infection pressure, it is likely that the farm is exposed to sea lice from other sources, such as 

infected neighboring farms and/or infected wild fish.  

Identifying whether a farm’s sea lice counts are above what would be expected from self-infection will 

help determine whether single farm immersion treatments will be effective for an extended period of 

time or whether fish would benefit from coordinating treatments with other farms in the area that may 

be contributing to their sea lice levels. Sea lice transmissions have been measured at considerable 

distances in many countries with large salmon industries, including Chile (Jansen et al., 2012; 



 

 

Kristoffersen et al. 2013; Rees et al. 2015). Although there are other sources of C. rogercresseyi, as this 

copepodid is not specific to salmon, synchronizing treatments on farms within 10 km can help extend 

the duration of the effectiveness of bath treatments (Arriagada et al. 2017).   

The objective of this study was to develop a tool that predicts sea louse abundance, over a short (i.e. 8 

week) time period, based on an initial infestation level.  

2. Methods  

2.1 The Model 

 

We built a model that used the observed adult sea louse abundance at time (t) zero to predict the louse 

abundance on the following 8 consecutive weeks.  We used sea lice data from Chilean farms with no 

known active neighbors for 10 seaway km and no more than 2 neighbors within 20 seaway km to 

determine the coefficient and intercept values for the following equation that best predicted our sea lice 

data series: 

𝑙𝑡 =  𝛽0 + 𝛽1𝑙𝑡−1  

Where 𝑙𝑡  is the predicted sea louse abundance at t≥1 and 𝑙0 = observed sea louse abundance at 

t=0   

Because we used relatively isolated farms to build this model we assumed that the majority of sea lice 

on fish at time t were either from adult lice that survived the week prior or from the juvenile lice in the 

preceding week that matured into the adult stage.  If our assumption that these farms were isolated 

from other sources of sea lice was accurate, then the juvenile lice existing on the fish the week prior 

would have originated predominantly from the adult sea lice on the farm approximately 4 weeks prior 

to the week of interest. Because adult sea lice on a farm at time t-4 is correlated to the adult sea lice on 

the same fish at t-1, we chose to simplify our model and capture the contribution of the juvenile lice at 

t-1 within our coefficient for adult sea lice at t-1 (𝛽1) and our intercept (𝛽0).  The latter also captured 

other ambient sources of sea lice outside the farm.  

We evaluated a range of values for our coefficients (i.e. β0 and β1) between 0 and 2 at increments of 

0.001.  Although we had upper boundaries on our parameters, the best models had coefficient values 

well within the parameter intervals.   

2.1.1 Training data selection and descriptive statistics 

 

Data on weekly sea louse abundance on farms in Chile were collected through the SalmonChile INTESAL 

sea lice monitoring program from 2009 to 2015 to identify the number of active neighbors around a 

given farm. A farm was defined as isolated or non-isolated based on the number of neighboring farms 

within 10 and 20 seaway km. Farms with no known neighbors within 10 seaway km and a maximum of 2 

neighbors within 20 seaway km were considered isolated.  Weekly records from these farms were 

extracted from the dataset and used to train and validate (or test) our sea lice model.  



 

 

To train the model, we needed consecutive weeks of sea louse abundance information that were 

uninterrupted by treatments. To generate series of sea louse abundance data, we defined the time 

between sea lice treatments from the week immediately post treatment until the week before the 

subsequent treatment. We restricted our dataset to intervals associated with bath treatments, when 

the water salinity was above 26 ppt. Further, we excluded series if emamectin benzoate was used alone 

or in combination with bath treatments, because it was difficult to determine when the residual effect 

of this treatment ended. For these cases, we resumed the creation of additional treatment series 

subsequent to a new bath treatment being applied.  

We also excluded treatment series where the average fish weight was less than 500g, because we were 

not certain whether the development period for adult lice would have been met. In a few instances, we 

observed drops in sea louse abundance of greater than 80%, with no treatment declaration, when the 

previous week’s louse abundance was greater than 6 lice per fish. This reduction in lice with no decrease 

in salinity was unlikely to occur naturally. In these cases, we assessed the patterns of lice levels after the 

drop in abundance and, if these increased gradually over the subsequent two weeks, we attributed the 

drop to an undeclared treatment and started a new treatment series.  

We limited both our model training and test datasets to treatment series that had at least 5 weeks of 

information. This reduced our dataset to 65 series, from 32 farms. The temperature range in our dataset 

was between 7 and 160 C, and none of the 65 data series started with an abundance of more than 7.3 

adult sea lice. The median and 75th percentile values for sea louse abundance, post treatment, were 0.63 

and 1.55, respectively.   

For comparison, we also extracted weekly sea lice data for farms with more than 6 neighbors within 10 

seaway km and at least an additional 6 neighbors within 20 seaway km. This resulted in a total of 69 

treatment series from 14 non-isolated farms that met our bath treatment, water salinity, and fish size 

inclusion criteria. The median and 75th percentile for starting sea lice levels post treatment on this group 

of farms were 1.05 and 2.54 sea lice per fish, respectively.   

For descriptive purposes, we plotted the weekly average louse abundance, post-treatment, for isolated 

and non-isolated farms against time. We discontinued our time series of average louse abundance once 

we had less than 50% of the original cohort of treatment intervals. For isolated farms, we plotted sea 

louse abundance for 9 weeks (week 0 to 8), but for non-isolated farms we were only able to plot sea 

louse abundance for weeks 0 to 5.  For additional comparison purposes, we also plotted a subset of the 

isolated farms that had complete data series (weeks 0 to 8).  

We also described the average number of weeks between the treatments. Using a mixed linear 

regression model with farm type (isolated vs non-isolated) as a fixed effect and production cycle as a 

random effect, we evaluated whether the number of weeks between treatments (log transformed) was 

statistically different between these types of farms. For this analysis, we used all bath treatment series, 

except the last treatment period, which is sometimes extended because of impending harvests. The 

total number of series used in this analysis was 92.  



 

 

2.1.2 Training Process 

 

To guard against over-fitting our model to the data, we did not use all 65 available isolated farm series 

for training our model; instead, we randomly selected 43 series for training and used the remaining 22 

for validation (test dataset). To train the model we built a program, using Python 2.7 (Python Software 

Foundation, http://www.python.org/), that automatically generated simulation outputs from a list of 

starting data. We used an algorithm that tested combinations of the parameters within our boundaries, 

defined above, to find the best fit. The model coefficients were varied over the ranges in increments of 

0.001, and we tested all increment combinations.  

 

For each model with different coefficient combinations, we generated sea louse abundance predictions 

for each week of each series in the training dataset. We initiated our 8 week prediction period with the 

observed sea louse abundance at week 0. We created a score for each data series by summing the 

difference between the weekly observed and predicted sea louse abundance for each combination of 

coefficients.  We standardized the individual series scores prior to calculating the overall score for the 

coefficient combination by dividing the series scores by the number of weeks in the series.  We then 

calculated an overall score for each parameter combination, using the following absolute deviation 

formula:  

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 = ∑
1

𝑡𝑖 

𝑁

𝑖=1

∗ ∑ | 𝑜𝑏𝑠𝑖𝑗 − 𝑃𝑟𝑒𝑑𝑖𝑗|

𝑡𝑖

𝑗=1

 

 

where i is the series, j is the week,  ti is the length of series i, and N is the 

number of series.  Predij  was determined using the models and the 

starting sea louse abundance observed at  time point 0.   

 

To determine the coefficient combination that best fit the training dataset, we selected the combination 

of β0 and β1 values with the lowest overall score or least absolute error.  We used the absolute deviation 

method instead of the least squares technique to determine the best coefficient combination for our 

model because we wanted to minimize the influence of extreme values.   

To evaluate the training process and ensure that we were producing coefficients that were still 

applicable to unseen test data, we calculated an overall test score, in the same manner as described 

above, for each parameter combination using the 22 series in the test dataset. We visualised, using a 

contour plot, the overall score from our models where the grey scale was based on overall score 

quartiles from all adaptations to the random training dataset. A counter plot was also used to visualise 

the overall score for the novel test dataset, to verify that the optimal parameters from the test dataset 

were similar to those found from the training dataset.  

Once we selected a set of coefficients for our model, we calculated the proportion of isolated farms in 

our test dataset and our non-isolated farm dataset that were above different thresholds at two and four 

weeks into the model predictions. The thresholds evaluated are listed in Table 1. We used the following 

equation to determine the different upper predictive interval thresholds:  

http://www.python.org/


 

 

 

𝑢𝑝𝑝𝑒𝑟 𝑥% 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

= 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + (𝑍𝑥 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑓𝑜𝑟 𝑤𝑒𝑒𝑘𝑡) 

 

Where Zx is the percentile corresponding to the right side of a Z distribution associated 

with a one-sided probability of 100-X % (e.g., Z90 = 1.282 and  Z 97.5 = 1.96).  

 

For these comparisons, we only used data series that had starting sea louse abundance values between 

0 and 1.55 adult sea lice per fish, because that is the upper limit we set for our industry tool.  

2.2 Tool development  

We transferred our model into the AnyLogic 7 simulation tool (http://www.anylogic.com). We limited 

the tool to accept only starting adult sea lice values below the 75th percentile level in the training 

dataset (sea louse abundance of 1.55) and added a threshold at the upper 97.5% predictive interval, as a 

cut-off guideline for producers. The model was exported as a Java applet (Figure 1) and can be accessed 

at https://sophiesthilaire.github.io/Sealice-Chile/ . Access to the tool enables producers to evaluate 

whether it accurately predicts sea lice levels on their farms when they are isolated from other sites.   

3. Results  
 

Isolated farms in our dataset had relatively steady increases in adult sea lice levels over time (Figure 2). 

Non-isolated farms with neighbors had higher lice levels, showed steeper increases in lice numbers over 

time, and had more variability in adult louse abundance (Figure 2). On average, the isolated and non-

isolated farms in our dataset reached 3 lice per fish by around 4 weeks and 2 weeks post treatment, 

respectively (Figure 2). Further, non-isolated farms had shorter time intervals between their bath 

treatments (Figure 3).  On average, the time interval between treatments on isolated farms in our 

dataset was 1.66 times longer than on farms with neighbors  (p=0.005), after controlling for the 

production cycle effect. 

 

Because the adult sea lice predictions in our models were defined recursively, this led to a non-linear 

relationship over time (weeks) when β1 was not equal to 0 or 1 (Figure 4). The coefficients (β0 and β1) we 

selected for our final predictive model were 0.613 and 0.890.  In comparing the contour plots from the 

training and test datasets, we can see that the parameter values with the lowest overall scores occurred 

in the same areas of the plot (Figure 5). This suggests that the training process produced parameters 

that are not just applicable to the training set, but also appropriate for novel situations. 

 

When the model was used to predict sea louse abundance for the test dataset, it predicted estimates 

within +/- 1.7 adult lice 50% of the time for the first 4 weeks of the simulation model (Figure 6). Further, 

using a restricted dataset that only contained starting values less than 1.55, all of the test data series, on 

the second week of predictions, had sea louse abundances below the upper 97.5 percentile predictive 

interval, while 25% of the non-isolated farm data series were above this threshold (Table 1).  On the 

fourth week in our simulation model, approximately 50% of the non-isolated farm data series were 

http://www.anylogic.com/


 

 

above this threshold, while only 7% of the isolated farms in our test dataset, with the same comparable 

starting range values, were above this threshold (Table 1). 

 

4. Discussion  
The abundance of C. rogercresseyi on isolated farms increases predictably over time. Our tool was able 

to predict adult lice levels over an 8-week period on isolated farms that have environmental conditions 

conducive to the survival and reproduction of the parasite. The tool was based on a prediction equation, 

which was optimized by means of a criterion function defined to robustly quantify the prediction error. 

While our method does not involve a fully specified statistical model, the prediction equation is similar 

to that of a linear state-space model without a stochastic component in the state equation (e.g. Durbin 

and Koopman, 2012).  

An inherent assumption of the prediction is a constant infection pressure from outside the farm. We 

think this assumption may be most sensible when sea louse abundance is low. In the industry data used 

to optimize the equation, the starting sea louse abundance post bath treatment was relatively low (75% 

of the data series started with less than 1.55 lice per fish). On average, the tool predicts adult sea lice on 

isolated farms within 0.96 lice per fish, but if we were to use the tool to predict the lice level on a single, 

specific farm, our abundance prediction could be off by one or two lice in either direction (Figure 6).  

The discrepancy between our predictions and observed lice levels is likely due to the fact that there was 

variation in the patterns of sea louse abundance over time on isolated farms and this source of variation 

was not captured by our simple model. An example of the difference in sea lice patterns over time 

within our training dataset was apparent when we plotted the average lice abundance from series that 

had all 8 weeks of data separately from the average training dataset series which contained shorter data 

series (Figure 2). Several factors, such as water currents within a farm, undisclosed treatments, 

undisclosed infected neighbors, water temperature, and salinity, which were not accounted for in our 

model, may explain the variation in sea lice abundance over time between data series. Although we 

tried to limit the impact of these factors in our data by restricting our dataset, we could not control for 

things such as undisclosed lice sources and water currents. Farms with better flushing may have had less 

re-infection of sea lice than farms with poor water flows.  

In addition, some of the discrepancy between predicted and observed lice levels may have been due to 

sampling variation within a farm. Only 40 fish were examined each week to determine a farm’s sea louse 

abundance, and when the sample size is small and the prevalence of a pathogen is very low, the 

estimate will be less precise. Finally, variation in the pattern of sea louse abundance over time within 

and between farms may have also been due to differences in external infection pressure on farms and 

factors that were not controlled and which affected lice levels. 

The abundance of adult sea lice at t-1 was a  good predictor of adult sea lice at time t on isolated farms, 

probably because a certain proportion of the adult sea lice at t-1 survive and are, therefore, still present 

on the fish at time t (González and Carvajal, 2003; Bravo, 2010). The other source of sea lice at t are the 

new lice which, in a closed system, would originate from the adult sea lice at t-4 or t-5 (González and 



 

 

Carvajal, 2003; Bravo, 2010). Although the abundance of adult sea lice at these time points were not 

included in our model, they are likely correlated to the adults at t-1, which enabled us to estimate the 

adult sea lice at time t with a simple model.  Inclusion of other predictors such as adult sea lice at t-4 or 

juvenile sea lice at t-1 in our model would have required predictions of these stages over time, which 

would have complicated the tool.   In our initial studies, including these terms did not improve the 

predictions (data not shown), and this process required at least four weeks of sea lice abundance data 

before predictions could be made, rendering the tool less practical for the farmers.  

One reason to create this tool was to help producers determine if their sea lice levels are above what is 

expected from the propagation of the parasite within their own farms (i.e. what is expected on isolated 

farms). If the sea lice abundance pattern on a farm, over time, is consistently higher than what our 

model predicts, then it is possible that that farm is exposed to external sources of sea lice, which could 

be from neighboring farms or a wild fish reservoir.   

To determine if the predicted pattern on a farm is sufficiently different or similar to the pattern 

expected from its own source of sea lice, we recommend comparing the observed sea lice level to the 

upper 97.5th percentile predictive interval. If the observed abundance of adult lice on a farm is 

consistently over this threshold, the farm is not following the expected pattern for isolated farms, which 

are presumed to receive sea lice predominantly from within the farm. The majority (93%) of the farms in 

our test dataset had sea lice levels below this threshold for the first 4 simulated weeks of our model. In 

contrast, we found that more than 25% of non-isolated farms, with similar starting levels of sea lice, had 

louse abundances above this predicted threshold by the second week of the time series, and 50% were 

above this threshold by the fourth week of the simulation (Table 1).    

We anticipated that farms with neighbors would have higher levels of sea lice than what our model 

predicted, because the model did not account for lice contributions from neighboring sites. Our data 

suggested there were differences in the abundance between isolated and non-isolated farms, but we 

expected a steeper increase in sea lice on non-isolated farms (Figure 1 and Table 1). It is possible that we 

would have had a larger difference between the predicted and observed sea lice levels on isolated and 

non-isolated farms (i.e. more non-isolated farms above our predicted level) had we included only non-

isolated farms with infected neighbors, but these data were not available at the time of our study.  It is 

also possible that we misclassified some of the isolated farms because, although our database was 

industry driven, participation in the database was voluntary and therefore it may not include all farms in 

the industry. Further, we did not include coho salmon farms when we identified isolated farms because 

this species of fish is generally resistant to sea lice (Yatabe et al., 2011); however, they can occasionally 

be infested with low numbers. Despite this limitation, on average, non-isolated farms in our dataset 

appeared to reach an abundance of three adult lice before isolated farms (Figure 1). Non-isolated farms 

also had, on average, more weeks between bath treatments (Figure 2). It may be possible to use the 

time between treatments in combination with the simulation model to determine whether fish on a 

farm are influenced by sources of sea lice other than existing lice on their farm. The more external 

sources of sea lice a farm is exposed to, the sooner we would expect it to reach a specified treatment 

threshold. Although the external source(s) of sea lice for farms is unknown, the likely sources, based on 



 

 

a previous studies in Chile (Kristoffersen et al. 2013; Arriagada et al. 2017), are infected neighboring 

farms. Farms that share sea lice with their neighbors may benefit from synchronizing their sea lice bath 

treatments (Arriagada et al. 2017).  

Another possible application for this tool is to assist with the planning of sea lice treatments. If the sea 

louse abundance on a farm follows our model’s predicted levels over time, it is possible to estimate the 

week when the fish will attain a specific treatment threshold, which supports more timely scheduling of 

treatments on farms.    

Before using our tool to determine whether the sea louse abundance fits the pattern expected on an 

isolated farm, producers should ensure that the conditions we set for our model apply to their site. 

Specifically, the last fish transferred to the site have to have been on the farm for longer than one 

month to ensure there has been sufficient time for sea lice to mature to the adult stage; the 

environment must be conducive to the survival of sea lice (i.e. water temperature should be between 7 

and 160 C and salinity should be above 26 ppt); and the adult louse abundance in the first week after 

treatment should not be above the 75th percentile found in our dataset (1.55 adult lice), as our model 

has not been validated for values above that. We observed that the predicted sea louse abundance over 

time, when the starting sea lice level is higher than this value, results in a pattern that is relatively 

modest compared to what we would expect based on clinical experience. If this tool is to be used to 

predict sea louse abundance when initial counts are higher than 1.55 lice per fish, we suggest 

reassessing the model parameters using more representative data.  

Another limitation of this tool is that farms with the highest initial sea lice levels in our study dropped 

out earlier than farms with lower sea lice infestation levels, due to earlier treatment events; thus, not all 

farms contributed evenly throughout the time series, which may explain the decrease in the infection 

pressure (i.e. slope) after 5 weeks (Figure 1). To minimize this bias, we only predicted sea louse 

abundance for 8 weeks post-treatment, which ensured that we had at least 50% of the data series with 

observed values for the entire period. We also only included treatment series that contained at least 5 

weeks of data and normalized the sum of absolute residuals, so all series were equally weighted when 

training the model.   

Future research should build on this tool and incorporate other sources of sea lice 351 outside the 

farms, as well as the effects of environmental factors on lice abundance, so that the tool can be used to 

predict sea lice counts under a greater variety of conditions. Although there are some limitations to our 

tool, it can still be useful for producers to identify farms that are likely not influenced by many external 

sources of sea lice. On these farms, the tool could be used to estimate when sea lice bath treatments 

may be required. Producers with farms that do not fit the expected patterns predicted by our tool may 

want to investigate further why their lice levels are higher than expected.  
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Table 1.  Proportion of data series in our test and non-isolated farm datasets above different threshold 

cut-offs on the second and fourth week of our model  simulation.  Only data series with starting sea lice 

abundance values between 0 and 1.55 lice per fish were used for this analysis. We used the standard 

deviation of the residuals from the farms that had complete series to calculate our predictive intervals.  

The bolded row indicates the threshold used in our online tool.  

Week    Thresholds Test dataset  
Crowded farm 
dataset  

2nd week  
    

 
Predicted value 

 
0.27 0.64 

 
1.5 times predicted value 0.20 0.46 

 
2 times predicted value 0.07 0.36 

 

Upper 97.5% predictive interval 0.00 0.25 

 

Upper 95% predictive interval 0.00 0.28 

 

Upper 90% predictive interval 0.13 0.35 

 

Upper 85% predictive interval 0.13 0.36 

 

Upper 80% predictive interval 0.13 0.43 

 

Upper 75% predictive interval 0.13 0.50 

      4th 
week  

     

 
Predicted value 

 
0.40 0.86 

 
1.5 times predicted value 0.33 0.68 

 
2 times predicted value 0.07 0.54 

 

Upper 97.5% predictive interval 0.07 0.50 

 

Upper 95% predictive interval 0.13 0.57 

 

Upper 90% predictive interval 0.20 0.57 

 

Upper 85% predictive interval 0.20 0.64 

 

Upper 80% predictive interval 0..33 0.68 

 

Upper 75% predictive interval 0.33 0.71 
  



 

 

Figure Captions  

Figure 1. Screen-capture of the adult sea lice abundance predictive tool interface illustrating the 

weekly predicted levels based for an initial value of 1 adult C. rogercresseyi.  

Figure 2. Adult sea louse abundance over time for isolated and non-isolated farms. Dashed lines 

indicate 3 and 6 adult sea lice, which are treatment thresholds often used by the Chilean salmon 

industry. The bars around the mean abundance of sea lice indicate the standard error.  

Figure 3. Boxplot depicting the number of weeks between bath treatments on isolated and non-

isolated farms.    

Figure 4.  The predicted adult sea louse abundance for selected models with the parameter 

estimates found on the diagonal lines drawn on the contour training plot in Figure 5. The darker 

lines correspond to parameters that had lower overall absolute error scores. Note this grey scale 

is the opposite of the grey scale used in the contour plots.   

Figure 5.  Contour plots showing a visual overview of the performance of combinations of 

parameters for both the training and test datasets. In the plots, parameter values are shown in 

increments of 0.01 (we used finer resolution when training and testing the model). The grey scale 

at each location in the plot indicates  how well the model fit the datasets using those parameter 

values. The lighter shades of grey indicate a better fit. 

Figure 6.  Boxplot depicting the difference between the observed and predicted adult sea louse 

abundance by week for isolated farm data series in our test dataset.  

  



 

 

 

 

 

Figure 1. Screen-capture of the adult sea lice abundance predictive tool interface illustrating the 

weekly predicted levels based for an initial value of 1 adult C. rogercresseyi.  

  



 

 

 

 

 

 

 

Figure 2. Adult sea louse abundance over time for isolated and non-isolated farms. Dashed lines 

indicate 3 and 6 adult sea lice, which are treatment thresholds often used by the Chilean salmon 

industry. The bars around the mean abundance of sea lice indicate the standard error.  
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Figure 3. Boxplot depicting the number of weeks between bath treatments on isolated and non-

isolated farms.    
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Figure 4.  The predicted adult sea louse abundance for selected models with the parameter 

estimates found on the diagonal lines drawn on the contour training plot in Figure 5. The darker 

lines correspond to parameters that had lower overall absolute error scores. Note this grey scale 

is the opposite of the grey scale used in the contour plots.   

  



 

 

 

Figure 5.  Contour plots showing a visual overview of the performance of combinations of 

parameters for both the training and test datasets. In the plots, parameter values are shown in 

increments of 0.01 (we used finer resolution when training and testing the model). The grey scale 

at each location in the plot indicates how well the model fit the datasets using those parameter 

values. The lighter shades of grey indicate a better fit. 

 

  



 

 

 

Figure 6.  Boxplot depicting the difference between the observed and predicted adult sea louse 

abundance by week for isolated farm data series in our test dataset.  

 


