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Impact 

 Overview of different methods for modeling the spread of zoonotic influenza are 

presented, including approaches and software applied in animals and humans. 

 Summary of parameters required for modeling the spread of influenza viruses in animal 

and human populations are presented for ready reference. 

 This review highlights the existence of significant gaps in the knowledge of influenza 

transmission dynamics in animals and at the animal-human interface. There is a need for 

more research on modeling disease spread at the animal-to-human interface. 
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Summary 

Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. 

SARS, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary 

approach to tackling these threats to public and animal health. Accordingly, a global movement 

of “One-Health” or “One-Medicine” has been launched to foster collaborative efforts amongst 

animal and human health officials and researchers to address these problems. Historical evidence 

points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to 

mankind. Recently a range of mathematical and computer simulation modeling methods and 

tools have increasingly been applied to improve our understanding of disease transmission 

dynamics, contingency planning and to support policy decisions on disease outbreak 

management. This review provides an overview of methods, approaches and software used for 
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modeling the spread of zoonotic influenza viruses in animals and humans, particularly those 

related to the animal-human interface. Modeling parameters used in these studies are 

summarized to provide references for future work. This review highlighted the limited 

application of modeling research to influenza in animals and at the animal-human interface, in 

marked contrast to the large volume of its research in human populations. Although, swine are 

widely recognized as a potential host for generating novel influenza viruses, and that some of 

these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily 

transmissible between humans and swine, only one study was found related to the modeling of 

influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of 

novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences 

of influenza transmission between farms and between swine and humans are clearly evident. 

Therefore, there is a need to direct additional research to the study of influenza transmission 

dynamics in animals and at the animal-human interface. 

 

Introduction 

Mathematical and computer simulation models are increasingly being used to characterize the 

transmission dynamics of infectious diseases, to evaluate the effectiveness of various 

intervention strategies and to guide policy decisions on disease outbreak management. Examples 

include, the UK foot-and-mouth disease (FMD) outbreak in 2001(Ferguson et al., 2001b, 

Ferguson et al., 2001a, Keeling et al., 2001, Morris et al., 2001), severe acute respiratory 

syndrome (SARS) in 2003 (Gumel et al., 2004, Riley et al., 2003, Lipsitch et al., 2003, Lloyd-

Smith et al., 2003), and pandemic influenza (Ferguson et al., 2005, 2006, Flahault et al., 2006, 

Germann et al., 2006, Gojovic et al., 2009, Halloran et al., 2008, Longini et al., 2004, Longini et 
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al., 2005, Flahault et al., 2009, Fraser et al., 2009, Yang et al., 2009). The application of disease 

modeling has grown significantly since 2003 following the outbreaks of SARS and the highly 

pathogenic avian influenza (HPAI) epidemics caused by the H5N1 virus in Asia (from its 

perceived threat of generating a pandemic influenza strain) as highlighted by Lloyd-Smith et al. 

(2009) and  Keeling and Rohani (2008) and more recently after pH1N1 2009 outbreak. Models 

have also become increasingly complex, evolving from simple deterministic compartmental 

models (Arino et al., 2008, Brauer, 2008, Mills et al., 2004) to stochastic individual-based 

models (Carpenter & Sattenspiel, 2009, Germann et al., 2006, Lee et al., 2009, Tsai et al., 2010, 

Yang et al., 2009); with stochastic individual-based network models (Ajelli & Merler, 2008, 

Chao et al., 2010, Davey et al., 2008) adding ever more realism through the use of computer 

simulation. 

The emergence of zoonotic diseases such as SARS and HPAI, caused by H5N1 and pH1N1 

2009, together with the recognition that 58% of known human pathogens (Kwong et al., 2008) 

and 60% of emerging infectious disease (Jones et al., 2008) are zoonotic diseases has heightened 

research interest in zoonosis. Recognizing the need for a multidisciplinary approach in tackling 

these emerging public health concerns, a global movement on “One-World / One-Health” was 

initiated to foster and facilitate collaborative efforts amongst animal and human health 

professionals (Harper et al., 2004). Historical evidence points to the fact that pandemics from 

influenza A viruses still remains one of the major zoonotic threats to mankind, occurring over 

intervals of one to four decades since pandemic influenza caused by H1N1 in 1918 (Zimmer & 

Burke, 2009, Ma et al., 2009, Brown, 2000), with significant public health, livelihood and 

economic consequences (Meltzer et al., 1999, Fiore et al., 2008). The pH1N1 2009 also rapidly 

spread from humans to swine, with the first case reported on a swine farm in Alberta, Canada on 
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28 April 2009. This was linked to a carpenter employed in a swine barn, who was infected with 

the virus during his trip to Mexico (Howden et al., 2009, Office International des Epizooties 

(OIE), 2010). Subsequently, several other countries reported outbreaks in swine (20 countries as 

of 28 April 2010), while cases were also reported on two turkey farms in Chile and one in 

Canada (Office International des Epizooties (OIE), 2010). Human-to-swine transmission was 

suspected in almost all these outbreaks based on circumstantial evidence, with swine workers 

showing flu symptoms prior to outbreaks in swine (Office International des Epizooties (OIE), 

2010). Furthermore, pH1N1 2009 virus transmission between pigs was demonstrated under 

experimental (Brookes et al., 2010, Itoh et al., 2009, Lange et al., 2009, Vincent et al., 2009) and 

observational studies (Pasma & Joseph, 2010, Lange et al., 2009, Howden et al., 2009). No back 

transmission from pigs to humans was reported except for one suspected case in Canada 

(Howden et al., 2009). However, this may be related to the lack of reporting systems for pH1N1 

2009 humans cases acquired from pigs. This virus demonstrated the potential for the pandemic 

influenza viruses with swine influenza gene lineage to emerge and spread between humans and 

swine readily (Vincent et al., 2010). Recently, a novel swine-origin influenza A H3N2 variant 

virus (designated as A(H3N2)v) containing matrix gene derived from pH1N1 2009 virus was 

detected in humans in United States raising concern over pandemic potential of these viruses of 

swine origin (Lindstrom et al., 2012). It is therefore imperative to investigate epidemiological 

parameters influencing the transmission dynamics of pandemic influenza viruses at the swine-

human interface. Similarly it is important to identify appropriate surveillance or early warning 

systems, and intervention strategies to respond effectively to future outbreaks. Computer 

simulation modeling is a useful tool for such studies. It would be of interest to know the extent of 

modeling research directed towards zoonotic influenza at the animal-human interface since it 
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presents a continuous threat to public health. In addition the role that birds and swine play in the 

generation of new viral strains and their transmission to humans. Therefore, this review 

consolidates the relevant literature on the modeling of influenza virus spread in animals 

(including birds) and humans. It provides an inventory of methods and approaches, including 

software/platforms used to model influenza viruses in animals and humans, with a particular 

emphasis on spread at the animal-human interface. Any differences and challenges that may exist 

for modeling spread of influenza between animals and humans simultaneously are also 

investigated. The review also identifies parameters required for modeling influenza spread 

between animals and humans. This should facilitate the modeling process under a range of 

conditions by providing parameters and methods that may be relevant under different emerging 

influenza epidemic or pandemic situations. 

 

Materials and Methods 

In this review, mathematical or computer simulation models refer to dynamic disease 

transmission models where force of infection varies with changes in the prevalence of infectious 

and susceptible individuals in a population over time. This differs from many statistical models 

where population status and parameter values remain fixed and are used to quantify association 

between outcome and explanatory variables (Vynnycky & White, 2010, Dohoo et al., 2009). 

 

Search strategy 

A standard search term was developed based on the review objectives to collect information on 

the following research questions: (a) what are the different approaches and types of mathematical 
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or computer simulation models used to model the spread of zoonotic influenza viruses in 

humans, animals or between animals and humans? (b) What modeling assumptions were used? 

(c) What were the parameters used in these studies? (d) What software or platforms have been 

used for modeling influenza between animals and humans simultaneously? The search term used 

across bibliographic databases was: (“mathematical model*” or “stochastic model*” or 

“deterministic model*” or “compartmental model*” or “epidemic model*” or “epidemiological 

model*” or “disease spread model*” or “simulation model*” or “transmission dynamic model*” 

or “agent-based model*” or “individual-based model*”) and (“influenza” or “novel influenza” or 

“pandemic influenza” or “pandemic H1N1” or “novel H1N1” or H1N1 or H5N1 or “swine 

influenza” or “avian influenza” or “infectious diseases” or zoonosis or zoonoses or “zoonotic 

diseases”). Search fields were restricted to title and abstract while date of publication was used to 

exclude publications prior to 1990. Furthermore, search was limited to articles published in 

English. The searches were conducted on 9 February 2010 in the PubMed, CAB Abstract, 

ScienceDirect, and Agricola bibliographical databases. All articles retrieved from each of these 

four databases were imported into the bibliographic reference package, EndNote® version X2 

(Thomson, Reuters, Carlsbad, CA) and duplicate articles were removed. Additional relevant 

articles not captured by the search term, particularly articles related to experimental or 

observational studies that provided relevant parameters, were retrieved based on the references 

contained in a number of key articles. 

 

Screening of articles 

Titles and abstracts were screened for their relevance by two reviewers. Articles deemed to be 

“irrelevant”, such as those related to other infectious or to non-infectious diseases of animals, 
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humans, fish, or plants were removed. Articles were selected for review and data extraction if 

their abstract provided some details on mathematical or computer simulation models of influenza 

viruses in either animals, humans or both. Furthermore, if abstracts described the estimation of 

modeling parameters such as duration of disease states (incubation, latent, infectious, immune 

periods), contact parameters, transmission probabilities, the basic reproductive number (R0) or 

generation intervals, these were also selected. Screening and selection of articles as to their 

relevance was reinforced using a predesigned data extraction template described below. To aid 

consistency in abstract screening, two reviewers pre-tested 15 articles and accepted or rejected 

articles were compared. Of these in only one case (Perlroth et al., 2010) did the reviewers come 

to a different conclusion on acceptance. On investigation it was seen that the confusion in this 

case was due to the fact that no guidance had been given for articles primarily focused on 

evaluating cost impacts of mitigation strategies. As this article also provided useful modeling 

parameters it was decided that it should be included. The screening criteria were further refined 

to provide guidance for similar cases. 

 

Data extraction 

A template was developed in Microsoft Excel® version 2007 to aid in the extraction and 

recording of relevant information and parameters from each selected article. Detailed 

information on study objectives, questions of interest, study type, model methods and 

approaches, software used, strain(s) of influenza virus(es), disease spread type (within or 

between species), population units, and type(s) of intervention evaluated, were recorded. In 

addition, modeled disease spread parameters were extracted according to strain of influenza 

viruses and unit of population (individual, household, herd or flock levels).  
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Inventory of model types and approaches 

A summary of different modeling approaches was generated based on the research questions 

addressed in the selected studies. Research questions of interests were grouped into five 

categories, those aimed at: parameter estimation (coded as P), evaluation of the spread of the 

disease (S), evaluation of different types of intervention (I), method development (M), and the 

development of a modeling software/platform or tool (T). Many articles addressed a combination 

of these questions, in which case the relevant combinations of categories was recorded. The 

inventory of models in this review also included broad categorizations as to whether they were 

stochastic or deterministic, spatially explicit or not, and the type of contact structure modeled 

(homogeneous or heterogeneous mixing assumed or explicit contact network used). 

For those unfamiliar with the range of modeling types and sometimes confusing terminology, 

a brief overview of some key approaches is provided below. 

Deterministic model 

A model in which a set of differential equations (DE) describes the flow of individuals from one 

disease state to another as determined by a fixed set of average parameters, and is therefore 

sometimes referred as an aggregate or mean-field model. This approach will produce the same 

predicted outcome given a set of predefined model parameters (Arino et al., 2008, Brauer, 2008, 

Nuño et al., 2008, Nuño et al., 2007a). 

Stochastic model  
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Stochastic models incorporate elements of random processes into the system. The infection and 

transition of individuals from one state to another is determined probabilistically (Ajelli & 

Merler, 2008, Basta et al., 2009, Britton & Lindenstrand, 2009, Chao et al., 2010, Ferguson et al., 

2005, Ferguson et al., 2006, Germann et al., 2006, Glass & Barnes, 2007, Gojovic et al., 2009, 

Halloran et al., 2008, Lee et al., 2009). Model parameters (e.g. disease state duration, contact 

frequency, or probability of transmission per contact) are specified in the form of probability 

distributions, and values are randomly selected from these distributions for each iteration. 

Accordingly, the predicted outcomes also vary by iteration. Therefore, stochastic models are 

typically run many times (e.g. 1000 iterations) to obtain a reasonable distribution of potential 

outcomes. The model types described below can be implemented in either a deterministic or 

stochastic manner. 

Compartmental model 

In a compartment model, individuals in the population are categorized into one or more 

subgroups (compartments) based on the similarity of certain characteristics, such as 

susceptibility to a particular infection, contact types and rates, and most importantly the 

individual’s disease state (e.g. susceptible, infectious, and recovered which is why these are often 

referred to as “SIR” models). Infection process in the population is determined by the average 

behavior of the group, and individuals within each compartment are assumed to be homogenous 

and mixed perfectly. The flow of individuals from one compartment to another is determined by 

the sum of the individual’s underlying probabilistic rate and the model tracks this on a collective 

basis during each time step of the simulation (Arinaminpathy & McLean, 2008, Arino et al., 
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2008, Chowell et al., 2006a, Chowell et al., 2006b, Flahault et al., 2006, Hollingsworth et al., 

2006, Nuño et al., 2007b, Tsai et al., 2010, Tuite et al., 2010b, Vardavas et al., 2007). 

 

Agent-based / individual-based model 

The disease transmission process in an agent-based or individual-based model is governed by the 

behavior of each individual. Rules governing disease transmission dynamics are defined at an 

individual level. Although the same disease states (susceptible / infectious / recovered) are used 

as in the compartmental model, they are only used to represent an individual’s disease state at 

each time step of the simulation. The model keeps track of each individual (rather than the group 

of individuals) and adds up individuals in each disease state during each time-step of the 

simulation. Therefore, this type of model can capture heterogeneity of individual behavior (such 

as ‘super-spreaders’ - individuals who spread disease more readily than others as a result of a 

higher than average contact rate) and other sources of variation, which can have important 

impacts in terms of overall disease transmission dynamics. Incorporating such heterogeneity 

adds realism to the modeled process (Basta et al., 2009, Ferguson et al., 2006, Yang et al., 2009, 

Yasuda & Suzuki, 2009, Ferguson et al., 2005, Germann et al., 2006, Longini et al., 2005, 

Ohkusa & Sugawara, 2007). 

 

Network model 

Network models simulate disease spread in the population by explicitly taking into consideration 

the actual contact structures between individuals (‘who is connected to whom’). Stochastic 

individual-based network models that simulate disease spread based on contact structures 
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between individuals are more complex, yet more realistic, providing more accurate predictions. 

However, the reliability of these models depends on the availability of contact information which 

is still rare in most situations (Carrat et al., 2006, Chao et al., 2010, Davey et al., 2008, Ajelli & 

Merler, 2008, Perlroth et al., 2010). 

 

Gravity model 

The gravity model can be used to model disease spread between different geographical locations 

(for example, from one province to another) by explicitly incorporating rates of movement of 

people which are influenced by the population sizes and distances between locations. Increased 

movement tends to occur with greater population size and more closely linked areas when 

compared to less densely populated areas that are farther apart. This approach was used to 

investigate influenza spread from a large city (point of introduction) to other provinces in 

Vietnam (Boni et al., 2009). 

Metapopulation model 

A metapopulation model consists of a collection of distinct subpopulations of the same species 

each having its own distinct dynamics, and yet being connected to other subpopulations through 

limited interactions. In this approach disease spread occurs through mobility or migration 

processes of individuals amongst subpopulations. These characteristics suggest that 

metapopulation modeling should provide a suitable approach for modeling the spread of 

pandemic influenza at global or regional levels via, for example, air travel (Balcan et al., 2009, 

Colizza et al., 2007, Cooper et al., 2006, Flahault et al., 2009). 

Contact structure 



13 

 

 

Type and frequency of contacts between infectious and susceptible individuals is likely to play a 

crucial role in infectious disease transmission within a population, depending on the 

infectiousness and mode of transmission of the causative agent(s). Highly contagious diseases 

such as foot-and-mouth disease (FMD) can be transmitted over long distance through aerosol; 

similarly influenza or measles require less intimate contact than tuberculosis. In addition, the 

mixing pattern of hosts tends to play a crucial role in the way disease is transmitted. The 

modeling of transmission characteristics will therefore be heavily influenced by assumptions 

around the homogeneity or heterogeneity of mixing. Homogeneous mixing assumes that contact 

between different individuals occurs randomly with equal probability (e.g. each child is equally 

likely to make contact with any other child or adult and vice versa). Heterogeneous mixing 

assumes non-random mixing where some individuals or groups are more likely to be in contact 

with infected individuals than others (Brauer, 2008, Vynnycky & White, 2010). Furthermore, 

heterogeneous mixing can be assortative or disassortative. In assortative mixing, individuals 

belonging to the same subgroup make more contacts amongst themselves than with members of 

other subgroups (e.g. children are more likely to mix with other children than with adults). 

Disassortative mixing occurs when members of one subgroup mix more readily with members of 

a different subgroup than with members from within their own subgroup (e.g. sexual partners). 

Subgroups can be defined based on any characteristic (e.g. age group, gender, occupation, etc.) 

that is considered important in explaining differences in disease transmission and control. It has 

been noted that the assumption of homogeneous mixing, present in many models, is 

unrealistically simple in most situations (Brauer, 2008, Vynnycky & White, 2010). 

 

Intervention strategies 
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Approaches used for assessing different intervention strategies have been summarized by 

categorizing such strategies into the following groups: antiviral treatment, including prophylactic 

use (coded as A), vaccination prior to or during outbreak (V), school or day-care closure (S), and 

social distancing (D). This last category includes workplace closure, contact tracing, quarantine, 

isolation, cancellation of community and mass gathering, use of personal hygiene and protective 

equipment. In addition, movement control and depopulation of animals, including bird, are coded 

as (M), while air travel restrictions are coded as (T). A combination of these letters indicates that 

modeled assessment covered a combination of the respective intervention measures. 

 

Modeling parameters  

Parameters extracted have been summarized into three categories: (a) estimated values, where an 

article attempted to estimate parameters from empirical data taken from experimental, 

observational, or modeling studies; (b) referenced values, where values were taken from other 

articles; (c) assumed values, where values assumed for modeling purposes were based on either 

expert opinion or unpublished data sources. Furthermore, articles that estimated parameters with 

95% confidence intervals are reported separately so as not to dilute them with values from other 

studies that only estimated mean, minimum and/or maximum values. Parameters were 

summarized as median and range (minimum and maximum values) of means, medians, 

minimum and maximum values from one or more articles. However, only summary estimates of 

means, minimum and maximum values are presented in the main text as very few median values 

were available for most parameters. A detailed summary of these estimates along with a list of 

articles and reference sources is provided in the Appendix of supplementary materials. Single 

values for a parameter (with no stated range) indicate that these were either extracted from a 
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single article or that the values were exactly the same when consolidated from two or more 

articles. If an article provided only a single value for a particular parameter then this was entered 

under the mean section. In the main text, parameters were summarized according to strain of 

influenza viruses. Studies that did not specify a particular virus strain but used general terms 

such as "novel influenza", "pandemic influenza" viruses, or "mutant form of avian influenza 

H5N1" have been grouped under “Novel influenza virus”. In addition, studies that investigated a 

novel influenza virus but calibrated model parameters to a known influenza viral strain were also 

grouped under a novel influenza virus category. If studies described the agent as a seasonal 

influenza virus (without specifying a particular strain) or the term "general influenza virus" was 

used, they were grouped under influenza viruses. Detailed summary according to the specific 

strain or terms used for different influenza strain along with article list are presented in the 

Appendix of supplementary materials. All data processing and summary analyses were carried 

out using Stata version 11 (StataCorp. 2009. Stata Statistical Software: Release 11. College 

Station, TX: StataCorp LP) after importing data from Microsoft Excel® version 2007. 

 

Results and Discussion 

Search strategy 

A total of 721 unique articles were retrieved from PubMed, CAB Abstract, ScienceDirect and 

Agricola. Of these, 224 and 182 articles were excluded, through title and abstract screening 

respectively, as they were related to disease modeling and epidemiological studies of other 

infectious or non-infectious diseases of animals, humans, fishes, and plants, including one article 

related to computer viruses. Of the 315 articles reviewed, data were extracted from 133 articles. 

The remaining 182 articles were related to general reviews of models, general infectious disease 
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models, and an assessment of the economic impact of vaccine adjuvant from which no relevant 

parameters could be extracted. In addition, the references from 9 articles (Basta et al., 2009, 

Chao et al., 2010, Cowling et al., 2009, Milne et al., 2009, Tiensin et al., 2007, Tuite et al., 2009, 

Tuite et al., 2010a, van der Goot et al., 2005, van der Goot et al., 2007) considered to be 

important recent outputs in the area were individually reviewed and from these a further 18 

articles were identified and added to the set for data extraction. 

From a total of 151 articles from which data were extracted, 93 and 11 articles were related 

to simulation modeling studies in humans and birds respectively, while 5 articles reported 

models of zoonotic transmission. The remaining 42 articles (comprising 28 on humans, 10 on 

animals and 4 on birds) were routine statistical and experimental studies, from which modeling 

parameters were extracted. 

 

Inventory of model types and approaches 

It was apparent that different approaches were applied to model influenza for a variety of 

purposes. This may be because influenza is a commonly occurring disease that is readily 

amenable to modeling and also because it can often be the cause of large-scale pandemics. A 

summary of the different model types applied to influenza viruses in animals and humans 

addressing range of research questions is provided in Figure 1. 

General trends in the application of different models  

Humans  

Modeling to evaluate different intervention strategies dominated this literature. Of the 93 

modeling studies dealing with influenza in human populations, 38 and 25 focused on the 

evaluation of intervention strategies alone or in combination with other questions of interest 
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respectively. Nine articles were solely aimed at parameter estimation (Chowell et al., 2006a, 

Chowell et al., 2007a, Chowell et al., 2008, Chowell et al., 2007b, Fraser et al., 2009, Lessler et 

al., 2007, Mills et al., 2004, Sertsou et al., 2006, Tuite et al., 2010b); while three articles 

addressed parameter estimation and an assessment of the spread of influenza viruses (Ajelli & 

Merler, 2008, Colizza et al., 2009, Massad et al., 2007). Four articles described methods or 

approaches related to influenza modeling (Addy et al., 1991, Fraser, 2007, Tsai et al., 2010, 

Aparicio & Pascual, 2007) and four others on these methods or approaches in combination with 

influenza spread or the development of software (Balcan et al., 2009, Brauer, 2008, Carpenter & 

Sattenspiel, 2009, Chao et al., 2010). These new methods and approaches included: extending 

stochastic models to allow for variable length of infectious period and heterogeneity in contact 

rates (Addy et al., 1991); models to estimate the R0 of within and between household 

transmission of influenza virus (Fraser, 2007); to improve computational efficiency of large-

scale spatial stochastic individual-based models through algorithm refinement including the use 

of an R0 parameter rather than per contact transmission probability (Tsai et al., 2010); and the 

development of aggregate (system dynamic) models that capture the influence of contact 

network structures using basic reproductive ratios derived from the network structures (Aparicio 

& Pascual, 2007). Seven articles related solely to the spread of influenza (Boni et al., 2009, 

Flahault et al., 1994, Grais et al., 2003, Grais et al., 2004, Lavenu et al., 2004, Ohkusa & 

Sugawara, 2009, Rios-Doria & Chowell, 2009) and three focused on the development of 

modeling software (Eichner et al., 2007, Feighner et al., 2009, Hanley, 2006). A summary of the 

different models used for addressing various questions of interest is shown in Figure 1, while a 

detailed list of articles can be found in Table S1 of Appendix. 
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Some of the recent studies discussed the development of methods and approaches in 

combination with other questions as described below. Chao et al. (2010) developed the modeling 

platform FluTE for stochastic individual-based network models capable of simulating influenza 

spread across major metropolitan cities or even the entire population of the US, together with 

intervention measures. Lunelli et al. (2009) investigated the effects of incorporating contact 

matrices and spatial components (movements between geographic patches) into deterministic 

compartmental models and compared these with stochastic approaches. This was done to identify 

key elements of complexity to aid design decisions on achieving a balance between realism and 

computational efficiency. Deterministic models with heterogeneous mixing by partitioning 

populations into active and less active subgroups (Brauer, 2008, Larson, 2007) and a stochastic 

agent-based model for partitioning large-scale communities based on demographic, community 

features and daily activities (Das et al., 2008) were developed for assessing intervention 

strategies. Shaban et al. (2009) evaluated the effect of vaccination strategies at a household level 

during the early stage of an epidemic using a stochastic heterogeneous mixing compartmental 

model. An agent-based model to examine the effect of population movement and seasonal 

community structure on the transmission of influenza was developed by Carpenter and 

Sattenspiel (2009). Nigmatulina and Larson (2009) used a deterministic compartmental model 

with heterogeneous mixing to examine the inclusion of behavioral feedback to capture the 

changing behavior of people due to perceived threats during the epidemic phase on the modeled 

effect of non-pharmaceutical intervention. The role of memory and adaptation on decision-

making around vaccination coverage based on two incentives (commitment and family 

incentive) was assessed by Vardavas et al. (2007) using a deterministic homogeneous mixing 

compartmental model. The effect of different mobility networks (long-range air travel versus 
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short-range commuting patterns) on the global and local spread of influenza epidemics was 

investigated using stochastic SEIR metapopulation models (Balcan et al., 2009).  

 
In general, it is apparent that stochastic approaches have only recently been used to model 

influenza in humans. However, since the paper by Longini et al. (2004) this has been an 

increasingly important trend (Chao et al., 2010, Ferguson et al., 2005, Ferguson et al., 2006, 

Gojovic et al., 2009, Longini et al., 2005, Tsai et al., 2010, Basta et al., 2009, Lee et al., 2009, 

van den Dool et al., 2008, Wu et al., 2006, Yang et al., 2009, Yasuda & Suzuki, 2009). The 

numbers of stochastic models used to address different questions of interest and assess various 

intervention strategies are summarized in Figures 1 and 2, while a detailed list of articles can be 

found in Table S1. Stochastic approaches have some advantage over deterministic models, 

primarily through the incorporation of more flexible methods to represent variability and 

uncertainty. The introduction of a disease may or may not necessarily lead to epidemic outbreak 

under similar condition based on chance alone. This is particularly relevant in situations where 

numbers of infectious individuals and susceptible populations are small, when the infectious 

agent is not highly infectious, where spread occurs over smaller areas or where control measures 

are effectively implemented early in an outbreak (Britton & Lindenstrand, 2009, Keeling & 

Danon, 2009, Roberts et al., 2007, Lunelli et al., 2009). Furthermore, Britton & Lindenstrand 

(2009) demonstrated that the risk of a major outbreak is heavily dependent on the variability of 

the duration of the infectious period but not the latent period, whereas the initial growth rate of 

an influenza epidemic is greatly influenced by randomness in both periods. It is therefore likely 

that adopting a model which has limited capacity to capture stochastic behavior will, under these 

conditions, result in unrealistic predictions. 
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Most deterministic DE models simulated disease spread in continuous time-steps (Brauer, 

2008, Eichner et al., 2007, Kim et al., 2010), while stochastic models simulated either in 

continuous (Hayden et al., 2000) or discrete time-steps, ranging from 1 to 4 time-steps per day 

(Ferguson et al., 2006, Tsai et al., 2010, van den Dool et al., 2008, Yang et al., 2009). 

In general, most recent studies of pandemic influenza in humans have structured population 

by age, community (schools and daycare, workplace, households, etc.) and in some cases into 

high-risk and low-risk groups, using both deterministic and stochastic compartmental models 

(Brauer, 2008, Fraser et al., 2009, Lee et al., 2010, Milne et al., 2009, Ohkusa & Sugawara, 

2009, Tuite et al., 2009, Gojovic et al., 2009). Deterministic models with heterogeneous mixing 

which stratified populations into different subgroups were considered a balanced approach, as 

they are more realistic than homogeneous mixing, while remaining more efficient than 

stochastic, individual-based models in terms of simulation time and complexity (Brauer, 2008, 

Eichner et al., 2007). More complex and realistic models used to simulate influenza spread and 

evaluate intervention strategies included stochastic individual-based models (22 of the 93 

articles), network models (8 articles), or spatially explicit agent-based and network models (3 

articles). Some examples of these models include: individual-based models (Carpenter & 

Sattenspiel, 2009, Chao et al., 2010, Lee et al., 2010, Perlroth et al., 2010, Yasuda & Suzuki, 

2009, Basta et al., 2009, Tsai et al., 2010, Yang et al., 2009) , stochastic network models (Ajelli 

& Merler, 2008, Chao et al., 2010, Davey & Glass, 2008, Hsu & Shih, 2010, Perlroth et al., 

2010), spatially explicit agent-based or network models (Ferguson et al., 2005, Halloran et al., 

2008, Longini et al., 2005). The importance of incorporating spatial components in disease 

modeling were recognized both for evaluating spread and assessing the effect of control 

measures in humans (Colizza et al., 2009, Ferguson et al., 2005, Halloran et al., 2008, Lunelli et 
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al., 2009) and in birds (Le Menach et al., 2006, Savill et al., 2006, Sharkey et al., 2008) as 

disease tended to spread more within localized areas. These models were considered to better 

represent real world conditions by capturing individual level behavior, heterogeneity in contact 

structure and hence the ability to capture phenomena such as super-spreading. In addition, these 

modeling approaches allow more flexibility in assessment of targeted intervention measures (e.g. 

towards high-risk individuals or groups) and policy planning. While these models add more 

realism, they have disadvantages in terms of computational efficiency, requiring long hours of 

simulation to assess a plausible range of parameter values (particularly if population size is 

large). They also tend to require parameter specification at a fine level of resolution and detail 

(e.g. individual-level contact structures, individual-level or age specific transmission parameters, 

etc.). In addition, carrying out sensitivity analysis can be challenging since isolating influential 

parameters is difficult in the context of a large number of interacting parameters (Brauer, 2008, 

Gojovic et al., 2009). Therefore, it has been argued that simple deterministic compartmental 

models with heterogeneous mixing, which are also much easier to implement, represent a better 

alternative to these complex approaches for assessing disease management strategies during the 

early phase of an outbreak, particularly when little is known about model parameters (Brauer, 

2008, Chowell et al., 2006b, Eichner et al., 2007, Nuño et al., 2007a). The qualitative results 

using simpler models for evaluating influenza control measures such as social distancing, 

antiviral treatment or vaccination (Nuño et al., 2007a) can be shown to be similar to those 

resulting from the creation of more complex models (Ferguson et al., 2005, Ferguson et al., 

2006, Germann et al., 2006, Longini & Halloran, 2005, Longini et al., 2004, Longini et al., 

2005). The choice of the most appropriate model: deterministic versus stochastic; compartmental 

versus individual-based; etc.; will depend on the nature of the agent or disease, the purpose of the 
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research, the availability of parameters and the time-frame within which guidance is required 

(Britton & Lindenstrand, 2009, Brauer, 2008, Nuño et al., 2007a). A complete list of articles that 

used each of these different types of modeling approaches is provided in Table S1. 

Only a few studies have investigated the spread of influenza at the household level using 

either deterministic or stochastic heterogeneous mixing compartmental models (Fraser, 2007, 

Cauchemez et al., 2004, Shaban et al., 2009), or a stochastic individual-based model (Wu et al., 

2006). These studies investigated the spread of influenza within and between households through 

contacts between infected and susceptible individuals locally (within household) and globally 

(between households). They also evaluated the effects of various intervention measures. This 

approach to modeling the spread of influenza at household level is analogous to disease spread at 

farm or herd level in animal populations, which often includes an assessment of similar 

intervention strategies (vaccination, quarantine, isolation, etc.). Modeling influenza spread at 

household and farm levels may be one approach for modeling the spread of influenza amongst 

and between animal and human populations that can effectively address different requirements in 

terms of model granularity. 

Animals 

There were 11 articles relating to studies that modeled influenza spread in birds. However, no 

papers reported the modeling of zoonotic influenza in swine or other animals (excluding one 

study of influenza viruses in equine populations (Garner et al., 2011), for which zoonotic 

importance is not yet known). Of the 11 avian articles, 6 assessed intervention strategies either 

alone or in combination with other questions of interests, 2 estimated parameters (van der Goot 

et al., 2003, Arinaminpathy & McLean, 2009), and 3 articles assessed the spread of avian 

influenza viruses (Bavinck et al., 2009, Bos et al., 2007, Guberti et al., 2007). Different types of 
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models were adopted to address these questions in bird populations as summarized in Figure 1 

and Table S1. These included simple deterministic compartmental models (Bos et al., 2007, 

Elbakidze, 2008, Guberti et al., 2007, Iwami et al., 2009, Arinaminpathy & McLean, 2009), 

stochastic compartmental models (Bavinck et al., 2009, van der Goot et al., 2003, van der Goot 

et al., 2005), and a stochastic individual-based model (Savill et al., 2006). In addition, more 

complex models such as a deterministic network model (Aparicio & Pascual, 2007), a stochastic 

spatially explicit (Le Menach et al., 2006), and a stochastic spatially explicit network (Sharkey et 

al., 2008) model for avian influenza viruses H5N1 and H7N7 were also used. 

Multispecies zoonotic models 

A key focus of this review was to characterize the literature related to modeling for multi-species 

zoonotic influenza spread. This review could identify only five articles relating to such modeling 

studies (Arino et al., 2007, Iwami et al., 2007, Kim et al., 2010, Rao et al., 2009, Saenz et al., 

2006). Of these, one focused on methods and platform development to model the spread of avian 

influenza (A/H5N1 virus) from wild migratory water birds to domestic birds and humans as a 

function of spatially overlapping population densities (derived from spherical geometry based on 

great-circle distances to elicit interactions amongst water birds, poultry and humans) using an 

SIR model with Markov processes. Specifically designed software called SEARUMS (Studying 

the Epidemiology of Avian Influenza Rapidly Using Modeling and Simulation) was developed to 

facilitate this modeling (Rao et al., 2009). Another study investigated the spread of low 

pathogenic avian influenza (with the assumption that the virus mutated to become a pandemic 

virus) from birds to human and assessed the effect of quarantine in both species using 

deterministic metapopulation modeling (Arino et al., 2007). Two studies used deterministic 

mathematical models to examine the mechanisms of spread of avian influenza from birds to 
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humans (Iwami et al., 2007, Kim et al., 2010). They examined at what Ro values and contact 

rates the disease would be maintained or undergo extinction in bird and human populations, 

assuming a mutant form of the AI virus capable of human to human transmission emerged. All 

these studies assumed there was no back-transmission of influenza virus from humans to birds. 

Only one study investigated the spread of novel influenza virus between humans and swine 

species in a rural setting, using a simple deterministic model with homogenous mixing (Saenz et 

al., 2006). It investigated the amplifying effect on epidemic size of influenza spread in confined 

animal feeding operations (CAFO) and transmission back to humans through CAFO workers. It 

was assumed that transmission of the influenza virus between CAFO species and the general 

community occurred only through CAFO workers. This study showed that human influenza 

cases would increase by 42–86% assuming that swine workers comprised between 15–45% of a 

given community, while vaccination of 50% of the CAFO workers effectively nullified any 

amplification. Although this study provided preliminary insights into the effect of influenza 

spread between CAFO species and workers in a local setting, limitations inherent in 

deterministic homogenous mixing models, are likely to affect the ability of the model to capture 

the complexity of the human to animal and human to human interactions. In addition, other 

control strategies such as the effectiveness of biosecurity, contact reduction between sick CAFO 

workers and swine, and a reduction in transmission probability through personal hygiene 

measures need to be studied further. 

Another study assessed the exposure risk of susceptible domestic species to pandemic 

influenza A/H1N1 2009 upon its successful introduction into various populations in Vietnam 

(Boni et al., 2009). This study investigated the spread of pH1N1 2009 in humans by developing 

an age-structured gravity model and tracked the number of livestock owners (rearing swine and 
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poultry) and non-livestock owners infected. From the number of livestock owners infected, they 

estimated the number of livestock exposed to the pandemic virus indirectly. 

In terms of building a ‘one-health’ model to simulate spread of zoonotic influenza between 

animals and humans it is apparent that the most important differences relate to the unit of 

simulation as well as to the spatial and temporal scales involved. For humans, the unit of 

simulation is most often the individual. Individuals were assigned to spend differing amounts of 

time in various locations, such as at school, workplace or home, and disease spread was 

simulated in either continuous time-steps (Brauer, 2008, Duerr et al., 2007, Gani et al., 2005, 

Nuño et al., 2007b) or using two to four time-steps per day (Ajelli & Merler, 2008, Basta et al., 

2009, Carrat et al., 2006, Ferguson et al., 2006, van den Dool et al., 2008). In animal populations 

the unit of simulation was mostly the farm, typically modeled in time-steps of one day (Bavinck 

et al., 2009, Guberti et al., 2007, Le Menach et al., 2006). Despite these differences, it seems 

feasible to simulate the spread of influenza between human and animal populations by adopting a 

relatively simple approach which models at the household level. The household level model can 

be justified on the basis that it is pragmatic to implement most intervention measures such as 

antiviral drugs, vaccination, quarantine or isolation at the household level. 

 

Modeling software/platforms 

The main purpose of this section is to provide an inventory of the software used for modeling 

rather than to describe features of each of these tools, which is beyond the scope of this review. 

Only 13 articles specified the modeling software or platform used; details are given in Table 1. 

Four modeling software were described fully for modeling influenza in humans. FluTe is a 

stochastic individual-based modeling platform capable of simulating large-scale spread of 
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influenza and evaluation of intervention measures against pandemic influenza across major 

metropolitan areas or the continental US (Chao et al., 2010). InfluSim is a simple deterministic 

DE SEIR model that captures heterogeneous mixing (Eichner et al., 2007), while EpiFlex is a 

stochastic individual-based model which can simulate other diseases such as HIV and smallpox 

in addition to influenza (Hanley, 2006). Pandemic Influenza Policy Model (PIPM) is an agent-

based model specifically designed for military settings (Feighner et al., 2009). All these 

modeling platforms can handle populations partitioned by demographic and clinical parameters 

and are available freely. Other modeling platforms mentioned in the literature were AnyLogic 

(two articles), Berkely Madonna, MATLAB, and RePAST (Recursive Porous Agent Simulation 

Toolkit), all of which are generic modeling platforms. Finally, GLEaM (Global Epidemic and 

Mobility Modeler), a stochastic metapopulation modeling platform for simulating large-scale 

spread of influenza viruses, was noted in one article (Balcan et al., 2009). 

 

Intervention strategies 

Humans 

In general, the intervention strategies evaluated against pandemic influenza included: antiviral 

drugs for both prophylaxis and treatment of cases; vaccination; school, daycare and work place 

closure; personal hygiene; and other social distancing measures such as quarantine, isolation and 

travel restriction. These measures were evaluated either singly or in combination. A total of 63 

articles evaluated different intervention strategies to control influenza in humans. The 

intervention evaluated most frequently was vaccination, either alone (14 articles) or in 

combination with other intervention measures (22 articles). This was followed by antivirals, 

either alone (6 articles) or in combination (30 articles). Eight articles evaluated social distancing 
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measures, including one which specifically evaluated different strategies of school closure, such 

as isolating only sick students, closing individual schools or whole school system closures (Lee 

et al., 2009). Four articles evaluated travel bans solely and five more studied travel ban in 

combination with other interventions as a means of controlling an influenza pandemic. This 

included three that specifically evaluated the effect of air travel restrictions in mitigating a 

pandemic. They observed that unless air travels restriction were imposed in approximately 100% 

of the affected countries, there would be no effect on influenza spread, even though these 

measures delayed the peak of the influenza epidemic to varying degrees (Cooper et al., 2006, 

Hollingsworth et al., 2006, Wood et al., 2007). One article studied the effect of travel restriction 

between neighboring communities during a pandemic with similar results (Nigmatulina & 

Larson, 2009). The various types of models applied in the evaluation of these intervention 

measures are summarized in Figure 2. The two articles that assessed the effect of targeted 

antiviral prophylaxis and quarantine on containing a pandemic at source of origin, taking 

southeast Asia as the example case, were also the most highly cited references in the case of 

pandemic influenza modeling in human population (Ferguson et al., 2005, Longini et al., 2004). 

All interventions using prophylactic antiviral treatment, vaccination or social distancing 

(such as quarantine and isolation) were evaluated based on the assumption that these measures 

were implemented at household, school or health care settings (An der Heiden et al., 2009, Lee et 

al., 2010, Longini et al., 2004, Longini et al., 2005, Shaban et al., 2009, van den Dool et al., 

2008, Vardavas et al., 2007, Wu et al., 2006). It was difficult to compare the results of these 

studies as they evaluated the intervention measures under varying assumptions and population 

settings. However, all of these measures produced a positive effect on the containment of any 

influenza pandemic when implemented either singly or in combination with others. 
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The effects of these interventions were assessed by parameterizing the models through 

percentage reduction in contact rates (in the cases of social distancing measures such as school or 

workplace closure, or quarantine measures, etc.) and reduction in susceptibility to infection and 

infectivity or duration of infectiousness (in the cases of antiviral treatment and vaccination). 

Parameters used in assessing these intervention measures are described in the “modeling 

parameters” section below. In general, the outcome of these models were assessed in terms of 

clinical attack rates, secondary attack rates, hospitalization rates, case fatality rates, duration of 

epidemic, and day to epidemic peak. 

Birds 

Five articles investigated intervention strategies for influenza in birds. They included movement 

control, quarantine, isolation, depopulation (Elbakidze, 2008, Le Menach et al., 2006, Sharkey et 

al., 2008), and vaccination (Iwami et al., 2009, Savill et al., 2006) against avian influenza 

A/H5N1 and H7N7. Outcomes of these models were assessed in terms of R0 values, size of 

epidemic (number of infected premises), numbers depopulated and duration of epidemic. 

Multispecies zoonotic models 

Two articles evaluated the effect of intervention measures on zoonotic spread. One considered 

the effect of vaccinating certain high-risk populations (50% of CAFO workers) against a novel 

influenza virus (Saenz et al., 2006), while the other examined the effect of quarantine measures 

on the spread of low pathogenic avian influenza in birds and humans (Arino et al., 2007). 
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Modeling parameters  

Parameters used in models related to the natural history of influenza viruses, contact and 

transmission parameters, as well as intervention measures are summarized in Table 2 to 11. 

Detailed lists of references from which these parameters were extracted are presented in Tables 

S3 to S6. 

Natural history 

Parameters associated with natural history of influenza infection include those used to model: 

incubation, latency, subclinical (asymptomatic infectious), clinically infectious, and immune 

periods. These parameters are presented according to influenza strains reported in the literature 

for humans in Table 2(a) to 2(b), and for birds and swine in Table 3(a) and 3(b). In addition, 

percentages of pre-existing immunity used in some of these studies for humans are presented 

under the natural history of influenza section in Table 2(b). 

Parameters relating to disease state duration for different influenza viruses in humans were 

similar. Apparently modeling studies conducted after 2005 and prior to the pH1N1 2009 

outbreaks (Basta et al., 2009, Carpenter & Sattenspiel, 2009, Colizza et al., 2007, Duerr et al., 

2007, Flahault et al., 2006, Fraser, 2007, Gojovic et al., 2009, Halloran et al., 2008) mainly 

adopted the parameters (disease states durations, transmission parameters, contact frequencies 

and probabilities) specified in Ferguson et al. (2006, 2005), German et al. (2006), Longini et al. 

(2004, 2005) and Mills et al. (2004). Articles published after the outbreaks of pH1N1 2009 (Lee 

et al., 2010, Perlroth et al., 2010, Tuite et al., 2010a, Tuite et al., 2010b, Yang et al., 2009) 

tended to use parameters from Boëlle  et al. (2009), Fraser et al. (2009) , and Pourbohloul et al. 

(2009). Distributional characteristics of parameters used for the natural history of influenza 
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infection in humans and birds are presented in Table 4. The most commonly used distributions 

for incubation and latency period in human studies was a mean of 1.9 days with empirical 

distribution of 1 day (30%), 2 days (50%) and 3 days (20%) (Tsai et al., 2010, Chao et al., 2010, 

Colizza et al., 2007, Germann et al., 2006, Ohkusa & Sugawara, 2007, Longini et al., 2004, 

Longini et al., 2005),  and the clinically infectious period with a mean of 4.1 with empirical 

distribution of 3 days (30%), 4 days (40%), 5 days (20%) and 6 days (10%) (Weycker et al., 

2005, Germann et al., 2006, Halloran et al., 2002, Ohkusa & Sugawara, 2009, Tsai et al., 2010, 

Longini et al., 2004, Longini et al., 2005). No study estimated the duration of disease state 

parameters for any influenza virus at the household level in humans (which would be required if 

spread of influenza were to be modeled at the household level). None of the articles included in 

this review provided information on distributions related to the natural history of influenza 

infection in swine. 

Contact parameters 

Daily contact frequencies for different age groups, household sizes, student groups, risk 

behaviors (highly active or less active subgroups of a population), and different community 

structures are summarized in Table 5. Parameters relating to contact frequencies used for 

modeling in human populations were either derived from small pilot surveys (Lee et al., 2009, 

Longini et al., 2005, Yang et al., 2009, Yasuda & Suzuki, 2009) or from a large-scale survey 

carried out in eight European countries (Hens et al., 2009, Mossong et al., 2008). These contact 

frequencies were defined as adequate contact (sufficient to transmit influenza virus between 

infectious and susceptible individuals) of a physical nature such as skin-to-skin contact, kiss or 

handshake, or a two-way conversation consisting of three or more words. Although, the latter 

two articles used the same survey data, there were minor differences in the way contact 
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frequencies were estimated, in particular, number of contacts at works were included in the 

article by Hens et al. (2009). A number of recently published articles (Chao et al., 2010, Medlock 

& Meyers, 2009, Tuite et al., 2009, Tuite et al., 2010a) used the contact frequencies estimated by 

Mossong et al. (2008). Estimates of daily contact frequencies used in other articles are 

summarized separately in Table 5. Both direct and indirect contact rates between poultry or 

poultry farms, extracted from two articles (Elbakidze, 2008, Sharkey et al., 2008), are also 

summarized in Table 5. 

Transmission parameters 

Transmission parameters in disease spread models use either R0 in combination with a generation 

interval, or a transmission coefficient derived by multiplying contact frequency and transmission 

probability per contact and duration of relevant disease states. Some models used a single value 

of く defined as the per capita rate at which two individuals come into effective contact (i.e. 

adequate contact that will lead to infection if one is infectious and other is susceptible) 

(Vynnycky & White, 2010). Not all adequate contact will be effective (e.g. an adequate contact 

between infectious individual and immune individual will not be effective contact). Transmission 

probability per adequate contact (including contact frequencies) or transmission 

coefficient/contact rates (without requiring knowledge of contact frequency) were all estimated 

by calibrating these to match the attack rates (proportion of newly infected individuals in a 

exposed population) or R0 values of past influenza pandemics (pandemic influenza A/H1N1 

1918-1919, influenza A/H2N2 1957-58, and influenza A/H3N2 1968-1969). Transmission 

probabilities were estimated using varying units of contact frequency, such as frequency per day 

(Chao et al., 2010, Longini et al., 2005), frequency per hour (Gojovic et al., 2009), contact 

duration expressed in minutes per day (Lee et al., 2009), or as a probability per simulation time-
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step (Viboud et al., 2004). The transmission probabilities presented in Table 6 are a summary of 

all these estimates. Transmission probabilities for within-flock bird to bird and per dangerous 

contact through trucks picking up birds for slaughterhouse are also presented in Table 6.  

Similarly transmission coefficients/rates were expressed in units of continuous time, per-day 

or certain hours/day. Transmission coefficients/rates which were expressed in terms of daily or 8 

to 12 hourly intervals were summarized together, whereas those expressed in continuous time 

unit from seconds to hourly intervals were summarized separately and are presented in Table 7. 

Assumed values of transmission coefficient/rates for between-species transmission of influenza 

are also presented in the same table. Since these transmission probabilities and coefficients were 

calibrated under different disease spread scenarios and other assumptions, they are intended only 

to provide readers with an overview of the ranges of values used. In addition, all these 

parameters were summarized over all contact types. For more detailed information relating to 

specific contact patterns and transmission probabilities, readers may refer the original articles. 

Estimates of mean R0 values, with and without 95% confidence intervals, for different 

influenza viruses in in different human populations are presented in Tables 8(a) and 8(b) 

respectively. Reproductive numbers based either on references from other literature or assumed 

within the reported models in human population are also presented in Table 8(b). Chowell et al. 

(2006a) and (2007a) have estimated ranges of R0 values for pandemic influenza A/H1N1 1918 

based on different datasets collected around spring and autumn waves of outbreaks in Geneva, 

Switzerland. Autumn outbreaks had significantly higher R0 values than spring waves. They also 

estimated R0 values based on a different set of outbreak data from San Francisco, California, and 

by applying different modeling methods with some differences in the estimates. Estimates of R0 

values for the most recent pH1N1 2009 virus were reported in Pourbohloul et al., (2009), Tuite et 
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al., (2010b) and using four different approaches by Boëlle et al., (2009). The estimates from the 

first two studies were significantly lower compared with those of Boëlle et al., (2009). In 

general, R0 values for all pandemic influenza outbreaks ranged from 1.1 to 4.0. Two articles 

estimated R0 values for influenza spread at the household level (Fraser, 2007, Shaban et al., 

2009). The effect of household size on the basic reproductive number was evaluated by taking 

examples of small and large household size distributions for populations in Sweden and 

Tanzania respectively (Shaban et al., (2009). This study found that the R0 for between-household 

spread was much higher in populations with larger family size (R0 = 6) than in those with smaller 

family size (R0 = 2). 

Basic reproductive numbers estimated with 95% CI for different influenza viruses in birds at 

individual and flock levels are presented in Table 9(a). Summary of R0 estimated (without 95% 

CI), referenced and assumed at the individual, flock and village levels in the literature are 

summarized in Table 9(b). Different R0 values assumed for different species in modeling 

zoonotic transmission of novel influenza virus between human and swine or birds are also 

presented in Table 9(b). 

Summary estimates of generation intervals or serial intervals (time from onset of primary 

case to a secondary case (Vynnycky & White, 2010)) are presented in Table 10. Generation 

intervals are estimated by adding the averages of incubation or latency period and infectious 

period stated in the models. 

Parameters for intervention measures 

Parameters used for assessing different intervention strategies in human and bird populations are 

presented in Table 11. The estimated of efficacy of antiviral treatment ranged from 61–90% 

(Cooper et al., 2003, Hayden & Aoki, 1999), whereas efficacy values used for modeling ranged 
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from 28–100%. Reduction in infectivity by infected person through treatment used for modeling 

ranged from 28–100%, and for susceptibility through prophylactic treatment from 25–100%. The 

antiviral coverage rate, treatment duration including compliance rate are provided in the same 

table. The estimated vaccine efficacy for influenza in human ranged from 19–68% (Hayden et 

al., 2004, Vu et al., 2002). However, its values used (referenced or assumed values) in the 

models ranged from, 5–100%. Reduction in infectiousness by infected person due to vaccination 

used in the models ranged from 20–100% with a delay to immunity from no delay to 15–42 days. 

The vaccination coverage evaluated ranged from 18–100% in humans.  

Assessment of school and day-care closure were modeled through contact reduction ranging 

from 30–100% with the closure period ranging from 7–300 days. The delay to school closure 

from the first case ranged from without any delay to 7–56 days. The values used for reduction in 

contacts as a result of quarantine or isolation in human populations ranged from 40-100% while 

the duration of quarantine or isolation periods ranged from 1–21 days. A quarantine period of 

21–31 days with 100% effectiveness was assumed for infected bird flocks (Sharkey et al., 2008).  

It was apparent that there is adequate information on disease states and transmission 

parameters to model spread of influenza viruses in human population, including the recently 

emerged pH1N1 2009 virus. While some data exist for influenza viruses in birds, very little 

information on parameters other than disease state duration (Brookes et al., 2010, Pasma & 

Joseph, 2010, Vincent et al., 2010) exists for swine influenza viruses (including the pH1N1 2009 

virus) for the review period considered; despite the fact that many outbreaks in swine have been 

reported from a range of countries (Office International des Epizooties (OIE), 2010). 

 

Conclusion 
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This study has provided a synopsis of the different methods and approaches applied to modeling 

the spread of zoonotic influenza in humans and animal populations, including a summary of 

important modeling parameters. It was apparent that the majority of recent influenza modeling 

studies applied to human populations had been motivated by the perceived threat of the 

emergence of a mutant strain of the avian influenza A/H5N1 and pH1N1 2009 viruses. However, 

only four studies modeled the transmission dynamic of influenza spread between birds and 

humans, and one study modeled its spread at swine-humans interface. In spite of the recognized 

role of swine as a potential mixing host for different influenza viruses (particularly avian and 

human influenza viruses) in generating novel viruses through reassortment, and considering the 

fact that the pH1N1 2009 virus is known to readily transmit between swine and humans, 

modeling research at the animal-human interface has been relatively sparse. Significant gaps in 

the knowledge of parameters such as frequency of evolution of novel viral strains in pigs, farm-

level natural history of influenza infection in swine, incidences of its transmission between 

farms, and between pigs and humans are clearly evident. Given the potential benefits of 

simulation studies not only for understanding the transmission dynamics of zoonotic influenza 

but also in investigating various scenarios for contingency planning and developing sound early 

warning systems, it seems clear that priority must be given to research at the animal-human 

interface. This is imperative bearing in mind the continued threat posed by the repeated 

emergence of pandemic influenza viruses and the potential role animals may play in generating 

novel influenza viruses. It was also evident that there are adequate numbers of both generic and 

specific software (both for commercial and free) available for modeling influenza spread in 

human and animal populations using methods ranging from a simple deterministic to a more 

complex and realistic network-based models. 
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Supporting information 

Appendix: Methods, intervention strategies and parameters estimated or used for modeling 
spread of zoonotic influenza in human and animal populations: 
 

Table S1. List of articles that used different methods for modeling the spread of zoonotic 
influenza viruses in human and animal populations to address various research questions 

Table S2. List of articles that used different modeling methods for assessing various intervention 
strategies against zoonotic influenza in human and animal populations  

Table S3. Summary of natural history parameters of influenza infections in humans along with 
list of articles and references   

Table S4. Summary of natural history parameters of influenza infection in animals along with list 
of articles and references   

Table S5. Summary of natural history parameters of avian influenza infection in birds along with 
list of articles and references   

Table S6. Distributions of natural history parameters of influenza infection in human and bird 
populations along with list of articles and references 
 
Table S7. Summary of daily contact frequencies in human and animal populations along with list 
of articles and references 
 
Table S8. Summary of transmission probability per contact of influenza infection in human and 
bird populations along with list of articles and references 
 
Table S9. Summary of transmission coefficients/rates of influenza infection in human and animal 
populations along with list of articles and references 
 
Table S10. Summary of R0 and generation intervals of influenza infection in human and animal 
populations along with list of articles and references 
 
Table S11. Summary of intervention parameters used for modeling influenza infection in human 
and bird populations along with list of articles and references. 
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Abbreviations: (a) AA-AH-HA-HH =  spread within and between swine and human simultaneously; (b) BB =  spread between bird species; (c) BB -BH =  spread within bird 
species and birds to humans; (d) BB-BH-HH =  spread between birds, birds to humans and humans to humans; e) HH =  spread between humans. No distinction of spread is 
made between individual, household, herd/flock or village levels. Legends: (i) P = estimate parameters; (ii) S =  evaluate spread; (iii) I =  evaluate intervention strategies; (iv) 
M =  describe new modeling methods and approaches; (v) T =  develop modeling platform or tool. A combination of these letters indicates combination of research questions of 
interests.  

Figure 1. Different model types used for modelling spread of influenza viruses in human and animal populations to address various research questions.  
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Abbreviations: (a) AA-AH-HA-HH = spread within and between swine and human simultaneously; (b) BB = spread between bird species; (c) BB -
BH = spread within bird species and birds to humans; (d) BB-BH-HH = spread between birds, birds to humans and humans to humans; e) HH = 
spread between humans. No distinction of spread is made between individual, household, herd/flock or village levels.  
Legend: (a) A =  antiviral for either or both prophylactic and treatment; (b) D =  include workplace closure, contact tracing, quarantine, isolation, cancellation of community 
and mass gathering, use of personal hygiene and protective equipment; (c) M =  movement control and depopulation in animals (including birds); (d) S =specifically school 
and daycare closure; (e) T =  air travel restriction; (f) V =  vaccination prior to outbreak or during the outbreak. Combinations of letters indicate combination of these 
measures.  
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Figure 2. Different model types used for assessing various intervention strategies against influenza in human and animal populations. 

  

 

 

Legend key:  (i) P = estimate parameters; (ii) S =  evaluate spread; (iii) I =  evaluate intervention strategies; (iv) M =  describe new modeling methods and approaches; (v) T =  
develop modeling platform or tool. A combination of these letters indicates combination of research questions of interests.  

Figure 3. Temporal trend in the research questions of interest for modeling influenza viruses in human and animal populations. 
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Legend key:  (i) CHoMM = Compartmental homogeneous mixing models; (ii) CHeMM = Compartmental heterogeneous mixing models; (iii)IBM =  Individual-based/agent-
based model; (iv) M etM= Metapopulation models; (v) NetM =  Network models.  

Figure 4. Temporal trend in the application of modeling methods for research on influenza viruses in human and animal populations. 
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Table 1. Inventory of modeling software/platforms either specifically developed and/or used for influenza spread in human and animal populations. 
Platform Description  Agent  Question of 

interest 

Spread type Article 

1.  AnyLogic 
 
 

General modelling platforms that supports all 
three major modelling approaches;  system 
dynamics, discrete event simulation, agent-
based modelling and hybrid of any of these 
models  

Pandemic influenza A/H1N1 
2009 (articles 1 & 2) 
Novel influenza virus (article 
3) 

I (all articles) 
 

Human-human 
(all articles) 

(1. Tuite et al., 2009, 2. Tuite 
et al., 2010a) 
 (3. Epstein et al., 2007) 

2.  Berkeley Madonna General modelling platform Pandemic influenza A/H1N1 
2009 

P Human-human (Fraser et al., 2009) 

3. EpiFlex Stochastic individual-based modelling platform  Influenza viruses T Human-human (Hanley, 2006) 
4. FluTE Stochastic individual-based network model Pandemic influenza A/H2N2 

1957-1958 and A/H1N1 2009 
MT Human-human (Chao et al., 2010) 

5. GLEaM model (Metapopulation 
stochastic model on global scale) 

Stochastic metapopulation modelling platform 
for modelling large-scale spread of influenza 
viruses 

Pandemic influenza viruses MS Human-human (Balcan et al., 2009) 

6. InfluSim Deterministic homogeneous mixing 
compartmental model 

Influenza virus in general T Human-human (Duerr et al., 2007, Eichner 
et al., 2007) 

7. MATLAB General modelling platform  Pandemic influenza A/H1N1 
1918-1919   

P Human-human (Chowell et al., 2007b) 

8. PIPM (Pandemic Influenza Policy 
Model) 

Stochastic agent-based/individual-based model Pandemic influenza viruses T Human-human (Feighner et al., 2009) 

9. RePAST (Recursive Porous Agent 
Simulation Toolkit) 

Stochastic agent-based general modelling 
platform 

Pandemic influenza A/H1N1 
1918-1919 

MS Human-human (Carpenter & Sattenspiel, 
2009) 

10. SEARUMS (Studying the 
Epidemiology of Avian Influenza 
Rapidly Using Modelling and 
Simulation) 

Stochastic agent-based spatially explicit model Avian influenza A/H5N1 MT Bird-bird and bird-
human 

(Rao et al., 2009) 

Abbreviations: (i) P=parameter estimation; (ii) S=evaluate spread; (iii) I=evaluate different intervention strategies; (iv) M=describe new modeling methods and approaches; (v) T= development of modelling 
software/platforms (T). Combination of these letters indicates combination of research questions of interests. 
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Table 2(a). Disease states durations of influenza viruses infection in humans estimated with 95% confidence intervals (CI) either from experimental, observational or modeling studies. 
Disease states Agent Mean (95% CI) in days References  

a) Incubation period  1. Pandemic influenza A/H1N1 2009  4.3 (2.6–6.6)  (Tuite et al., 2010b) 

b) Latent period  1. Pandemic influenza A/H1N1 2009  2.6 (2.4–3.1) (Tuite et al., 2010b) 

c) Subclinical infectious period  1(a). Pandemic influenza A/H1N1 1918 (Spring wave) 2.9 (2.8–3.1) (Chowell et al., 2006) 

 1(b). Pandemic influenza A/H1N1 1918 (Autumn wave) 2.2 (1.9–2.7) (Chowell et al., 2006) 
d) Clinical infectious period 1(a). Pandemic influenza A/H1N1 1918 (Spring wave) 1.2 (1.1–1.3) (Chowell et al., 2006)  

 1(b). Pandemic influenza A/H1N1 1918 (Autumn wave) 2.6 (2.43–2.8) (Chowell et al., 2006) 
 2. Pandemic influenza A/H1N1 2009 3.4 (2.1–4.7) (Tuite et al., 2010b) 
 3. Seasonal influenza A/H1N1 4.5 (3.7–5.3) (Carrat et al., 2008) 
 4. Seasonal influenza A/H3N2 5.1 (4.5–5.8) (Carrat et al., 2008) 
 5. Influenza viruses 4.8 (4.3–5.3) (Carrat et al., 2008) 

 

 

Table 2(b). Summary of disease states durations of influenza viruses’ infection in humans estimated without 95% CI, referenced or assumed for modeling.  

Disease states Agent 

Median of means 

(Range)  

Median of min. values 

(Range) 

Median of max. values 

(Range) 

1. Incubation period     
a) Estimated values  

 
1. Pandemic influenza A/H1N1 2009 2.0 1.0 (1.0–2.0) - 
2. Seasonal influenza A/H1N1  - 1.0 - 
3. Seasonal influenza virus A/H3N2 2.0 1.0 3.0 

b) Referenced values  1. Pandemic influenza A/H1N1 1918 1.0  - - 
 2. Pandemic influenza A/H1N1 2009 2.0 (1.5–3.0) 1.0 5.0 
 3. Seasonal influenza virus A/ H1N1 - 1.0 4.0 
 4. Seasonal influenza virus A/H3N2 - 1.0 3.5 (3.0–4.0) 
 5. Influenza viruses   2.4 (1.9–2.9) 1.0 3.0 (3.0–4.0) 
 6. Novel influenza viruses  1.9 (1.0–2.0) 1.0  3.0  

c) Assumed values 1. Pandemic influenza A/H1N1 2009 - 1.0 3.0 
2. Novel influenza viruses  2.0  - - 

2. Latent period     
a) Estimated values 1. Influenza viruses 1.0 - - 

b) Referenced values 1. Pandemic influenza A/H1N1 1918 1.9 (1.0–3.5) 1.2 (0.8–1.5) 1.7 (1.5–1.9) 
 2. Pandemic influenza A/H1N1 2009 1.5 (1.0–3.5) 0.9 (0.7–1.0) 4.0 (2.0–5.0) 
 3. Pandemic influenza A/H2N2 1957 1.9 - - 
 4. Seasonal influenza A/H1N1  1.9 1.0 3.0 
 5. Seasonal influenza A/H3N2 1.9 1.0 3.0 
 6. Influenza viruses 1.9 (0.6–2.1) 1.0 3.0 (2.0–3.0) 
 7. Novel influenza viruses 1.5 (0.5–2.0) 1.0 (1.0–1.2) 2.0 

c) Assumed values 1. Pandemic influenza A/H1N1 2009 2.0  1.0 3.0 
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2. Influenza viruses  1.0 - - 
3. Novel influenza viruses  2.3 (1.5–3.0) - - 

Disease states Agent 

Median of means 

(Range)  

Median of min. values 

(Range) 

Median of max. values 

(Range) 

3. Subclinical infectious period     
a) Estimated values 1. Pandemic influenza A/H1N1 1918   - - - 

b) Referenced values 1. Pandemic influenza A/H1N1 2009 1.0 (0.5–2.5) - 2.0 
 2. Influenza viruses  3.0 (0.5–4.1) - - 
 3. Novel influenza viruses  1.0 (0.3–4.1) 0.5 0.7 

c) Assumed values  1. Novel influenza viruses 0.5 - - 

4. Clinical infectious period     

a) Estimated values 1. Pandemic influenza A/H1N1 1918 1.8 (1.7–3.0) 1.7 (1.6–1.7) 1.9 (1.8–1.9) 
 2. Pandemic influenza A/H1N1 2009 5.6 1.0 10.0 (8.0–12.0) 
 3. Seasonal influenza A/H3N2 3.8 3.1 4.6 

b) Referenced values 1. Pandemic influenza A/ H1N1 1918 4.6 (4.1–5.0) 2.6 (1.5–3.3) 4.15 (2.9–10) 
 2. Pandemic influenza A/H1N1 2009 3.8 (2.5–7.0) 3.8 (1.9–4.0) 5.5 (2.9–10) 
 3. Pandemic influenza A/H2N2 1957 4.1 - - 
 4. Seasonal influenza A/H1N1  4.1 2.0 8.0 
 5. Seasonal influenza A/H3N2 4.1(3.8–4.1) 2.0 8.0 
 6. Influenza viruses  4.1 (1.4–7.0) 3.0 (2.0–3.0) 6.0 (6.0–10.0) 
 7. Novel influenza viruses 4.0 (1.0–7.0) 3.3 (2.5–5.0) 7.0 (4.1–12.0) 

c) Assumed values 1. Pandemic influenza A/H1N1 2009 5.0 (3.0–5.0) 3.0 7.0 
2. Pandemic influenza A/H2N2 1957 - 3.8 5.3 
3. Pandemic influenza A/H3N2 1968 3.0 - - 
4. Influenza viruses 3.0 - - 
5. Novel influenza viruses 4.0 2.0 3.0 

5. Immunity period  1. Novel influenza viruses -  365 - 

6. Pre-existing immunity (%)     
a) Estimated values 1. Pandemic influenza A/H1N1 2009 - 4.0 34.0 

b) Referenced values 1. Pandemic influenza A/H1N1 1918 50.0 10.0 20.0 
 2. Pandemic influenza A/H1N1 2009 34.0 (5.0–50.0) 30.0 50.0 (15.0–70.0) 
 3. Seasonal influenza A/H3N2 - - 27.0 
 4. Influenza viruses  - - 30.0 
 5. Novel influenza viruses  30.0 - 63.5 (27.0–100.0) 

c) Assumed values  1. Influenza viruses - - 62.5 (50.0–75.0) 
 2. Novel influenza viruses 25.0 - - 

Note: (a) Estimated values are those estimated from empirical data of experimental or observational studies; (b) Referenced values refer to those values taken from other articles; (c) Assumed values are values 
assumed based on expert’s opinion and other unpublished sources. All values are reported in days. Summary estimated are medians (ranges) of means, minimum and maximum values of two or more articles. 
Those with single value represented value from either a single article or were of exactly the same value if consolidated from two or more articles. 

These definitions applies to subsequent tables from Table 3 to Table 11 
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Table 3(a). Disease states durations of influenza viruses in birds estimated with 95% confidence interval (CI) either from experimental, observational or modeling studies. 

Disease states Agent Mean (95% CI) in days References  

a) Clinical infectious period  1. Highly pathogenic avian influenza A/H5N2 6.8 (4.9–8.7) (van der Goot et al., 2003) 
 2. Low pathogenic avian influenza A/H5N2  4.3 (2.6–5.9) (van der Goot et al., 2003) 
 3. Highly pathogenic avian influenza A/H7N7 6.3 (3.9–8.7) (van der Goot et al., 2005) 

 

Table 3(b). Summary of disease states durations of influenza viruses infections in swine and birds estimated (without 95% CI), referenced or assumed for modeling.  

Species and disease states Agent 

Median of means 

(Range)  

Median of min. values 

(Range) 

Median of max. values 

(Range) 

A. Swine      
1. Incubation period     

a) Estimated values    1. Pandemic influenza A/H1N1 2009 - 1.0 (1.0–2.0) 2.5 (1.0–3.0) 

2. Latent period       
a) Estimated values 1. Pandemic influenza A/H1N1 2009 - 1.0 2.0 (2.0–5.0) 

  2. Swine influenza H1N1 virus - - 3.0 

3. Clinical infectious period       
a) Estimated values 

 
1(a). Pandemic influenza A/H1N1 2009 (Individual 

level) 
- 7.0 (3–7.0) 8.0 (5.0–15.0) 

 1(b). Pandemic influenza A/H1N1 2009 (Herd level) - 10.0 31 (20.0–42.0) 
  2. Swine influenza A/H1N1 - 3.0 5.0 

b) Referenced values 1. Novel influenza virus 7.0 - - 

4. Immunity period        
a) Estimated values  1. Swine influenza A /H1N1 - 365.0 692.5 (545.0–840.0) 

B. Birds     
1. Incubation period        

a) Referenced values 1(a). Avian influenza A/H5N1 (Individual level) 5.0 - - 
1(b). Avian influenza A/H7N1 (Individual level) - - 6.0 
2. Avian influenza A/H7N7  - - 3.0 

b) Assumed values  1. Avian influenza A/H7N1  - 2.0 - 
 2. Avian influenza A/H7N7 - 1.0 - 

2. Latent period     
b) Referenced values 1. Avian influenza A/H5N1 1.75 (1.5–2.0) 1.0 2.0 

  2. Avian influenza A/H7N7 2.0 - - 

c) Assumed values 1. Avian influenza A/H7N7 2.0 - - 

3. Subclinical infectious period     
b) Referenced values 1. Avian influenza A/H5N1 1.0 - - 

 2. Avian influenza A/H7N7 4.0 - 6.0 

4. Clinical infectious period     
b) Referenced values 1(b). Avian influenza A/H5N1 (Flock level) 10.0 - - 

 2(a). Avian influenza A/H7N7 (Individual level) 6.3 1.0 6.0 
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 2(b). Avian influenza A/H7N7 (Flock level) 13.8 4.0 12.0 
  3. Avian influenza virus 14.0 - - 

c) Assumed values 1. Avian influenza A/H5N1 (Village level) 7.0 - - 

 
Table 4. Distributions used for duration of disease states of influenza viruses’ infection in human and bird populations estimated from experimental, observational studies, referenced from other articles, or assumed 
for modeling 

Species and disease states Agent Distribution  

A. Human   
1. Incubation period 

  a) Estimated values 1. Pandemic influenza A/H1N1 2009 Log-normal with mean duration of 4.3 ( 95% CI 2.6–6.6) days 

b) Referenced/assumed values 1. Pandemic influenza A/H1N1 2009 Uniform; exponential 
 2. Seasonal influenza viruses Normal; Weibull distribution (offset = 0.5, shape 2.21, scale = variable) 
 3. Novel influenza viruses Mean of 1.9 days with probability distribution of 1 day (30%); 2 days (50%); 3 days 

(20%); Exponential distribution. 

2. Latent period   
a) Estimated values 1. Novel influenza viruses  Weibull distribution (2.24, 1.11) with offset value of 0.5 day;  

b) Referenced/assumed values 1. Pandemic influenza A/H1N1 2009 Exponential (mean = 0.5 and offset  = 0.75 = 0.5+0.75 = 1.25 days) 
 2. Seasonal influenza viruses Exponential (mean = 0.5 and offset = 0.75 = 0.5+0.75 = 1.25 days) 
 3. Novel influenza viruses  Mean of 1.9 days with probability distribution of 1 day (30%) 2 days (50%) and 3 

days (20%); exponential; gamma; Weibull with offset value of 0.5 

4. Clinical infectious period     
b) Referenced/assumed values 1. Pandemic influenza A/ H1N1 1918 Exponential 

 2. Pandemic influenza A/H1N1 2009 Exponential; gamma; uniform; Log-normal with mean duration of 9.3 ( 95% CI 2.6–
24.2) days 

 3. Novel influenza viruses  Mean of 4.1 days with empirical distribution of 3 days (30%); 4 days (40%); 5 days 
(20%); 6 days (10%); exponential; log-normal 

B. Bird   
1. Latent period   

b) Referenced/assumed values 1. Avian influenza A/H5N1 48+ binomial(48, 0.25)* 

2. Subclinical infectious period     
b) Referenced/assumed values 1. Avian influenza A/H5N1 24+ binomial(24, 0.25)* 

3. Clinical infectious period     
b) Referenced/assumed values 1. Avian influenza A/H5N1 Binomial(96, 0.05)* 

*Unit in hours 
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Table 5. Summary estimates of daily contact frequencies in human and bird populations estimated either from survey, referenced from other articles or assumed for modeling 
Species Contacts category Median of means 

(Range)  

Median of min. values 

(Range) 

Median of max. values 

(Range) 

A. Human-human A. Age     

a) Estimated values  
 

<5 10.21 (7.65) - - 

5-9 14.81 (10.09) - - 

10–14 18.69 (13.4) - - 

15–19 19.93 (21.14) - - 

20–29 17.18 (25.72) - - 

30–39 17.83 (21.68) - - 

40–49 17.51 (23.29) - - 

50–59 15.96 (20.84) - - 

60–69 10.51 (14.47) - - 

70+ 7.71 (10.97) - - 

 B. Household    

 Household size 1 11.23 (18.26) - - 

 Household size 2 13.32 (17.89) - - 

 Household size 3 14.67 (16.44) - - 

 Household size 4 17.71 (17.67) - - 

 Household size 5 19.49 (29.12) - - 

 Household size 6+ 19.3 (13.14) - - 

 C. Students    

 Students -classmates 38.4 - - 

 Students –non-classmates 14.8 - - 

b) Referenced values  A. Activity based    

 1. Low activity 2.0 - - 

 2. Medium activity 10.0 - - 

 3. High activity  50.0 - - 

 B. Age group    

 1. Children (0–11 years) 14.0 (3.0–24.0) - - 

 2. Teen (12–18 years) 4.0 (3.0–4.0) - - 

 3. Adult (19–64 years) 6.0 (3.0–13.0) - - 

 4. Senior (65+ years) 4.0 (3.0– 5.0) - - 

 C. Occupational/community structure 

 1. Community in general  16.0 (1.0–32.0) 5.0 (5.0–14.0) 27.0 (24.0–50.0) 

 2. Health care worker with coworkers  2.0 (2.0–8.0) - - 

 3. Health care worker with patients 30.0 - - 

 4. Student with classmates 14.0 (14.0–15.0) - - 

 5. Student with non-classmates 15.0 - - 
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c) Assumed values A. Age group     

 1. Children (0-11 years) 6.0 - - 

 B. Community structure    

 1. Community in general 1.0 (1.0–2.0) - 1.0 

Species Contacts category Median of means 

(Range)  

Median of min. values 

(Range) 

Median of max. values 

(Range) 

B. Bird-bird     

a) Estimated values 1. Maximum farms visited by feed lorry/trip - - 6.0 

b) Referenced values 1. Flock to flock contact rate/day  - 0.2 0.3 

c) Assumed values  1. Inter-company contact /day 3.0 - - 

 2. Maximum farms visited by  slaughter lorry/day  - - 4.0 

 
 
Table 6. Summary estimates of transmission probability per contact of influenza viruses in humans and birds estimated, referenced, or assumed for modeling 

Species and transmission parameter Agent 

Median of means 

(Range)  

Median of min. values 

(Range) 

Median of max. values 

(Range) 

A. Human-human (all contact types combined)  

a) Estimated/calibrated values 1. Pandemic influenza A/H1N1 1918   0.51  - 

 2. Influenza viruses 0.24   0.39 0.78 

 3. Novel influenza viruses    0.24 (0.1–0.024) - - 

b) Referenced values  1. Pandemic influenza A/H1N1 2009 0.0435 (0.00255–0.6) - - 

 2. Influenza viruses  0.2503 (0.0006–0.5) 0.0012 

 3. Novel influenza viruses  0.55 (0.5–0.6) 0.7 

B. Bird-bird     

c) Assumed values  1. Avian influenza A/H5N1(within flock/day) 0.5 - - 

  2. Avian influenza A/H5N1(per dangerous 
slaughterhouse contact) 

0.25 - - 
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Table 7. Summary estimates of transmission coefficients/rates of influenza viruses in humans, birds, and swine estimated, referenced or assumed for modeling 

Species and transmission parameter Agent 

Median of means  

(Range) 

Median of min. values 

(Range) 

Median of max. values 

(Range) 

I. Discrete time (daily) 

A. Human-human  
a) Estimated values 1. Pandemic influenza A/H1N1 2009 0.060192 (0.0095–0.060192) 0.00001 0.6 

 

2. Influenza viruses - 0.000005 0.08 

 

3. Novel influenza viruses    0.00058 0.00029  0.00102 

b) Referenced values  1. Pandemic influenza A/ H2N2 1957   0.0125 (0.00001–0.08) - - 

c) Assumed values  1. Novel influenza viruses - 0.58 0.64 

B. Bird-Bird 

    a) Estimated values 1. Avian influenza A/H5N1 (bird level) 2.66 2.01 2.55 

 

2. Avian influenza A/H5N1 (flock level) 0.66 0.5 0.87 

 

3. Avian influenza A/H5N2 (bird level) 0.24 0.12 0.45 

 

4. Avian influenza A/H7N7 (bird level) 33.0 - 
 

 

5. Avian influenza viruses 0.22 - 0.42 

C. Zoonotic spread 1. Novel influenza virus 

   c) Assumed values a) Bird-human  0.012 - - 

 

b) Human-human 0.03 - - 

II. Continuous time  
A. Human-human  

a) Estimated values 1. Pandemic influenza A/H1N1 2009 - 0.00001 0.0125 

 
2. Influenza viruses 0.581 0.199 0.425 

b) Referenced values 1. Novel influenza virus 0.00017 - - 

B. Zoonotic spread 

    1. Between bird-human 1. Novel influenza virus 
   c) Assumed  values a) Bird-bird 0.15 (0.1–0.2) - - 

 
b) Human-human  0.0006 0.0015 0.0025 (0.002–0.003)  

2. Animal-human 1. Novel influenza virus 
   c) Assumed values a) Swine-swine   0.2857 - - 

 
b) Swine-human 0.00123 - - 

 
c) Human-human 0.3 - - 

 
d) Human-swine  0.122851   - - 
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Table 8(a). Estimated basic reproduction numbers (Ro) with 95% confidence interval (CI) of influenza viruses in human population estimated either from experimental, observational or modeling studies 

Agent Mean (95% CI)  Reference 

1(a). Pandemic influenza A/H1N1 1918 (using first 10 days data of spring wave of Geneva) 1.6 (1.5–1.7) (Chowell et al., 2007a) 

1(b). Pandemic influenza A/H1N1 1918 (using first 10 days data of autumn wave of Geneva)  3.1 (2.8–1.7)  (Chowell et al., 2007a) 

1(c). Pandemic influenza A/H1N1 1918 (using non-hospitalized and asymptomatic cases of 1st phase/spring wave in Geneva) 1.5 (1.5–1.5) (Chowell et al., 2006) 

1(d). Pandemic influenza A/H1N1 1918 (using non-hospitalized and asymptomatic cases of 2nd phase/autumn wave of Geneva) 3.8 (3.6–3.9) (Chowell et al., 2006) 
1(e). Pandemic influenza A/H1N1 1918 (using early exponential growth phase of autumn wave daily case notification data of San 

Francisco, California) 3.0 (2.7–3.3) (Chowell et al., 2007b) 
1(f). Pandemic influenza A/H1N1 1918 (using deterministic SIR compartmental model of daily case notification data  of autumn 

wave in San Francisco, California) 2.4 (2.2–2.6) (Chowell et al., 2007b) 
1(g). Pandemic influenza A/H1N1 1918 (using complex SEIR model of daily case notification data of autumn wave in San 

Francisco, California) 2.2 (1.6–2.1) (Chowell et al., 2007b) 
1(h). Pandemic influenza A/H1N1 1918 (using SIR Bayesian approach of daily case notification data of autumn wave in San 

Francisco, California) 2.1 (1.1–3.0) (Chowell et al., 2007b) 

1(i). Pandemic influenza A/H1N1 1918 2.0 (1.7–2.3)* (Mills et al., 2004) 

2(a). Pandemic influenza A/H1N1 2009 1.3 (1.3–1.4) (Tuite et al., 2010b) 

2(b). Pandemic influenza A/H1N1 2009 1.4 (1.4–1.5) (Pourbohloul et al., 2009) 

2(c). Pandemic influenza A/H1N1 2009 (using intrinsic growth rate and generation interval obtained from households study) 2.2 (2.1–2.4) (Boëlle et al., 2009) 
2(d). Pandemic influenza A/H1N1 2009 (using intrinsic growth rate and generation interval obtained from viral excretion of 

experimental influenza infection study) 2.6 (2.4–2.8) (Boëlle et al., 2009) 
2(e). Pandemic influenza A/H1N1 2009 (using intrinsic growth rate and generation interval obtained from hypothetical 

distribution from Elveback et al.,  (1976) 3.1 (2.9–3.5) (Boëlle et al., 2009) 
2(f). Pandemic influenza A/H1N1 2009 (using real time estimation of averaging the number of secondary cases across all possible 

chains of transmissions of epidemic curve) 3.2 (2.1–4.0)* (Boëlle et al., 2009) 

3. Seasonal influenza A/H1N1 1.2 (0.8–1.7)* (Chen & Liao, 2010)  

4. Seasonal influenza A/H3N2 1.4 (0.9–2.2)* (Chen & Liao, 2010) 

5. Seasonal influenza viruses  1.3 (1.2–1.4) (Chowell et al., 2008) 
* Median and its 95% CI values instead of mean  
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Table 8(b). Summary estimates of basic reproductive number (Ro) of influenza viruses in human, bird and swine populations estimated, referenced or assumed for modeling 
Species and transmission 

parameter Agent 

Median of means  

(Range) 

Median of min. values 

(Range) 

Median of max. values 

(Range) 

A. Human-human 

    a) Estimated values  1. Pandemic influenza A/H1N1 1918   2.2 (1.8–2.7) 1.3 (1.2–2.8) 2.2 (1.2–3.1) 

 
2. Pandemic influenza A/H1N1 2009 1.5 1.34 (1.1–2.3) 1.9 (1.3–2.9) 

 
3. Pandemic influenza A/H3N2 1968 - 1.2 3.0 

 
4. Seasonal influenza A/H1N1 1.1 - 1.4 

 
5. Seasonal influenza A/H3N2 1.5 (1.4–1.7) 1.4 (1.3–1.5) 1.7 (1.6–1.8) 

 
6. Influenza viruses (between households) 3.9 (2.0–6.0) - - 

 
7. Novel influenza viruses 2.1 1.5 1.8 

b) Referenced values 1. Pandemic influenza A/H1N1 2009 1.5 (1.3–1.8) 1.3 (1.2–1.6) 2.0 (1.3–2.2)  

 
2. Pandemic influenza A/H2N2 1957 1.7 (1.7–1.7) - - 

 
3(a). Influenza viruses (individual level)   2.1 (1.7–2.5) 1.4 (1.3–1.6) 2.4 (1.4–2.73)   

 
3(b). Influenza viruses (between households)  1.2 - - 

 
4. Novel influenza viruses 1.9 (1.4–3.1) 1.4 (0.3–1.9) 2.4 (1.4–3.3) 

c) Assumed values 1. Pandemic influenza A/H1N1 2009 1.7 1.4 2.4 

 
2. Pandemic influenza A/H3N2 1968 - 1.5 3.5 

 
3. Influenza viruses  2.0 1.5 3.0 

 
4. Novel influenza viruses 1.9 1.3 2.3 (1.7–3.5) 

B. Bird-bird 
    a) Estimated values 

 
1(a). Avian influenza A/H5N1 (within flock) - 25.0 66.0 
1(b). Avian influenza A/H5N1 (between villages) 2.5 (2.2–2.7) 2.0 2.1 
2(b). Avian influenza A/H7N1 (between farms) - 0.6 1.8 
3(a). Avian influenza A/H7N7 (within flock) - 1.3 - 
3(b). Avian influenza A/H7N7 (between farms) 3.3 (1.3–5.2) 3.6 (3.1–4.0) 6.7 (6.5–6.9) 

b) Referenced values 1. Avian influenza A/H5N1 (within flock) - 25.0 66.0 

 
2. Avian influenza A/H7N7 (between farms)  - 0.8 6.5 

C. Zoonotic spread articles  
c) Assumed values 1. Novel influenza virus    

 a) Human-human 1.0 2.0 (0.6–3.5) 4.1 (1.1–7.1) 

 
b) Swine-swine 2.0 - - 

 
c) Bird-bird 1.1 0.4 (0.1–0.8) 1.8 (1.1–2.5) 
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Table 9(a). Estimated basic reproduction numbers (Ro) with 95% confidence intervals estimated either from experimental, observational or modeling studies in birds 

Agent  Mean (95% CI)  Reference 

1(a). Highly pathogenic avian influenza A/H5N1 (within-flock  using 1 day infectious period) 2.3 (2.0–2.6) (Tiensin et al., 2007) 

1(b). Highly pathogenic avian influenza A/H5N1 (within-flock using 4 days infectious period) 2.6 (2.0–3.5) (Tiensin et al., 2007) 

2. Highly pathogenic avian influenza A/ H5N2 (between flock level) 1.0 (0.0–2.4) (van der Goot et al., 2003) 

3. Low pathogenic avian influenza A/LPAI H5N2 (between flock level) 1.0 (0.0–2.3) (van der Goot et al., 2003) 
 
Table 9(b). Summary estimates of basic reproductive number (Ro) of influenza viruses in bird and swine populations including zoonotic transmissions estimated, referenced or assumed for modeling 

Transmission parameter Spread in species and agent Median of means (Range) 

Median of min. values 

(Range) 

Median of max. values 

(Range) 

A. Bird-bird 
    a) Estimated values 

 
1(a). Avian influenza A/H5N1 (within flock) - 25.0 66.0 
1(b). Avian influenza A/H5N1 (between villages) 2.5 (2.2–2.7) 2.0 2.1 
2(b). Avian influenza A/H7N1 (between farms) - 0.6 1.8 
3(a). Avian influenza A/H7N7 (within flock) - 1.3 - 
3(b). Avian influenza A/H7N7 (between farms) 3.3 (1.3–5.2) 3.6 (3.1–4.0) 6.7 (6.5–6.9) 

b) Referenced values 1. Avian influenza A/H5N1 (within flock) - 25.0 66.0 

 
2. Avian influenza A/H7N7 (between farms)  - 0.8 6.5 

C. Zoonotic spread 
 

      
c) Assumed values 1. Novel influenza virus    

 a) Human-human 1.0 2.0 (0.6–3.5) 4.1 (1.1–7.1) 

 
b) Swine-swine 2.0 - - 

 
c) Bird-bird 1.1 0.4 (0.1–0.8) 1.8 (1.1–2.5) 

 
Table 10. Summary estimates of generation interval of different influenza viruses in human estimated, referenced or assumed for modeling 

Transmission parameter Type of spread and agent 

Median of means 

(Range)  

Median of min. values 

(Range)  

Median of max. values 

(Range)  

a) Estimated values 1. Pandemic influenza A/H1N1 1918   2.6 - - 

 
2. Pandemic influenza A/H1N1 2009 3.5 2.6 (2.2–4.0) 3.2 (2.6–5) 

 
3. Seasonal influenza A/H1N1  2.1 (1.9–2.3) 1.6 (1.5–1.6) 3.8 

 
4. Seasonal influenza A/H3N2  3.1 2.2 4.0 

 
5. Influenza viruses  3.5 (3.4–3.6) 2.9 4.3 

 
6. Novel influenza viruses 2.4 1.0 3.9 

b) Referenced values  1. Pandemic influenza A/ H1N1 1918 6.0 2.8 (2.6–3.0) 5.0 ( 4.0–6.0) 

 
2. Pandemic influenza A/H1N1 2009 3.0 (1.9–4.6) 1.6 (1–6.6)   5.0 (2.7–7.4) 

 
3. Seasonal influenza A/H3N2 2.4 - - 

 
4. Influenza viruses  2.8 (2.8–2.9) - - 

 
5. Novel influenza viruses  2.9 (2.6–3.4)  2.6 (2.1–3.0)  3.0 (2.7–3.8) 
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c) Assumed values 1. Pandemic influenza A/H3N2 1968 3.9 (3.5–4.2) - - 

 
2. Novel influenza viruses 2.6 2.8 4.0 

Table 11. Summary estimates of intervention parameters estimated, referenced or assumed for modeling influenza viruses in human and bird populations  
 

 

 

 

Intervention type  Parameter  

Median of means 

(Range)  

Median of min. values 

(Range)  

Median of max. values 

(Range)  

A. Human  
1. Vaccination      

a) Estimated values 1. Vaccine efficacy (%) - 38.75 (19.0–58.5) 57.5 (47.0–68.0) 

b) Referenced values 1. Vaccine efficacy (%) - 40.0 (20.0–70.0) 73.0 (30.0–100) 

 
2. Reduction in infectiousness (%) - 30.0 (20.0–50.0)  70.0 (40.0–90.0) 

 
3. Vaccine immune delay (days) - 7.0 42.0 

 4. Vaccination coverage (%) 60.0 (50.0–60.0) 25.5 (18.0–26.0) 87.5 (69.0–100.0) 

c) Assumed values  1. Vaccine efficacy (%) - 30.0 (5.0–50.0) 70.0 (30.0–100) 

 
2. Reduction in infectiousness (%) - 50.0 (30.0–50.0) 80.0 (40.0–100) 

 3. Vaccine immune delay (days) - 15.0 (0.0–15.0)  14.0 (0.0–14.0) 
 4. Vaccination coverage (%) 50.0 (30.0–50.0) 20.0 (0.0–50.0) 75.0 (7.0–100) 

2. Antiviral treatment (AV) 

a) Estimated values 1. AV efficacy  - 70.0 75.5 (61.0–90.0) 

b) Referenced values 1. AV efficacy (%) - 30.0 (28.0–30.0) 70.0 (30.0–100) 
 2. Reduction in infectiousness (%) - 30.0 60.0 (28.0–80.0)  
 3. Reduction in susceptibility (%) - 30.0 (25.0–30.0) 30.0 (30.0–90.0) 
 4. AV coverage (%) - 50.0 (0.0–60.0) 90.0 (50.0–100) 
 5. AV treatment duration (day) - 10.0 (5.0–10.0) 10.0 (5.0–10.0) 
 6. AV use compliance (%) - 48.0 (5.0–90.0)  90.0 

c) Assumed values  1. AV efficacy (%) - 50.0 30.0 (30.0–100) 
 2. Reduction in infectiousness (%) - - 62.0 (30.0–100) 
 3. Reduction in susceptibility (%) - - 30 (30.0–100) 
 4. AV coverage (%) - 50.0 (2.0–80.0) 100 (6.0–100) 
 5. AV treatment duration (day) - 7.5  (5.0–10.0) 5.0 
 6. AV use compliance (%) - 5.0 100 (80.0–100) 

3. School closure    
c) Assumed values 1. School closure contact reduction (%) 75.0 (50.0–80.0)  31.5 (30.0–33.0) 25.0 (7.0–300.0) 

 2. School closure duration (days) 14.0 (7.0 – 28.0) 7.0 (7.0–60.0) 7.0 (0.0–56.0) 
 3. School closure delay (days) - 0.0–14.0   

4. Quarantine     
c) Assumed values 1. Quarantine contact reduction (%) 50.0 55.0 (40.0–60.0) 85.0 (30.0–100) 

 2. Quarantine period (days) 10.0 (2.0–10.0) 1.0 7.0 (3.0–21.0) 

B. Birds     
1. Quarantine     

c) Assumed values 1. Quarantine period (days) 21.0–31.0 - - 


