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Abstract—Stopping exploration of the search space regions
that can be proven to contain only inferior solutions is an
important acceleration technique in optimization algorithms.
This study is focused on the utility of trie-based data structures
for indexing discrete sets that allow to detect such a state faster.
An empirical evaluation is performed in the context of index
operations executed by a label setting algorithm for solving the
Elementary Shortest Path Problem with Resource Constraints.
Numerical simulations are run to compare a trie with a HAT-
trie, a variant of a trie, which is considered as the fastest in-
memory data structure for storing text in sorted order, further
optimized for efficient use of cache in modern processors. Results
indicate that a HAT-trie is better suited for indexing sparse multi
dimensional data, such as sets with high cardinality, offering
superior performance at a lower memory footprint. Therefore,
HAT-tries remain practical when tries reach their scalability
limits due to an expensive memory allocation pattern. Authors
leave a final note on comparing and reporting credible time
benchmarks for the Elementary Shortest Path Problem with
Resource Constraints.

I. INTRODUCTION

A trie [1], [2] is a data structure devised to efficiently store

and retrieve strings built from a finite alphabet. Strings in a

trie are stored as sequences of characters that correspond to

nodes of a tree. Strings which have a common prefix share

the initial nodes for efficient use of memory. Therefore, the

total number of child nodes that a parent node may have

is bounded above by the cardinality of the alphabet. For

that reason the most common variant of a trie presented in

textbooks stores child nodes using either lists [3] or arrays [4].

The latter data structure offers better performance in practice

and simpler implementation of the Contains, Insert and

Delete operations. Although, the performance advantage is

at the expense of extra memory for storing unused symbols.

Tries are well known to be memory expensive due to

allocation of space for storing a link to a child node for

each symbol of the alphabet in every node of a trie [5]. The

number of trie nodes can be reduced by compacting a path

that leads to a leaf node or a branching node. This idea is

neatly conceptualized in a Burst-Trie [6]. This variant of a

trie has a second type of nodes that act as buckets. They have

A B EDC F G H

A B EDC F G H

A B EDC F G H A B EDC F G H

A B EDC F G H

A B EDC F G H

(a) Trie

B

A B EDC F G H

D G A E

H

C

A DC E F G H

(b) HAT-trie

Fig. 1. Examples of trie-based data structures storing English words: bad,
bag, be, beach and bee. The HAT-trie nodes are expanded into a trie node if
the number of words stored in a subtree is greater than 2.

a configurable fill factor and store elements instead of pushing

them down the trie thus reducing both the depth of the tree

and the number of allocated nodes. After enough elements are

aggregated in a bucket it is expanded to a standard trie node

and its elements are dispersed down into relevant branches.

A Burst-Trie can be further tuned to exploit memory locality

by using cache conscious data structures. Such a Burst-Trie is

known as a HAT-trie [5]. Figure 1 illustrates structural differ-

ences between a trie and a HAT-trie. Both data structures store

the the same set of strings, but a HAT-trie requires much less

memory. Furthermore, a test if a word belongs to the set using

a HAT-trie requires on average traversing fewer links between

nodes, which reduces access time observable in practice. We

refer the reader to the paper [5] for a comprehensive overview

of available data structures that a HAT-trie could be built from

and performance benchmarks of different bursting strategies.

Apart from typical operations on a set that can be imple-

mented using a trie, its internal structure allows to perform

efficient subset and superset queries [7]. That enabled [8]

to propose a novel application of a trie as the indexing

structure for labels in a label setting algorithm for solving

the Elementary Shortest Path Problem with Resource Con-

straints (ESPPRC). The research concludes that performance

benefits offered by tries are unquestionable if a problem to

solve is difficult enough, for example its number of states to

consider exceeds 106. The overall speed up reported ranged

from 4 to 20 times with respect to using lists for a label
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storage. Although, for the problems that can be solved easily

an extra effort spent on building and maintaining the index

compensates the obtained acceleration.

In this study we build on the work of [8] and investigate

improvements by indexing labels using a HAT-trie. Our pre-

liminary empirical analysis of a label setting algorithm, which

we will present later in this paper, indicates that between 47%

and 72% CPU cycles spent on computation are executing code

responsible for pruning dominated labels when a trie is used

for indexing. This observation motivated our further research

efforts. Empirical results discussed in the paper indicate that

HAT-tries are better suited for indexing labels and their mem-

ory allocation pattern is more resilient to scalability limits of

tries, which may faster exhaust available virtual memory of a

computing machine. Finally, we leave some critical remarks

on reporting trustworthy time benchmarks for solving resource

constrained shortest path problems.

The paper is organized as follows. The next section covers

literature review of methods for solving shortest path problems

based on dynamic programming. The optimization problem

is formally stated in section III and computation results are

discussed in the following section. Some conclusions are

drawn in section VI.

II. LITERATURE REVIEW

The Elementary Shortest Path Problem with Resource Con-

straints (ESPPRC) is a combinatorial optimization problem

where given a graph the goal is to find a set of least cost

paths that satisfy constraints expressed as resource consump-

tion. Historically a popular variant of the problem was the

Shortest Path Problem with Resource Constraints (SPPRC)

which relaxes the requirement of vertices to be visited no

more than once. ESPPRC appears as the sub-problem in the

Column Generation method, a practical computational scheme

for solving vehicle routing and crew scheduling problems [9].

The Column Generation (CG) method is designed to solve

optimization problems whose large number of variables pre-

clude an application of other methods due to memory consider-

ations. The groundwork of CG is a decomposition of the initial

problem formulation into at least two manageable problems,

small enough to be solved: a restricted master problem (MP)

and one or more sub-problems (SP). The method starts by

solving MP using a subset of variables available in the

reformulation. Information obtained from the MP solution is

then transformed to SP by means of dual variables. In the next

step SP is solved to find a batch of variables which have not

been considered while solving MP. Dual values are unlikely to

remain the same after the batch of variables is added to MP.

Therefore, it is re-optimized hoping to find a better solution

and update dual variables. The process is repeated in a loop

until it is possible to generate new variables in SP. For a

comprehensive introduction to CG, its theoretical foundation

and guidelines for practical applications we refer the reader

to [10], [11].

Column Generation for solving the Vehicle Routing Prob-

lem with Time Windows was introduced in [12]. The authors

used the Shortest Path Problem with Time Windows (SPPTW)

as the sub-problem and allowed paths to contain cycles longer

than 2. A practical application in an important logistic problem

attracted focus of the research community and motivated

subsequent efforts to devising efficient methods for solving

the shortest path problems.

Even thought SPPTW was proved to be strongly NP-

hard [13] its combinatorial structure allows for an efficient

exploration in a search for an exact solution by Dynamic

Programming (DP). The most notable methods for solving

the shortest path problems within that framework are label

setting [14], [15] and label correcting [12], [16], [17], [18]

algorithms. Both groups of algorithms use labels to encode

partial paths and keep track of the search progress in a certain

direction. During execution a label processing algorithm stores

multiple labels at a time. The decision which one should be

should be processed first is pivotal for the overall performance

of the algorithm [19].

Label setting algorithms do not have restrictions on labels

that can be processed. On the other hand, label correcting

algorithms must process all labels that belong to a certain

vertex in a batch, before moving to the next one. Due to

this behaviour label correcting algorithms can be applied to

solve shortest path problems in graphs that contain cycles and

negative arc lengths. For more information on the theory and

applications of label setting and label correcting algorithms

we refer the reader to [20].

Necessity of tracking multiple labels imposes restrictions on

the size of the shortest path problems that can be solved in

practice. To partially alleviate this issue, dominance rules can

be defined. Their aim is to detect labels which are certain to

deliver inferior paths either with respect to their cost or due

to higher resource consumption. Therefore, dominated labels

can be safely discarded without affecting the quality of the

final solution. The importance of having efficient dominance

rules is emphasized in [16], where authors studied reduction

in the duality gap obtained by solving elementary shortest

path problems that provide a stronger lower bound than non-

elementary ones.

A label definition and dominance rules for the Capaci-

tated Arc-Routing Problem that allow partial enforcement of

the path elementary constraint were proposed in [21]. The

article demonstrates how to encode the structural constraints

that prohibits cycles of a given length. Authors, equipped with

such a tool, investigate the tradeoff between the strength of a

dominance rule, the quality of a lower bound and computation

time. Examples considered in their study provide evidence for

two intuitive phenomena that can be observed while solving

optimization problems. Firstly, the stronger the dominance rule

is the more time is required for its validation. Secondly, weak

dominance rules may be good enough to solve problems that

are not overly constrained. Such rules can be executed quickly

and for simple problems they do not negatively impact the

quality of the lower bound. On the other hand, problems which

are difficult to solve, seem to require stronger dominance rules.

Typical DP algorithms for solving the shortest path prob-
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lems conduct a search by extending labels in one direction,

from the source vertex to the sink vertex. Performance of

such algorithms tends to deteriorate as partial paths are getting

longer, because it makes finding a valid extension for a

given label more difficult. The idea of Bidirectional Dynamic

Programming (BDP) in the context of ESPPRC was studied

by [17]. In BDP the search for the shortest paths starts

simultaneously in two directions: forward from the source

vertex and backwards from the sink vertex. Complete paths

are then created by joining partial paths from both ends.

The concept of using DP to perform a search in multiple

directions was extended in the recent work [22]. The authors

devised an iterative algorithm tailored for CG, where it is

enough to find columns with sufficiently small reduced cost.

The algorithm is designed to be run consecutively to solve

SPPRC in the same graph using different dual information. It

remembers efficient label extensions from previous iterations

and uses them to select labels that will be extended first.

This approach successfully delays treatment of labels that are

unlikely to lead to efficient paths. The algorithm may also

output a complete path faster reusing a sequence of extensions

from a previous iteration. Combination of both techniques

allows to reduce the search of the near optimal paths to a

fraction of time that a standard DP needs.

Alternative algorithms that do not bear the burden of

handling labels directly have been studied recently and were

proved to offer comparable performance in practice [23]. Al-

though the article presents a promising approach for encoding

state and its propagation, the empirical performance evaluation

has not yet been backed up by complexity analysis and the

proof of correctness of its pruning strategies.

Overall, literature on SPPRC provides a vast array of accel-

eration techniques. The benefits of dominance rules [16], [21]

and the importance of choosing the right search direction [17],

[22] have been meticulously reported. On the other hand, to the

best of our knowledge except for the work [8] little research

have been done on data structures that allow for an efficient

storage of labels and execution of dominance rules, the gap we

aim to partially fill. Our research results should be compatible

with any aforementioned improvements and therefore used in

conjunction to develop even faster solvers for SPPRC.

III. PROBLEM STATEMENT

Let G(V,E) be a directed graph with V vertices and E
edges. Each vertex v ∈ V and edge e ∈ E has a vector of

resources. Elements of the vector are either scalar values ri or

pairs (rbegini , rendi ). A scalar value ri encodes consumption of

a resource i when a vertex v is visited or an edge e is traversed.

A pair (rbegini , rendi ) encodes a constraint on the lower and

upper bound of a resource i for a vertex v to be available for

visiting or an edge e to be admissible. Furthermore, an edge

e has a cost of traversal which may be negative.

The subject of ESPPRC is to find a set of paths which

visit a sequence of vertices with minimal cost in such a way

that along each path no vertex is visited more than once and

no resource constraint is violated. All paths begin and end

in a designated vertex known as the depot. For notational

convenience the depot is split into two vertices referred to

as the source and the sink. The term node will not be used

interchangeably with a vertex to prevent the naming collision

with a node that is a building block of the trie data structure.

Without the loss of generality we restrict our attention to the

problem with two resources: capacity and time. For syntactic

convenience resource values will be accessed via unary oper-

ators. For example, a vertex v has capacity demand(v), time

required to be spent on servicing time(v) and a time window

that denotes the earliest and the latest time when servicing may

begin, timebegin(v) and timeend(v) respectively. An edge e
has time time(e) and the cost of traversal cost(e), which is

added for simplicity to the resource vector. A path may arrive

at a vertex before its time window opens, but servicing cannot

start earlier. There is no penalty for waiting.

A. Label Definition

A label encodes a partial path from the source to a given

vertex, cumulative cost and resource consumption. Label pro-

cessing algorithms use them to track progress of a search in a

specific direction and to restore a solution after no more labels

to process remain. In next paragraphs we provide the definition

of a label adopted in this paper and operations on labels. The

label definition and the dominance rule is due to [16].

A label is defined by the vector [c, t, d, v, F ] and a link

to the parent label. First three scalar values are the first letters

of the following operators: c is the cost of the partial path

calculated as the aggregate sum of the traversed edges’ cost.

t is the total time spent on waiting, servicing vertices and

traversing edges. d is the aggregate sum of capacity demands

of vertices visited by the partial path. v is a number assigned

to the vertex where the partial path ends. The set F contains

the vertices that cannot be visited by an extension of the partial

path, because they have been visited already or visiting them

would violate some resource constraints.

New labels are created by extension of existing ones. A

label l
′

(c, t, d, v = i, F : vi ∈ F ∧vj /∈ F ) extended along the

edge e = (vi, vj) creates a new label l
′′

(c+ cost(e),max(t+
time(e), timebegin(vj)) + time(vj), d + demand(vj), v =
j, F : vi ∈ F ∧ vj ∈ F ). Furthermore, the set F contains all

other vertices that became unreachable due to the extension. If

a path arrives at a vertex v before its time window is opened,

extra waiting time is incurred. Otherwise, the service may start

immediately after the arrival. This logic can be expressed in a

compact form as max(t+time(e), timebegin(vj))+time(vj)
where time(e), timebegin(vj) and time(vj) denote respec-

tively travel time via an edge e, the earliest time when a service

may begin and the time of servicing.

Finally, a relation of dominance can be defined between

labels. A label la dominates a label lb if the following chain

of inequalities holds cla ≤ clb ∧ tla ≤ tlb ∧ dla ≤ dlb ∧ vla =
vlb∧Fb ⊆ Fa and at least one of the weak inequalities is strict.

Intuitively it means that if no path obtained by an extension of

the label lb is shorter than any path obtained by an extension

of the label la then the label la dominates the label lb. The
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a

e1

e2

b

d

c

e5

e3

e6

e4

Vertex Service Time Demand

a 0 0

b 2 4

c 1 1

d 2 2

Edge Cost Travel Time

e1 1 1

e2 2 2

e3 1 1

e4 1 1

e5 1 1

e6 2 2

Step Label Cost Time Demand Vertex Visited Vertices

1 L1 0 0 0 a {a}

2 L1

e1−−→ L2 0 + 1 0 + 1 + 2 0 + 4 b {a} ∪ {b}

3 L2

e6−−→ L3 1 + 1 3 + 1 + 1 4 + 1 c {a, b} ∪ {c}

4 L3

e4−−→ L4 2 + 1 5 + 1 + 2 5 + 2 d {a, b, c} ∪ {d}

5 L2

e3−−→ L5 1 + 2 3 + 2 + 2 4 + 2 d {a, b} ∪ {d}

6 L1

e2−−→ L6 0 + 2 0 + 2 + 1 0 + 1 c {a} ∪ {c}

7 L6

e5−−→ L7 2 + 1 3 + 1 + 2 1 + 4 b {a, c} ∪ {b}

8 L7

e3−−→ L8 3 + 2 6 + 2 + 2 5 + 2 d {a, b, c} ∪ {d}

9 L6

e4−−→ L9 2 + 1 3 + 1 + 2 1 + 2 d {a, c} ∪ {d}

Fig. 2. Steps of a label processing algorithm for finding the shortest paths
with resource constraints.

correctness of the relation of dominance defined above was

proven in [16].

Concepts introduced in this section are depicted in Figure 2.

It presents a graph with a source depot a and vertices: b, c and

a sink depot d. Customers have predefined capacity demands

and service times. Time windows are ignored for simplicity.

Edges are drawn for admissible transfer links. Each edge has

cost and travel time defined.

Assume that a label setting algorithm which expands labels

in a depth first search fashion is run on the graph. Following

the execution steps in Figure 2, such an algorithm ran to

completion creates nine labels. Four of them are assigned

to the vertex d: L4, L5, L8 and L9. The label L8 can be

discarded, because having covered the same vertices as the

label L4 has a higher cost and requires more time.

B. Algorithm

The ESPPRC can be solved by the label setting algorithm

presented in Figure 3. The control flow resembles other label

setting algorithms from literature [15]. There is no difference

between a trie and a HAT-trie at this level of abstraction, thus

the data structure used for indexing is being referred to simply

as a trie. We start with a brief outline of the main steps of the

algorithm and then focus on the operations that involve the

indexing structures.

For simplicity of the exposition we split the algorithm into

three stages: initialization, label processing and restoring the

paths. Transitions between them are marked by comments in

Figure 3.

At the beginning we create initial labels and data structures

to store them. Each vertex has its own trie to index labels

corresponding to partial paths terminated at the vertex. Fur-

thermore, regardless of the final vertex, labels that are waiting

to be processed are also stored in the min-priority queue which

arranges them in the ascending order by the cost.

Then labels are removed from the queue sequentially and

extended in all possible directions. An extension of a label

creates a new label. The following invariants ensure that the

process terminates. Firstly, labels that correspond to non-

elementary paths are discarded immediately. Secondly, tries

store only non-dominated labels. Finally, a label can be

enqueued only if it is not dominated by a label encountered

before. Therefore, the queue stores only labels which have not

yet been processed.

After no more labels are left for processing the algorithm

restores the shortest paths from labels that are indexed by the

trie associated with the sink vertex.

The aforementioned algorithm uses a trie to store non-

dominated labels and execute tests for dominance. An insertion

to a trie is performed by the operation introduced in Figure 4.

The insertion is delegated to the trie insert function that

depends on the trie data structure. Possible implementations

of the function are explained in [1] for a trie and for a HAT-

trie [5]. From control flow of the algorithm in Figure 3 it is

clear that the insertion is executed only if no dominating labels

were found and the label to be inserted is not stored in the

trie. Thus extra integrity checks, such as a test for dominance,

can be skipped. Finally, after a successful insertion the trie

is cleaned up from labels that are dominated by the newly

inserted one. Pruning dominated labels from a trie and testing

for dominance are the subjects of the following section.

IV. HAT-TRIE OPERATIONS

Both pruning of dominated labels and testing for dominance

require a trie traversal, therefore they depend on the data

structure definition. To make the exposition succinct we focus

on HAT-tries, because a trie is a special case of the HAT-

trie with all nodes expanded and relevant operations for a trie

follow immediately.

Figures 5 and 6 presented in this section will use the

following operations to handle trie nodes.

is expanded(node) test if child nodes are stored in an array,

otherwise they are stored in a list,

has child(node, offset) test if a child node exists for the

given offset,

child(node, offset) access a child node for the given offset,

children(node) enumerate child nodes stored by the node,

erase(child, offset) remove a child node for the given off-

set,
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procedure solve spprc(graph, source, sink)
queue← priority queue() {⊲ initialization}
tries← vector(trie(), num vertices(graph))
labelsource ← label(0, 0, 0)
insert(tries[source], labelsource)
add(queue, labelsource)
for all vertex ∈ vertices(graph) do

if vertex 6= source and vertex 6= sink then

edge← edge(graph, source, vertex)
label← extend(labelsource, edge)
insert(tries[vertex], label)
add(queue, label)

end if

end for

while not empty(queue) do

label← pop(queue) {⊲ label processing}
trie← tries[label]
if is dominated(trie, label) then

continue

end if

for all edge ∈ out edges(graph, label) do

if is visited(label, end(edge)) then

continue

end if

labelnext ← extend(label, edge)
trienext ← tries[labelnext]
if is dominated or equal(trienext, labelnext) then

continue

end if

insert(trienext, labelnext)
add(queue, labelnext)

end for

end while

return iterate(tries[sink]) {⊲ restoring the paths}

Fig. 3. A label setting algorithm for solving ESPPRC.

procedure insert(node, label)
inserted← trie insert(node, label)
if inserted then

prune(node, label)
end if

return inserted

Fig. 4. A generic operation to insert a label into a trie-based index.

is empty(node) test if the node leads to some labels,

labels(node) enumerate labels stored in the node,

vertex(node) access a vertex associated with the node,

next(iterator|offset) increment an offset or an iterator.

Figure 5 presents pseudocode of the operation that prunes

dominated labels. The clue in understanding its control flow

is the observation that a label may be dominated only if

its partial path visits vertices that are also visited by the

dominating label. Thus, pruning of dominated labels reduces to

enumerating labels whose partial paths visit subsets of vertices

procedure prune(node, nodebegin, nodeend, label)
if is expanded(node) then

offset← 0
for it← nodebegin; it 6= nodeend; it← next(it) do

if it = 0 then

if has child(node, offset)
and prune(child(node, offset), next(it),

nodeend, label) then

erase(child(node, offset))
end if

offset← next(offset)
continue

end if

if has child( node, offset )
and prune( child(node, offset), next(it),

nodeend, label) then

erase(child(node, offset))
end if

break

end for

for all labelold ∈ labels(node) do

if is dominated(labelold, label) then

erase(labelold)
end if

end for

else

for all labelold ∈ labels(node) do

if is dominated(labelold, label) then

erase(labelold)
end if

end for

end if

return is empty(node)

Fig. 5. A procedure for pruning of dominated labels in a HAT-trie.

which belong to the partial path of the dominating label. That

operation can be implemented as a recursive procedure that

traverses a trie from the top to the bottom following branches

that index subsets of vertices. The procedure takes as the input

a HAT-trie node, a pair of iterators to a binary vector whose

elements indicate whether a vertex has been visited by the

inserted label and the label itself. The procedure returns true

if the node become empty after the pruning or false otherwise.

The control flow of the operation depends on the type of a node

that is being processed. In case of an expanded node, which

is the only type of nodes in a trie, the procedure recursively

crawls down to child nodes that index bigger subsets. If due

to the pruning a node becomes empty its memory is released.

Having traversed descendant nodes content of a parent node

is processed and its dominated labels are released. On the

other hand, if a node is not expanded all labels it contains are

checked for dominance and erased if possible.

Figures 3 and 5 use different variants of the test for

dominance, which can be either strong or weak. They are
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procedure find(node, predicate, path)
if is expanded(node) then

for all label ∈ labels(node) do

if predicate(label) then

return true

end if

end for

for all child ∈ children(node) do

if vertex(child) ∈ path
and find(child, predicate, path) then

return true

end if

end for

else

for all label ∈ labels(node) do

if is subset or equal(label, path)
and predicate(label) then

return true

end if

end for

end if

return false

Fig. 6. A template method for finding a label in a HAT-trie using a predicate.

denoted in the enclosed figures respectively as is dominated
and is dominated or equal. Both share the same logic of

traversing a trie and handling various node types. To avoid

repetition Figure 6 presents pseudocode of a template method

that is independent of the dominance rule definition. The

appropriate dominance rule is passed as a predicate. The

method performs a pre-order traversal of a tree and returns

true if the predicate was satisfied for any label. Otherwise, it

returns false.

V. COMPUTATION RESULTS

A. Experiment Design

Numerical experiments were conducted to evaluate the

performance of trie and HAT-trie indexing structures used in

the aforementioned label setting algorithm. Test instances were

obtained from the Solomon benchmark problems [24]. The

study is limited to the first series of problems with customers

whose locations are either distributed randomly or grouped

into clusters. The experiments were performed on instances

counting 50 and 100 customers.

Solomon problems were represented as graphs that store

vertex neighbors in adjacency lists. Before running experi-

ments we removed unreachable edges from the graph and

tightened time windows using the method from [12]. Then

to simulate negative edge costs we followed steps explained

in [16]. The cost of each edge was lowered by subtracting a

random value drawn with the uniform distribution from the

set {0, ..., 20}. Finally, the adjacency lists were sorted by the

edge cost. The purpose of lowering the edge cost which may

turn negative is to imitate the conditions characteristic to the

application of ESPPRC as the sub-problem in CG. In practice

values to subtract from the edge cost are the dual multipliers

obtained from the MP solution.

For each instance of the benchmark problem we generated

32 graph samples and used them as the input to the algorithm.

Except for the edge cost there was no other difference in

graphs obtained for the same benchmark problem. The number

of samples selected for the study was influenced by available

computing resources. The average time required to solve a

difficult instance exceeds 15 minutes, which yields at least

8 hours to evaluate all samples for a single configuration of

parameters. In authors view it is very unlikely that a higher

number of samples might affect the statistics of the results

discussed.

Simulations were developed as a single threaded program.

Trie and HAT-trie data structures were implemented by us. We

used the HAT-trie variant with arrays. Therefore, we applied

orders of magnitude smaller burst thresholds than the values

suggested in [5] for hash arrays. The reason for using arrays

as opposed to hash arrays was the need to support subset and

superset queries.

The program was compiled using the GCC 6.3 compiler

with the optimization flags: -O2 and -march=native. Simu-

lations were run on a workstation with the Intel Core i7-

4790 CPU and 8 GB of RAM. Dynamic CPU frequency

scaling was disabled. Time of the algorithm execution was

measured using the Google Benchmark library [25]. If the

program exceeded maximum amount of virtual memory avail-

able on the machine the process was terminated. The same

happened if the total computation time of all graph samples

of a single benchmark instance exceeded 48 hours.

B. Analysis

Figure 7 displays the time required to find all the resource

constrained shortest paths. Their exact number varies between

benchmark instances and depends on the final edges’ costs

after dual multipliers were subtracted. This subject will be

further discussed later. The time is measured in milliseconds.

Its mean value is aggregated over graph samples generated

for the particular benchmark problem. Results were split into

four charts according to a class of the problem for customers

located at random or distributed between clustered and then

by their count. The remainder of this section is devoted to

discussion of several phenomena that appear in the charts.

The label setting algorithm that used the HAT-trie index

achieved superior empirical performance except for a single

instance when it was insignificantly slower. Furthermore, the

HAT-trie data structure by design requires less memory per

node than a trie, allows for a path compression and reduction

of the total number of nodes. Our results are therefore an

indicator of feasibility of using HAT-trie indices for highly

dimensional structures such as sets of cardinality exceeding

the number of symbols in the Latin alphabet, for which tries

were excessively benchmarked.

Solving some benchmark instances is significantly harder

than others. The issue has a plausible explanation. The more
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Fig. 7. Average time [ms] required for solving ESPPRC instances in the Solomon benchmark.

shortest paths a problem has the longer does it take to find

all of them. Solving such a problem requires processing more

labels and longer tests for dominance. Existing research also

indicates that percentage of negative edges is an indicator of

the problem difficulty [16], [15].

Some instances were not solved within the imposed resource

limits. The label setting algorithm with the HAT-trie index

failed to solve in the alloted time the problems: c104 50,

c104 100 and r104 100, r108 100. Besides that, the algorithm

which used a trie was terminated on the problems: c103 100,

r103 100 and r107 100. In all cases of a trie the reason

for termination was exceeding the memory limit. We find it

improbable that a label setting algorithm without considerable

improvements might solve 32 instances of such a problem in

practical time on a modern workstation. It should be noted that

single instances of these problems were solved by either an

enhanced label correcting algorithm [26] or by the decremental

state-space relaxation [18].

Standard deviation of computation time for certain problems

is very high. Similar effect could be observed for other bench-

mark problems or may appear after the size of an instance is

increased. To study this phenomenon we plotted the number of

the shortest paths found in each sample of the problem c103 50

and the time required for its solution. The chart is presented in

Figure 8. It shows that having network structure and resource

consumption defined one can modify the cost of edges in such

a way that the search for the shortest paths will finish within 1

second. However, it is also not difficult to find a sequence of

edge cost reductions that makes the computation longer than

1 minute. In our view this phenomena should be taken into

account while revising prior published benchmark results on

SPPRC which do not provide the number of instances solved

or another measure of confidence in the results presented. The

notable exception is [15] where authors highlight similar issue

observed while using a problem generator.

The results discussed above were obtained for the HAT-trie

with burst threshold of 4. We also investigated how the value of

this parameter affects the algorithm performance. 32 samples

of the problem c103 50 were solved for the sequence of burst

thresholds [1, ..., 16]. The same performance was observed for
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values ranging from 2 to 16. Understandably the performance

was inferior for the burst threshold of 1 when a HAT-trie

resembles a trie. Overall, this result suggests that performance

advantages observed in Figure 7 were attributed to fewer

branches in the tree rather than better utilization of memory

locality. However, a definitive proof requires more research.

VI. CONCLUSION

A HAT-trie in practical setting outperforms a trie offering

superior time complexity to execute a sequence of insert,

delete and look-up operations in a label setting algorithm.

In addition a HAT-trie uses a more conservative memory

allocation strategy which on average results in less memory

allocated per node and fewer nodes in total. Therefore, results

discussed in the paper could serve as an indicator of HAT-

trie feasibility for indexing highly dimensional structures such

as sets of cardinality exceeding the number of symbols in the

Latin alphabet, which tries were benchmarked for. Meanwhile,

a trie offered inferior performance and faster reached its

scalability limits. Due to the excessive memory allocation

pattern of a trie the algorithm that used this data structure

to index labels ran out of the total available virtual memory

on a computing node and it became impractical to continue

simulations.

Finally, running times of algorithms for solving SPPRC

observed for randomly disturbed edge cost, which is the

established technique for obtaining sample problems, may

significantly vary. Therefore, providing a priori the number

of vertices, the network structure and the maximum value

subtracted from an edge cost are not enough to reason about

the computing effort required to solve the problem.
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