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Abstract—Over the past two decades, wavelet-based techniques 

have been widely used to extract partial discharge (PD) signals 

from noisy signals. To effectively select the correct technique to 

minimize the effect of noise on PD detection, three aspects are 

considered: wavelet selection, decomposition scale, and noise or 

threshold estimation. For wavelet selection, popular techniques, 

including correlation-based wavelet selection scheme (CBWSS) 

and energy-based wavelet selection scheme (EBWSS), are applied 

to select an appropriate wavelet basis function. These two schemes, 

however, have their limitations. CBWSS is not as effective as 

expected when the signal to noise ratio (SNR) is very low. EBWSS 

selects the optimal wavelet that can maximize the energy ratio of 

the PD signal in approximation coefficients through wavelet 

decomposition. It is not strictly true for damped oscillating PD 

signals, particularly when the decomposition scale increases. As 

such, a novel wavelet selection scheme, wavelet entropy-based 

wavelet selection scheme (WEBWSS), is proposed to provide an 

alternative to CBWSS and EBWSS for PD denoising. PD signals 

are simulated and also obtained through laboratory experiments 

to demonstrate that this new method has better performance in the 

removal of noise, particularly when SNR is low. 

 
Index Terms—Wavelet-based technique, partial discharge, 

detection, denoising, wavelet selection, SNR, wavelet entropy 

 

I. INTRODUCTION 

Partial discharge (PD) measurement is an effective technique for 

the monitoring of electrical insulation. However, PD signals are 

normally contaminated by noise from the environment, which 

increases the difficulty of their detection. To effectively extract PD 

signal from noisy signals, various denoising techniques, such as 

adaptive filter [1], [2], and the wavelet-based technique [3]–[6], 

have been adopted to remove noise. The wavelet-based technique 

has been widely used in recent years since wavelet transform can 

simultaneously provide signal information both in time and 

frequency domains. This advantage is particularly useful for the 

processing of non-stationary signals, e.g., PD signals.  

For the application of wavelet transform, a noisy signal is 

decomposed into multi-scale wavelet coefficients by a selected 

basis function. Those wavelet coefficients associated with noise are 

processed by an estimated threshold, and thus, the significant 

features of the signal of interest are retained. Reconstruction is then 

performed to build the denoised signal. Based on the processes of 

decomposition and reconstruction, the choice of a suitable wavelet 

basis function is the first, and most, significant step for the 

application of wavelet-based denoising. As such, the investigation 

of an appropriate wavelet basis function for wavelet-based PD 

denoising has been performed in [7], [8]. 

A wavelet selection scheme was introduced in [7] based on the 

correlation coefficient between a known PD signal and wavelet 

waveform. This scheme is termed correlation-based wavelet 

selection scheme (CBWSS). The optimal wavelet is selected if it 

can maximize wavelet coefficients in wavelet analysis of PD 

signals. This approach for best wavelet selection, however, has an 

inherent limitation, it requires prior knowledge of PD waveforms. 

Also, it is not a scale-dependent wavelet selection scheme. The 

denoised PD signal may not be as good as expected. The most 

significant drawback, however, is that the PD signal is normally 

corrupted by the noise in the environment, which can lead to the 

selected wavelet being a match of the noisy PD signal rather than 

the pure PD signal, especially when the signal to noise ratio (SNR) 

is very low. In an attempt to overcome the limitation mentioned 

above in CBWSS, a scale-dependent energy-based wavelet 

selection scheme (EBWSS) was presented in [8]. The wavelet that 

can maximize the energy ratio of approximation coefficients at 

each decomposition scale is selected as the best wavelet. It has been 

demonstrated to outperform CBWSS [8]. In EBWSS, two typical 

PD waveforms, damped exponential PD pulse (DEP) and damped 

oscillating PD pulse (DOP), were used to demonstrate the energy 

criterion for the optimal wavelet selection. With further exploration 

in details of EBWSS, it has been found that the criterion is not 

strictly true for DOP signals, particularly when the decomposition 

scale increases. The motivation of this paper is therefore to provide 

an automated and data-driven selection scheme for the best wavelet 

selection in the context of PD denoising.  

In this paper, the new wavelet entropy-based wavelet selection 

scheme is inspired by the concept of Shannon Entropy. Wavelet 

entropy can measure the randomness of the wavelet coefficients at 

each decomposition scale. The smaller the wavelet entropy, the 

lower the randomness of the wavelet coefficients. As such, the new 

selection scheme is proposed based on wavelet entropy, and 

termed wavelet entropy-based wavelet selection scheme 

(WEBWSS). Simulated PD signals, i.e., DEP and DOP, and PD 

signals obtained through laboratory experiment are used to 

demonstrate the performance of this novel wavelet selection 

scheme. Results show that it is a promising wavelet selection 

scheme to improve the effectiveness of PD denoising.   

II. WAVELET-BASED TECHNIQUE  

A. Wavelet Theory 

Wavelet transform (WT) is an alternative approach to traditional 

methods, e.g. Fourier Transform, in signal processing. The major 

advantage of WT is that it can map a signal in the time-frequency 

plane. Due to this advantage, WT is a promising technique in the 

A Novel Wavelet Selection Scheme for Partial 
Discharge Signal Detection under Low SNR Condition 

Jiajia Liu, W.H. Siew, John J. Soraghan, and Euan A. Morris 

University of Strathclyde 
204 George Street, Glasgow, G1 1XW, UK 

 



 

 

2 

analysis of variations in signals or images with the requirements of 

both time and frequency information. Generally, WT is achieved 

through the application of continuous wavelet transform (CWT) or 

discrete wavelet transform (DWT). DWT is preferable due to its 

representation of signals or images through its DWT coefficients 

without redundancy and, thus, is using less computational time. In 

this paper, the wavelet-based technique referred to is the DWT.  

In [9], the wavelet expansion of a signal x can be expressed as  ݔ ൌ ෍ ෍ ௝ǡ௜ܥ ή ߰௝ǡ௜  ǡ௝௜           (1) 

where both i and j are integer, i is the time-delay index and j is the 

scale index.  ሼ߰௝ǡ௜ሽ is the expansion set of wavelet basis functions, 

and ሼܥ௝ǡ௜ሽ  is the set of expansion coefficients, or wavelet 

coefficients, which is called the discrete wavelet transform of x. 

The expansion in (1) is the inverse discrete wavelet transform 

(IDWT). The scheme of DWT for signal decomposition is depicted 

in Figure 1. A signal is convolved with the low- and high-pass 

filters (h and g) and followed by a downsampling operation by 2. 

In signal processing terminology, the outputs of the low- and high-

pass filters are termed approximation and detail coefficient 

respectively. The approximation coefficient is used as the input 

signal for next-scale decomposition. This decomposition is iterated 

until the predefined scale, ܬ, reaches. It is important to note that the 

maximum decomposition scale ܬ௠௔௫ is defined as log2(N), where 

N is the length of the input signal. The reconstruction of the input 

signal, i.e., inverse DWT (IDWT), is a reverse operation as shown 

in Figure 1. Instead of downsampling in DWT, upsampling is 

involved in IDWT. 
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Fig. 1. The implementation of DWT in signal decomposition 

 

B. Wavelet Denoising Technique 

The wavelet denoising theory is dependent on the fundamental 

idea that the energy of a signal is often concentrated in only a few 

coefficients while the energy of noise is widely spread among all 

the coefficients in the wavelet domain [7]. General procedures for 

the wavelet-based denoising of a signal are presented as follows: 

1) Apply DWT to decompose the noisy signal s with a selected 

wavelet to a predefined scale J, and obtain approximation 

coefficients ௃ܽ at the final scale J and detail coefficients ௝݀ at 

decomposition scale j, where j = 1, 2, ..., J. 

2) Estimate the threshold through a noise estimation technique 

and apply this threshold to detail coefficients, ௝݀ , at 

decomposition scale j using hard or soft thresholding scheme.  

3) Apply IDWT to the approximation coefficients ௃ܽ  and the 

processed detail coefficients ௝݀ᇱ  to reconstruct the denoised 

signal ݏᇱ. 

Based on the noise estimation technique proposed in [7], [10], 

the scale-dependent threshold used in this paper is estimated by      ݎ݄ݐ௝ ൌ หܦܣܯ ௝݀หͲǤ͸͹Ͷͷ ටʹlog ሺ ௝݊ሻ ǡ (2) 

where ܦܣܯȁήȁ  is the median absolute deviation of the detail 

coefficients  ௝݀ at decomposition scale j, and ௝݊ is the length of ௝݀. 

For the thresholding scheme, soft thresholding in [10] is used in 

this paper, the function is given by  

௝݀ǡ௜ᇱ ൌ  ቊ ൫݊݃ݏ ௝݀ǡ௜൯൫ห ௝݀ǡ௜ห െ ௝൯  ݂݅ หݎ݄ݐ ௝݀ǡ௜ห ൐ ௝                             Ͳ               ݂݅ หݎ݄ݐ ௝݀ǡ௜ห ൑ ௝ݎ݄ݐ  ǡ  

(3) 

where ݅ ൌ ͳǡʹǡ ǥ ǡ ݊௝. 

C. Wavelet Entropy 

The concept of wavelet entropy was derived from Shannon 

entropy and presented in [11]. Suppose ሼܥ௝ǡ௜ሽ  are the wavelet 

coefficients obtained through a J-scale wavelet transform, in which 

j represents the decomposition scale and ݆ ൌ ͳǡ ʹǡ ǥ ǡ  i denotes ,ܬ

the ith element in ܥ௝ǡ௜  and ݅ ൌ ͳǡ ʹǡ ǥ ǡ ௝݊ ǡ  ௝݊  is the length of 

wavelet coefficients at scale j. The energy of wavelet coefficients 

at the decomposition scale j can be calculated by ܧ௝ ൌ  ෍หܥ௝ǡ௜หଶ
௜  Ǥ                                (4) 

The distribution of energy probability for wavelet coefficients at 

scale j can be derived by    ݌௜ ൌ หܥ௝ǡ௜หଶ σ หܥ௝ǡ௜หଶ௞  ൌ  หܥ௝ǡ௜หଶܧ௝  
 

                         (5) 

with  σ ௜݌ ൌ ͳ௜ . Wavelet entropy ܹܧሺ݆ሻ  is defined as follows 

ሺ݆ሻܧܹ :[11] ൌ  െ ෍ ௜݌ lnሺ݌௜ሻ௜  Ǥ                    (6) 

Similar to Shannon entropy, wavelet entropy is applied to 

measure the degree of disorder of wavelet coefficients or signify 

the randomness of wavelet coefficients.  

III. PARTIAL DISCHARGE SIGNALS 

Two theoretical PD pulses, i.e., damped exponential PD pulse 

(DEP) and damped oscillating PD pulse (DOP), are simulated 

using their mathematical frames derived based on two different PD 

detecting circuits [4], [8]. In this paper, DEP and DOP are given by 

the formula in [8]:            ݏଵሺݐሻ ൌ ሺ݁ିఈభ௧ܣ െ ݁ିఈమ௧ሻǡ (7)            ݏଶሺݐሻ ൌ ݐௗݓሺݏ݋ሺ݁ିఈభ௧ܿܣ െ ߮ሻ െ ݁ିఈమ௧ܿ߮ݏ݋ሻǡ (8) 

where ݏଵሺݐሻ and ݏଶሺݐሻ are the DEP and DOP respectively. The 

values of ߙ ,ܣଵ, ߙଶ, ௗ݂, ݓௗ and  ߮ used in these two equations are 

listed in Table 1. 

TABLE 1. Values of parameters used in (7) and 8) [8]. 

Parameters ߙ ܣଵ ߙଶ ௗ݂ ݓௗ ߮ 

Values 1 ͳͲ଺ିݏଵ ͳͲ଻ିݏଵ ͳߨʹ ݖܪܯ ௗ݂ ି݊ܽݐଵሺݓௗȀߙଶሻ 
 

The simulated sampling frequency ௦݂ is set to ͸Ͳݖܪܯ. Figure 2 

shows these two simulated PD signals both in time and frequency 

domains. Generally,  DOP signal shown in Figure 2 (c) and (d) is 

closer to a real high-frequency PD signal detected from electrical 

power equipment in practice [8].  
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To develop the new scheme for practical use, real PD signals 

were generated through an artificial defect of a ͹݉݉ ൈ ͹݉݉ 

breach in the outer conductor created in a 1.5m 11 kV ethylene 

propylene rubber-insulated (EPR) cable sample [12]. PD signals 

were collected using a high frequency current transformer (HFCT).  

The specifications of the HFCT are listed in Table 2. Details 

regarding the experiment setup are depicted in Figure 3 [12]. 

 

 
Fig. 2.  (a) and (b): DEP signals simulated in time and frequency domain 

respectively; (c) and (d): DOP signals simulated in time and frequency 

domain respectively. 

 

TABLE 2. Specifications of the HFCT. 

Parameters HFCT 

Sensitivity 5 V/A 

-3 dB bandwidth 90 kHz – 20 MHz 

Internal diameter 50 mm 

External diameter 110 mm 

Load resistance 50 ߗ 

Output conductor BNC 

Manufacturer IPEC 
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Fig. 3.  PD testing of a defective 11 kV EPR cable. HFCT was used to collect 

PD pulses (Ck and Zm represent the coupling capacitor and measuring 

impedance respectively). 

 

Experiments were performed at various voltage levels. The PD 

pulses measured at 9kV are used as the real PD signals to 

demonstrate the new wavelet selection scheme in this paper. One 

PD pulse, named ݏଷ , with 2048 sample points was selected and 

depicted in Figure 4.  

 

 
Fig. 4.  Real PD pulse, s3, detected from a defective EPR cable under 9kV 

AC voltage 

IV. WAVELET ENTROPY-BASED WAVELET SELECTION SCHEME 

In [13], it was shown that wavelet entropy value is inversely 

proportional to the energy concentrated in the number of wavelet 

coefficients. It is also known that white noise, the noise source for 

PD corruption in this paper, has high degree of randomness or 

disorder, and thus, the entropy value can describe the random 

characters of noise [14]. Based on this, a smaller value of wavelet 

entropy indicates that the wavelet used for WT decomposition can 

preserve more energy of the original signal in fewer coefficients 

and contain less white noise in the wavelet coefficients and, 

consequently, the wavelet used is closer to the best wavelet as 

expected. A new criterion for the best wavelet selection is therefore 

proposed, i.e., a wavelet that can have minimum wavelet entropy 

of the approximation coefficients at each decomposition scale 

through WT decomposition will be selected for denoising of PD 

detection. The new method has several promising advantages: it is 

scale-dependent, automated, and data-driven.  

The general process for the proposed novel wavelet selection 

scheme is illustrated in the flow chart in Figure 5.  

Start

Load PD signal, s(n), set Up a 

wavelet library, Ȍi, i = 1 ,2,…,N, 

and the decomposition scales, J

DWT of s(n) using Ȍi for one-scale 

decomposition, i = 1, j = 1

Obtain the approx. cfs, aj
(i)

Calculate the energy of aj
(i) and its 

energy probability (equation (5))

Calculate the wavelet entropy, and 

store it into a entropy vector WE(i) 

(equation (6))

i = N ?
No

[~,p] = min(WE(i)), p    [1,N]

Ȍp is selected as the optimal 

wavelet for scale j and stored into 

an wavelet vector ow(j)

Obtain the approx. cfs aj
(p)and 

detail cfs dj
(p) for scale j using Ȍp

Store approx. & detail cfs to the 

vectors a and d respectively

Yes

j = J ?

Set s(n) = aj
(p) for optimal wavelet 

selection at next scale, j = j+1

No

Yes

End

i = i + 1

 
Fig. 5.  Flow chart of the general process of WEBWSS. 

 

Given a wavelet library ሼ߰௜ǣ ݅ ൌ ͳǡʹǡ ǥ ǡ ܰሽ , one wavelet of 

which is selected for a one-level DWT decomposition of a noisy 

PD signal s(n) each time. Next the wavelet entropy of the generated 

approximations is calculated based on (5) and (6). The wavelet ߰௣ ሺͳ ൑ ݌ ൑ ܰሻ  that minimize the wavelet entropy of 

approximations will be selected as the best wavelet. The selected ߰௣ is then applied for the DWT decomposition of s(n) for the first 

scale, obtaining approximation coefficients ܽଵሺ௣ሻ  and detail 

coefficients ݀ଵሺ௣ሻ
. Finally, ܽଵሺ௣ሻ is used as the input signal for next 

scale DWT decomposition, using the strategy presented above. 
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When the predefined decomposition scale J reaches, the best 

wavelet for each scale will be successfully selected. 

V. RESULTS AND ANALYSIS 

Parameters, e.g., magnitude error (ME), mean square error 

(MSE), and cross correlation (XCORR) are adopted in this paper 

to evaluate the performance of the denoising results of different 

wavelet selection schemes. ME, MSE, and XCORR are calculated 

by the equations as follows, ܧܯ ൌ  ݉ െ ݉ᇱ݉       (9) 

ܧܵܯ ൌ  σ ሾݏሺ݅ሻ െ ᇱሺ݅ሻሿே௜ୀଵݏ ܰ       (10) 

ܴܴܱܥܺ ൌ  σ ሺݏሺ݅ሻ െ ᇱሺ݅ሻݏҧሺ݅ሻሻሺݏ െ ᇱഥݏ ሺ݅ሻሻ௜ඥσ ሺݏሺ݅ሻ െ ҧሺ݅ሻሻଶ௜ݏ ඥσ ሺݏᇱሺ݅ሻ െ ᇱഥݏ ሺ݅ሻሻଶ௜  (11) 

where ݉  and ݉ᇱ are the magnitudes of ݏሺ݅ሻ  and ݏᇱሺ݅ሻ 

respectively. ݏሺ݅ሻ represents the original signal and ݏᇱሺ݅ሻ denotes 

the denoised signal. N is the length of signals. ݏҧሺ݅ሻ  and ݏᇱഥ ሺ݅ሻ 

indicate the mean of ݏሺ݅ሻ and ݏᇱሺ݅ሻ respectively. Better denoised 

results can be obtained with lower ME, MSE, and higher XCORR.  

In this paper, PD signals are corrupted by white noise, and then, 

various wavelet selection schemes are used to remove the noise 

and evaluated by the parameters mentioned above. Two simulated 

PD signals, s1 and s2, and real PD signal, s3, as well as their noisy 

signals NS1, NS2 and NS3 with SNR = -10 are depicted in Figure 6. 

Note that the original real PD signal shown in Figure 4 is corrupted 

by ambient noise during experiment. To mitigate the effect of this 

noise on the denoising results, it has been pre-processed using the 

method introduced in [8]. The smoothed real PD signal is depicted 

in Figure 6 (e). 

The related parameters used to evaluate their performance on PD 

detection are listed in Table 3. It can be seen from Table 3 that 

WEBWSS has better performance than the others of wavelet-based 

denoising of PD detection. Simultaneously, it also verifies the 

conclusion presented in [8] that EBWSS outperforms CBWSS in 

PD denoising. 
 

 
Fig. 6.  (a) and (b): s1 and its noisy signal NS1 with SNR = -10, (c) and (d): s2 

and its noisy signal NS2 with SNR = -10, (e) and (f): s3 and its noisy signal NS3 

with SNR = -10. 

 

 

 

TABLE 3. Parameters used to evaluate the performance of selection schemes. 

 CBWSS EBWSS WEBWSS 

S1 

ME 0.3701 0.3457 0.3071 

MSE 0.0055 0.0028 0.0024 

XCORR 0.8689 0.9358 0.9495 

S2 

ME 0.5686 0.5673 0.5238 

MSE 0.0054 0.0044 0.0041 

XCORR 0.8757 0.9182 0.9414 

S3 

ME 0.5937 0.5457 0.4997 

MSE 0.00035 0.00037 0.00027 

XCORR 0.8501 0.9369 0.9502 

VI. CONCLUSIONS 

A novel wavelet selection scheme was presented in this paper, 

which was shown to improve the effectiveness of wavelet-based 

denoising of PD detection. The wavelet entropy can measure the 

energy preservation and randomness of decomposed wavelet 

coefficients. As such, it has been developed as a criterion for the 

best wavelet selection in wavelet-based PD denoising. Its scale-

dependent, automated, and data-driven properties enable it to be a 

promising technique in the context of PD detection, particularly 

when the SNR is low.  
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